


QUALITY ASSURANCE FOR
THE ANALYTICAL CHEMISTRY LABORATORY



This page intentionally left blank 



QUALITY ASSURANCE FOR
THE ANALYTICAL CHEMISTRY LABORATORY

D. Brynn Hibbert

1
2007



3
Oxford University Press, Inc., publishes works that further
Oxford University’s objective of excellence
in research, scholarship, and education.

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai  Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2007 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.
198 Madison Avenue, New York, New York 10016

www.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
Hibbert, D. B. (D. Brynn), 1951–
Quality assurance for the analytical chemistry laboratory / D. Brynn Hibbert.
p. cm.
Includes bibliographical references.
ISBN 978-0-19-516212-7; 978-0-19-516213-4 (pbk.)
1. Chemical laboratories—Quality control. 2. Chemistry, Analytic—Quality control.
3. Chemistry, Analytic—Technique. 4. Chemometrics. I. Title.
QD75.4.Q34H53 2006
542—dc22 2006014548

1 3 5 7 9 8 6 4 2

Printed in the United States of America
on acid-free paper

www.oup.com


This book is dedicated to my friends and colleagues on IUPAC
project 2001-010-3-500, “Metrological Traceability of Chemical
Measurement Results”

Paul De Bièvre, René Dybkaer, and Ale's Fajgelj



This page intentionally left blank 



Preface

Analytical chemistry impacts on every aspect of modern life. The food and
drink we consume is tested for chemical residues and appropriate nutritional
content by analytical chemists. Our health is monitored by chemical tests
(e.g. cholesterol, glucose), and international trade is underpinned by mea-
surements of what is being traded (e.g. minerals, petroleum). Courts rely more
and more on forensic evidence provided by chemistry (e.g. DNA, gun-shot
residues), and the war on terrorism has caused new research into detection
of explosives and their components. Every chemical measurement must
deliver a result that is sufficiently accurate to allow the user to make appro-
priate decisions; it must be fit for purpose.

The discipline of analytical chemistry is wide and catholic. It is often
difficult for a food chemist to understand the purist concerns of a process
control chemist in a pharmaceutical company. The former deals with a com-
plex and variable matrix with many standard analytical methods prescribed
by Codex Alimentarius, for which comparability is achieved by strict ad-
herence to the method, and the concept of a “true” result is of passing inter-
est. Pharmaceuticals, in contrast, have a well-defined matrix, the excipients,
and a well-defined analyte (the active) at a concentration that is, in theory,
already known. A 100-mg tablet of aspirin, for example, is likely to contain
close to 100 mg aspirin, and the analytical methods can be set up on that
premise. Some analytical methods are more stable than others, and thus the
need to check calibrations is less pressing. Recovery is an issue for many
analyses of environmental samples, as is speciation. Any analysis that must
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be compared to a regulatory limit risks challenge if a proper measurement
uncertainty has not been reported. When any measurement is scrutinized
in a court of law, the analyst must be able to defend the result and show that
it has been done properly.

Every chemical laboratory, working in whatever field of analysis, is aware
of the need for quality assurance of its results. The impetus for this book is
to bring together modern thinking on how this might be achieved. It is more
than a text book that just offers recipes; in it I have tried to discuss how
different actions impact on the analyst’s ability to deliver a quality result.
The quality manager always has a choice, and within a limited budget needs
to make effective decisions. This book will help achieve that goal.

After a general introduction in which I discuss the heart of a chemical
measurement and introduce commonly accepted views of quality, some basic
statistical tools are briefly described in chapter 2. (My book on data analy-
sis for analytical chemistry [Hibbert and Gooding 2005] will fill in some gaps
and perhaps remind you of some of the statistics you were taught in your
analytical courses.) Chapter 3 covers experimental design; this chapter is a
must read if you ever have to optimize anything. In chapter 4, I present gen-
eral QC tools, including control charts and other graphical help mates.
Quality is often regulated by accreditation to international standards (chapter
9), which might involve participation in interlaboratory studies (chapter 5).
Fundamental properties of any measurement result are measurement un-
certainty (chapter 6) and metrological traceability (chapter 7). All methods
must be validated, whether done in house or by a collaborative study (chapter
8). Each laboratory needs to be able to demonstrate that it can carry out a
particular analysis to achieve targets for precision (i.e., it must verify the
methods it uses).

There are some existing texts that cover the material in this book, but I
have tried to take a holistic view of quality assurance at a level that inter-
ested and competent laboratory scientists might learn from. I am continu-
ally surprised that methods to achieve quality, whether they consist of
calculating a measurement uncertainty, documenting metrological traceabil-
ity, or the proper use of a certified reference material, are still the subject of
intense academic debate. As such, this book runs the risk of being quickly
out of date. To avoid this, I have flagged areas that are in a state of flux, and
I believe the principles behind the material presented in this book will stand
the test of time.

Many quality assurance managers, particularly for field laboratories, have
learned their skills on the job. Very few tertiary courses exist to help quality
assurance managers, but assiduous searching of the Internet, subscription
to journals such as Accreditation and Quality Assurance, and participation
in the activities of professional organizations allow analysts to build their
expertise. I hope that this book will fill in some gaps for such quality assur-
ance personnel and that it will give students and new professionals a head
start.
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Finally, I am not a guru. Please read this text with the same critical eye
that you lend to all your professional work. I have tried to give practical
advice and ways of achieving some of the more common goals of quality in
analytical chemistry. I hope you will find useful recipes to follow. Have fun!

Reference

Hibbert, D B and Gooding, J J (2005), Data Analysis for Chemistry: An Intro-
ductory Guide for Students and Laboratory Scientists (New York: Oxford
University Press).
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1
Introduction to Quality in
the Analytical Chemistry Laboratory

3

1.1 Measurement in Chemistry

1.1.1 Defining Measurement

To understand quality of chemical measurements, one needs to understand
something about measurement itself. The present edition of the International
Vocabulary of Basic and General Terms in Metrology (ISO 1993, term 2.1)1

defines a measurement as a “set of operations having the object of deter-
mining a value of a quantity.” Quantity is defined as an “attribute of a phe-
nomenon, body or substance that may be distinguished qualitatively and
determined quantitatively” (ISO 1993, term 1.1). Typical quantities that a
chemist might be interested in are mass (not weight), length, volume, con-
centration, amount of substance (not number of moles), current, and voltage.
A curse of chemistry is that there is only one unit for amount of substance,
the mole, and perhaps because “amount of substance” is verbally unwieldy
and its contraction “amount” is in common nonscientific usage, the sole-
cism “number of moles” is ubiquitous and has led to general confusion be-
tween quantities and units.

The term “measurand,” which might be new to some readers, is the quan-
tity intended to be measured, so it is correct to say of a numerical result that
it is the value of the measurand. Do not confuse measurand with analyte. A
test material is composed of the analyte and the matrix, and so the measurand
is physically embodied in the analyte. For example, if the measurand is the
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mass fraction of dioxin in a sample of pig liver, the dioxin is the analyte
and the liver is the matrix. A more rigorous approach of defining a quantity
in terms of, System – Component; kind of quantity, has been under discus-
sion in clinical medicine for some time. This concept of specifying a quan-
tity has recently been put on a sound ontological footing by Dybkaer (2004).

A measurement result typically has three components: a number and an
uncertainty with appropriate units (which may be 1 and therefore conven-
tionally omitted). For example, an amount concentration of copper might
be 3.2 ± 0.4 µmol L-1. Chapter 6 explains the need to qualify an uncertainty
statement to describe what is meant by plus or minus (e.g., a 95% confidence
interval), and the measurand must also be clearly defined, including spe-
ciation, or isomeric form. Sometimes the measurement is defined by the
procedure, such as “pH 8 extractable organics.”

1.1.2 The Process of Analysis

Analytical chemistry is rarely a simple one-step process. A larger whole is
often subsampled, and the portion brought to the laboratory may be further
divided and processed as part of the analysis. The process of measurement
often compares an unknown quantity with a known quantity. In chemistry
the material embodying the known quantity is often presented to the mea-
surement instrument first, in a step called calibration. Because of the com-
plexity of matrices, an analyst is often uncertain whether all the analyte is
presented for analysis or whether the instrument correctly responds to it.
The measurement of a reference material can establish the recovery or bias of
a method, and this can be used to correct initial observations. Figure 1.1 is a
schematic of typical steps in an analysis. Additional steps and measurements
that are part of the quality control activities are not shown in this figure.

1.2 Quality in Analytical Measurements

We live in the age of quality. Quality is measured, analyzed, and discussed.
The simplest product and the most trivial service come from quality-assured
organizations. Conspicuously embracing quality is the standard of the age.
Even university faculty are now subject to “quality audits” of their teaching.
Some of these new-found enthusiasms may be more appropriate than others,
but I have no doubt that proper attention to quality is vital for analytical chem-
istry. Analytical measurements affect every facet of our modern, first-world
lives. Health, food, forensics, and general trade require measurements that
often involve chemical analysis, which must be accurately conducted for
informed decisions to be made. A sign of improvement in developing coun-
tries is often a nation’s ability to measure important aspects of the lives of
its citizens, such as cleanliness of water and food.
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Figure 1.1. Steps and materials in an analysis. Procedures are shown
in dashed boxes. Quality control materials that are presented to the
analytical system are not shown.
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1.2.1 The Cost of Quality

A well-known saying that can be applied to many areas of life is “if you think
quality systems are expensive, look at the cost of not having them.” The pre-
vention of a single catastrophic failure in quality that might result in great
loss (loss of life, loss of money through lawsuits, loss of business through
loss of customer confidence) will pay for a quality system many times over.
Of course, prevention of an outcome is more difficult to quantify than the
outcome itself, but it can be done. Figure 1.2 is a conceptual graph that plots
the cost of quality systems against the cost of failures. The cost of quality,
after a setup cost, is a linear function of the activity. The more quality con-
trol (QC) samples analyzed, the more QA costs. Failures decrease dramati-
cally with the most rudimentary quality system, and after a while the system
is close to optimum performance. (This statement is made with due defer-
ence to the continuous-improvement school of total quality management.)
The combination of the costs and savings gives a point at which an opti-
mum amount of money is being spent. Remaining at the minimum failure
point in the graph requires more work to reduce the point still further (and
this is where total quality management [TQM] comes in). It is difficult to
give an accurate graph for a real situation. The cost of the quality system
can be determined, but the cost of failures is less well known. Most compa-
nies do not have the luxury of operating without a quality system simply to
quantify the cost of failure.

I preface my lectures on quality assurance in the chemical laboratory by
asking the rhetorical question, why bother with quality? The answer is “be-
cause it costs a lot to get it wrong.” There are many examples of failures in
chemical analysis that have led to great material loss, but as a first example
here is a success story.

Figure 1.2. The cost of quality. F = cost of failure,
QS = cost of the quality system. The minimum in
the combined graph is the optimum overall cost.
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The United States has been monitoring some of its common medical tests
by reanalyzing samples using a more accurate method and determining lev-
els of false positives and false negatives. In 1969 the false positive rate on
cholesterol tests (concluding a patient has high cholesterol when he or she
does not) was 18.5%. By 1994, when presumably modern enzyme methods
were being used, the false positive rate was down to 5.5–7.2%, with concomi-
tant savings of $100 million per year. The savings arise from not repeating
doctor’s visits, not prescribing unnecessary medication, and not adopting
costly diets for people who, in fact, do not have a cholesterol problem.

During the same period, NIST (the National Institute of Standards and
Technology, formerly the National Bureau of Standards) reported that the
cost of nondiagnostic medical tests in the United States at the end of the
1990s was $36 billion, about one-third of the total cost of testing. Not all
these tests are chemical, and so not all the retests would have been a result
of poor quality in a laboratory, but the figure is very large (U.S. Senate 2001).

In recent years Chile has fallen foul of both the United States (because a
grape crop allegedly contained cyanide; De Bievre 1993) and the European
Union (because shrimp that contained cadmium below the limit of defen-
sible detection was rejected), and each time Chile suffered losses in the
millions of dollars. In a survey of users of analytical chemical results, the
Laboratory of the Government Chemist (LGC) in the United Kingdom found
that 29% of the respondents to a survey had suffered loss as a result of poor
analytical chemistry, and 12% of these claimed “very serious” losses (King
1995).

It was stories such as these, circulating at the end of the twentieth century,
that stirred the world of analytical chemistry and have caused analytical chem-
ists to look at how a venerable profession is apparently in such strife.2

Even when the analysis is being performed splendidly, the limitation of
any measurement due to measurement uncertainty always leads to some
doubt about the result. See chapter 6 for an example of uncertainty concern-
ing the amount of weapons-grade plutonium in the world.

1.2.2 Definitions of Quality

There is no lack of definitions of quality. Here are some general ones:

• Delivering to a customer a product or service that meets the speci-
fication agreed on with the customer, and delivering it on time

• Satisfying customer requirements
• Fitness for purpose
• Getting it right the first time.

The International Organization for Standardization (ISO) definitions of qual-
ity are:

• The totality of features and characteristics of a product or service
that bear on its ability to satisfy stated or implied needs (ISO 1994)
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• Degree to which a set of inherent characteristics fulfils requirements
(ISO 2005), where “characteristics” are distinguishing features, and
“requirements” are need or expectation that is stated, generally
implied, or obligatory.

Clearly, quality is all about satisfying a customer. Herein lies the first
problem of an analytical chemist. When a customer buys a toaster, his or
her needs are satisfied if the appliance does indeed toast bread to a reason-
able degree, in a reasonable time, and if the toaster does not cause a fire that
burns down the kitchen. Many analytical measurements, whether they are
made after a visit to the doctor or before a food product is sold, are done
without the explicit knowledge or understanding of the consumer. Occa-
sionally, perhaps after a misdiagnosis based on a laboratory analysis, a fail-
ure of quality might become apparent, but for the most part results are taken
largely on trust. There is often a “middle man,” a government department
or medical personnel, who is better placed to assess the results, and this is
how the public learns of the general concerns over quality. Knowing the
requirements of the customer does allow some of the quality parameters to
be set. The method must work within a certain concentration range and with
a particular limit of detection; the measurement uncertainty must be appro-
priate to the end user’s needs; and the cost and time of delivery of the re-
sults must be acceptable.

The assessment of the quality of a result must be drawn from a number
of observations of the laboratory, the personnel, the methods used, the na-
ture of the result, and so on. The great leap forward in understanding qual-
ity came in the twentieth century when people such as Deming, Shewhart,
Ishikawa, and Taguchi formulated principles based on the premise that
the quality of a product cannot be controlled until something is measured
(Deming 1982; Ishikawa 1985; Roy 2001; Shewhart 1931). Once measure-
ment data are available, statistics can be applied and decisions made con-
cerning the future.

1.2.2.1 Quality Systems, Quality Control,
and Quality Assurance

The Association of Official Analytical Chemists (AOAC, now AOAC Inter-
national), uses the following definitions (AOAC International 2006):

Quality management system: Management system to direct and con-
trol an organization with regard to quality (AOAC International
2006, term 31)

Quality control: Part of quality management focused on fulfilling qual-
ity requirements (AOAC International 2006, term 29)

Quality assurance: Part of quality management focused on providing
confidence that quality requirements will be fulfilled (AOAC In-
ternational 2006, term 28).
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A quality system is the overarching, enterprise-level operation concerned
with quality. The day-to-day activities designed to monitor the process are
the business of quality control (QC), while the oversight of the QC activities
belongs to the quality assurance (QA) manager. Some definitions discuss
quality in terms of planned activities. Noticing quality, or more likely the
lack of it, is not a chance occurrence. Vigilant employees are to be treasured,
but a proper quality system has been carefully thought out before a sample
is analyzed and entails more than depending on conscientious employees.
The way the activities of a quality system might be seen in terms of a mea-
surement in an analytical chemistry laboratory is shown in figure 1.3.

1.2.2.2 Qualimetrics

In recent years the term “qualimetrics” has been coined to refer to the use
of chemometrics for the purposes of quality control (Massart et al. 1997). It
relates particularly to the use of multivariate analysis of process control
measurements. Other texts on quality assurance in chemical laboratories
include the latest edition of Garfield’s book published by AOAC Interna-
tional (Garfield et al. 2000), material published through the Valid Analyti-
cal Measurement program by the LGC (Prichard 1995), and books from the
Royal Society of Chemistry (Parkany 1993, 1995; Sargent and MacKay 1995).
Wenclawiak et al. (2004) have edited a series of Microsoft PowerPoint pre-
sentations on aspects of quality assurance.

Figure 1.3. A schematic of aspects of quality in an analytical measurement.
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1.2.2.3 Valid Analytical Measurement

The Valid Analytical Measurement (VAM; LGC 2005) program of the LGC
(the U.K. National Measurement Institute for chemical measurements) typi-
fies a modern approach to quality in chemical measurements. The program’s
six principles are a clear exposition of the important aspects of making re-
liable analytical measurements:

1. Analytical measurements should be made to satisfy an agreed
requirement.

2. Analytical measurements should be made using methods and equip-
ment that have been tested to ensure they are fit for purpose.

3. Staff making analytical measurements should be both qualified and
competent to undertake the task.

4. There should be a regular independent assessment of the technical
performance of a laboratory.

5. Analytical measurements made in one location should be consis-
tent with those elsewhere.

6. Organizations making analytical measurements should have well-
defined quality control and quality assurance procedures.

Each of these principles will arise in some guise or other in this book.
For example, principle 5 relates to metrological traceability (chapter 7) and
measurement uncertainty (chapter 6). These principles will be revisited in
the final chapter.

1.3 The International System of Measurement

1.3.1 The Treaty of the Metre

The French revolution of 1789 gave an opportunity for the new regime un-
der Talleyrand to lay down the basic principles of a universal measurement
system. By 1799 the Metre and Kilogram of the Archives, embodiments in
platinum of base units from which other units were derived, became legal
standards for all measurements in France. The motto of the new metric sys-
tem, as it was called, was “for all people, for all time.” Unfortunately, de-
spite initial support from England and the United States, the new system
was confined to France for three quarters of a century. The Treaty of the Metre
was not signed until 1875, following an international conference that estab-
lished the International Bureau of Weights and Measures. Having univer-
sally agreed-upon units that would replace the plethora of medieval measures
existing in Europe opened possibilities of trade that, for the first time, would
allow exchange of goods (and taxes to be levied) on a standardized basis.
The original 18 countries that signed the Treaty of the Metre have now be-
come 51, including all the major trading nations, and the ISQ (international
system of quantities) of which the SI is the system of units, is the only sys-
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tem that can claim to be worldwide. Table 1.1 lists the base quantities and
base units in the SI system, and table 1.2 lists the derived quantities and
units.

1.3.2 International Metrology

The General Conference on Weights and Measures (CGPM) meets every
4 years and makes additions to, and changes in, the international system of
units (SI).3 A select group of 18 internationally recognized scientists from
the treaty nations is the International Committee of Weights and Measures

Table 1.1. Base quantities and their base units in SI, as determined by the General
Conference of Weights and Measures (BIPM 2005)

Quantity Unit (symbol) Definition of unit

mass kilogram (kg) The mass of the international
prototype of the kilogram

length meter (m) The length of the path traveled by light
in a vacuum in 1/299,792,458 second

time second (s) 9,192,631,770 cycles of radiation
associated with the transition
between the two hyperfine levels
of the ground state of the cesium-
133 atom

thermodynamic kelvin (K) 1/273.16 of the thermodynamic
 temperature temperature of the triple point of

water

electric current ampere (A) The magnitude of the current that,
when flowing through each of two
long parallel wires of negligible
cross-section and separated by 1 m
in a vacuum, results in a force
between the two wires of 2 × 10-7

newton  per meter of length
luminous intensity candela (cd) The luminous intensity in a given

direction of a source that emits
monochromatic radiation at a
frequency of 540 × 1012 hertz and
that has a radiant intensity in the
same direction of 1/683 watt per
steradian

amount of substance mole (mol) The amount of substance that
contains as many elementary
entities as there are atoms in 0.012
kilogram of carbon-12
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(CIPM), which meets annually and oversees the work of the International
Bureau of Weights and Measures (BIPM). The BIPM, based at Sevres just
outside Paris, has the responsibility for international standards and is a center
for international research and cooperation in metrology.4 The CIPM has
created a number of advisory specialist committees (consultative commit-
tees) that are each chaired by a member of CIPM. The committee of interest
to chemists is the Consultative Committee on the Amount of Substance
(CCQM). It oversees the Avogadro project and coordinates a series of inter-
national interlaboratory trials called Key Comparisons (BIPM 2003), which

Table 1.2. Derived quantities and their units in the SI system

Expression Expression
in terms of in terms of

Derived quantity Name (symbol) other SI units SI base units

plane angle radian (rad) 1 m m-1

solid angle steradian (sr) 1 m2 m-2

frequency hertz (Hz) s-1

force newton (N) m kg s-2

pressure, stress pascal (Pa) N/m2 m-1 kg s-2

energy, work, joule (J) N m m2 kg s-2

quantity of heat
power, radiant flux watt (W) J/s m2 kg s-3

electric charge, coulomb (C) s A
quantity of
electricity

electric potential volt (V) W/A m2 kg s-3 A-1

difference,
electromotive force

capacitance farad (F) C/V m-2 kg-1 s4 A2

electric resistance ohm (Ω) V/A m2 kg s-3 A-2

electric conductance siemens (S) A/V m-2 kg-1 s3 A2

magnetic flux weber (Wb) V s m2 kg s-2 A-1

magnetic flux tesla (T) Wb/m2 kg s-2 A-1

density
inductance henry (H) Wb/A m2 kg s-2 A-2

Celsius temperature degree Celsius (°C) K
luminous flux lumen (lm) cd sr m2 m-2 cd = cd
illuminance lux (lx) lm/m2 m2 m-4 cd = m-2 cd
activity (of a becquerel (Bq) s-1

radionuclide)
absorbed dose gray (Gy) J/kg m2 s-2

specific energy
(imparted)

dose equivalent sievert (Sv) J/kg m2 s-2

catalytic activity katal (kat) s-1 mol
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are detailed in chapter 5. The hierarchy of organizations responsible for the
Treaty of the Metre is shown in figure 1.4.

1.3.3 National Measurement Institutes

Many countries have established national measurement institutes to oversee
their metrology systems and obligations to the Treaty of the Metre. Sometimes
chemistry and other sciences are separated (as in the National Physical Labo-
ratory and the LGC in the United Kingdom), but increasingly chemical mea-

Figure 1.4. The Treaty of the Metre and its associated organizations.
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surements are seen as an integral part of national metrology. Many of these
national measurement institutes take part in the Key Comparisons program
of the CCQM (BIPM 2003). An important role of the chemical laboratories in
national measurement institutes is to demonstrate a primary measurement
capability (i.e. measurements made without reference to other standards) in
fields that are deemed important to the country. For example, in sports-mad
Australia, the National Analytical Reference Laboratory (NARL) has become
a world leader in making reference materials for sports-drugs testing. By dem-
onstrating that these laboratories can make traceable (and therefore compa-
rable) measurements in a wide range of important fields (e.g., trade, health,
forensics), a platform for international metrology in chemistry has been set.
International cooperation has been enhanced by the formation of regional
groupings of national measurement institutes. A list of some national mea-
surement institutes are given in table 1.3, and regional organizations are listed
in table 1.4.

1.3.4 The SI and Metrological Traceability

Chapter 7 is devoted to metrological traceability, but for now it is important
to stress the crucial role that the SI plays in traceability of measurement
results. By using the unit mole, kilogram, or meter, there is an implication
that the result is indeed traceable to the SI base unit. Although sometimes
this might be no more than a forlorn hope, the system of calibrations using
certified reference materials is designed to establish the traceability chain
and its associated measurement uncertainty. Without an internationally
agreed-upon anchor (the SI), measurements made around the world in lo-
cal systems of units would not be comparable, even if they happened to have
the same name or symbol. It is the existence of the SI and its attendant orga-
nizational structure that means that 1 kg of rice in China is equivalent to
1 kg of rice in Germany.

1.4 Quality Systems

There are many approaches to ensuring quality in an organization. The ap-
proach used will depend on the size and nature of the business, the cost of
the product, the cost of failure, and the current fashion. It is not my intent
to advocate one or another approach. The work of a laboratory is often dic-
tated by accreditation requirements or the law and I offer here what a
laboratory can do, not a philosophical framework for quality assurance.
Nonetheless, it may be useful to know some of the acronyms and popular
trends, so a discerning manager can make a decision about what is best for
her or his organization. The following headings do not imply that the meth-
ods are mutually exclusive. For example, accreditation might be sought in
the context of a TQM approach to quality.
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http://www.inti.gov.ar/
http://measurement.gov.au/
http://www.bev.gv.at/
http://mineco.fgov.be/metrology.en
http://www.inmetro.gov.br/

http://inms-ienm.nrc-cnrc.gc.ca
http://www.inn.cl/
http://en.nim.ac.cn/
http://www.danak.dk/
http://ies.jrc.cec.eu.int/
http://www.irmm.jrc.be/
http://www.lne.fr/
http://www.bam.de/

or http://www.ptb.de/
http://www.nplindia.org/
http://www.enea.it/;

http://www.ien.it/;
or http://www.imgc.cnr.it/

http://www.aist.go.jp/
http://www.kriss.re.kr/
http://www.cenam.mx/
http://www.nmi.nl/

(continued)

Table 1.3. Some National Metrology Institutes

Country Name of the NMI URL

Argentina
Australia
Austria
Belgium
Brazil

Canada
Chile
China
Denmark
European

Commission
France
Germany

India
Italy

Japan
Korea
Mexico
Netherlands

Instituto Nacional de Tecnología Industrial
National Measurement Institute (NMI)
Bundesamt für Eich- und Vermessungswesen (BEV)
Service de la Métrologie (SMD)
The National Institute of Metrology, Standardization and Industrial Quality

(InMetro)
Institute for National Measurement Standards (INMS)
Instituto Nacional de Normalización
National Institute of Metrology (NIM)
Danish Safety Technology Authority (SIK)
Joint Research Centre (JRC)

Laboratoire national de métrologie et dessais (LNE)
Federal Institute for Materials Research and Testing (BAM)

National Physical Laboratory
Consiglio Nazionale delle Ricerche (CNR)

National Metrology Institute of Japan (NMIJ/AIST)
Korea Research Institute of Standards and Science (KRISS)
Centro Nacional de Metrologia
Netherlands Metrology Service

http://www.inti.gov.ar/
http://measurement.gov.au/
http://www.bev.gv.at/
http://mineco.fgov.be/metrology.en
http://www.inmetro.gov.br/
http://inms-ienm.nrc-cnrc.gc.ca
http://www.inn.cl/
http://en.nim.ac.cn/
http://www.danak.dk/
http://ies.jrc.cec.eu.int/
http://www.irmm.jrc.be/
http://www.lne.fr/
http://www.bam.de/
http://www.ptb.de/
http://www.nplindia.org/
http://www.enea.it/
http://www.ien.it/
http://www.imgc.cnr.it/
http://www.aist.go.jp/
http://www.kriss.re.kr/
http://www.cenam.mx/
http://www.nmi.nl/
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http://www.irl.cri.nz/msl/
http://www.pakistan.gov.pk/divisions
http://www.gost.ru

http://www.psb.gov.sg/
http://www.nml.csir.co.za/
http://www.cem.es/
http://www.sp.se/
http://www.ssi.se/
http://www.metas.ch/
http://www.lgc.co.uk/

http://www.nist.gov/
http://www.sencamer.gov.ve/

Table 1.3. (continued )

Country Name of the NMI URL

New Zealand
Pakistan
Russia

Singapore
South Africa
Spain
Sweden

Switzerland
United

Kingdom
United States
Venezuela

Measurement Standards Laboratory, Industrial Research
National Physical & Standards Laboratory
Federal Agency on Technical Regulation and Metrology of Russian

Federation (Rostechregulirovanie)
Standards, Productivity and Innovation Board (SPRING Singapore)
CSIR–National Metrology Laboratory
Spanish Centre of Metrology (CEM)
Swedish National Testing and Research Institute (SP)

Swiss Federal Office of Metrology and Accreditation (METAS)
Laboratory of the Government Chemist (LGC)

National Institute for Standards and Technology
Servicio Autónomo de Normalización, Calidad y Metrología (SENCAMER)

A current comprehensive list of metrology laboratories is given on the NIST web site at http://www.nist.gov/oiaa/national.htm

http://www.irl.cri.nz/msl/
http://www.pakistan.gov.pk/divisions
http://www.gost.ru
http://www.psb.gov.sg/
http://www.nml.csir.co.za/
http://www.cem.es/
http://www.sp.se/
http://www.ssi.se/
http://www.metas.ch/
http://www.lgc.co.uk/
http://www.nist.gov/
http://www.sencamer.gov.ve/
http://www.nist.gov/oiaa/national.htm
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1.4.1 Accreditation

Chapter 9 is about accreditation to Good Laboratory Practice (GLP; OECD 1998)
and ISO/IEC17025 (ISO/IEC 2005), but I discuss here what accreditation actu-
ally accredits and its place in the wider scheme of quality systems. There has
been much debate, particularly in the pages of the journal Accreditation and
Quality Assurance, about whether accreditation implies accuracy of measure-
ment results or whether this is an accidental consequence. Certainly the laws
of some countries are now specifying that laboratories making particular legal
measurements must be accredited to ISO/IEC17025, and accreditation to GLP
is a requirement for laboratories around the world that want their results
on the stability and toxicity of new drugs to be considered by the U.S. Na-
tional Institutes of Health. To be accredited to ISO/IEC17025 means that the
laboratory’s procedures and personnel have been critically reviewed, and that
as well as meeting the management quality requirements of the ISO 9000 se-
ries, the laboratory methods and practices also meet an ISO standard. Mainte-
nance of accreditation might also require participation in interlaboratory trials
(proficiency testing, see chapter 5), which can be a direct demonstration of com-
petence. However, because an inspection that focuses on standard operating
procedures and “paper” qualifications of staff can always be open to a certain
amount of exaggeration and manipulation, coupled with the accreditation
body’s desire to give accreditation rather than deny it, accreditation should be
seen as a necessary but not sufficient condition for quality. At least in recent
years accreditation organizations have an ISO standard (ISO/IEC 2004) to which
they, too, must be accredited—“Sed quis custodiet ipsos Custodes,” indeed.5

1.4.2 Peer Review and Visitors

Peer review, initiated by the accreditation body, is the most common method
of determining suitability for accreditation. “Peer review” in this case re-

Table 1.4. Regional groupings of metrology institutes

Organization URL

The Asia Pacific Metrology Programme http://www.apmpweb.org/
(APMP)

Euro-Asian Cooperation of National http://www.coomet.org/
Metrological Institutions (COOMET)

European Collaboration in Measurement http://www.euromet.org/
Standards (EUROMET)

The Inter-American Metrology System http://www.sim-metrologia.org.br/
(SIM)

South African Development Community http://www.sadcmet.org/
Cooperation in Measurement
Traceability (SADCMET)

http://www.apmpweb.org/
http://www.coomet.org/
http://www.euromet.org/
http://www.sim-metrologia.org.br/
http://www.sadcmet.org/
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fers to an organization using outsiders as part of its quality system. Popular
in academia and government circles, the invitation of selected profession-
als to investigate an organization has become one means of reviewing over-
all quality. A review committee is set up with outside participation, and
members are asked to address certain issues and questions concerning the
organization. Peer review of laboratories is less an ongoing process as it is a
one-time procedure directed to a specific issue (accreditation) or problem.
If initiated by senior management, peer review is often seen as a prelude to
some kind of shake-up in the organization, personnel are typically nervous
about the outcome. A properly independent panel can, with a little intelli-
gent probing, can uncover some of the most seemingly intractable problems
of a laboratory, and with sensitivity recommend changes that are in the best
interests of the institution. The usefulness of peer review rests on the people
chosen to make the visit and the willingness and ability of the organization
to implement their suggestions. Questions must be addressed such as, do
they have the right mix of expertise? Have they been given enough time to
complete their tasks? Do they have the authority to see everything they deem
relevant? Will the management take any notice of their report?

1.4.3 Benchmarking

Benchmarking is like peer review from the inside. In benchmarking an orga-
nization goes outside to other organizations that are recognized as leaders in
the sector and compares what is being done in the best-practice laboratory
with their own efforts. First, the field must have developed enough to have
agreed-upon best practices. At universities, for example, the sheer number
of chemistry departments means that an institution can readily be found that
can act as an exemplar for the procedures. The exemplar may not necessar-
ily be the department that is academically the best. Having many Nobel
Laureates that are funded by generous alumni donations may be the dream
of every university, but it may be better to benchmark against a midstream
university that is of about the same size and funding base. Another consid-
eration is whether the targeted institution will agree to share the secrets of
its success, especially if it is seen as a rival for clients, funds, or students.
Finally, benchmarking can be very selective. No organizations are the same,
and what works well for one might not be the best for another. Management
needs to be realistic in the choice of what facets of a benchmarking exercise
can be usefully applied in their own business.

1.4.4 Total Quality Management

Total quality management became popular in the 1990s, after decades of a
move toward taking quality control from the factory floor operator to a
management-centered operation (total quality control of Ishikawa in 1950–
1960 [Ishikawa 1985, page 215]) to the holistic approach enshrined in stan-
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dards such as BS 7850 (BS 1992, 1994) and defined in ISO 8402 (ISO 1995)
and subsequently ISO 9000 (ISO 2005). Although its lessons have survived
and prospered in some areas, the challenge for analytical laboratories is to
decide whether this approach is worth the effort, and, if so, what is the best
implementation. The basis of the TQM approach involves concepts such as
the driver of customer satisfaction, a correct policy and strategy in the orga-
nization, accountability of individuals, and continuous improvement. The
ISO standard 8402 defines quality in TQM as the achievement of all mana-
gerial objectives.

TQM has embraced all the methods of monitoring and testing that are
discussed in this book and puts them together in a system that operates
enterprise wide. The first principle is an absolute commitment by the high-
est management that the organization will actively accept the philosophy
of TQM and commit resources to its implementation. Each member of the
organization is involved in rounds of continuous improvement, with a struc-
tured program in which the product and processes are studied, improve-
ments are planned, changes are implemented, and so on. The traditional
TQM concerns manufacturing industry where a goal is “zero defects.” How
this might translate in an analytical laboratory is worthy of discussion. For
a pathology laboratory, perhaps “no dead patients” (due to our errors), or
for an environmental monitoring laboratory of a chemical plant, “no pros-
ecutions by the EPA.” To achieve these lofty aims, there has to be a good
understanding of the procedures and practices in the laboratory. This in-
volves validation of methods, measurement uncertainty and traceability, and
perhaps monitoring by participation in interlaboratory trials and the use of
control charts. One facet of TQM that is very applicable to chemical labora-
tories is the involvement of personnel at all levels. Usually the technical
staff who physically prepare the samples and conduct the analyses are the
best people to suggest improvements. They are also the ones who might be
cutting corners and creating problems further along the chain. By involving
everyone in the rounds of quality improvement, a perspective on what ac-
tions are genuinely beneficial can be attained in an atmosphere in which
all staff have a positive input. In this respect TQM can be more productive
than peer review or benchmarking, in which the personnel can feel they are
being judged and so might hide improper practices.

1.4.5 Project Management and Six Sigma

Project management and six sigma are approaches based on highly structured
planning with monitoring at each stage (iSixSigma 2006). The four headings
of project management are defining, planning, implementing, and complet-
ing. Project management relies on tools such as Gantt charts and emphasizes
effective communication within an organization to achieve the set goals. Six
sigma is named after a tolerance spread of ± 6σ which, after allowance for
±1.5σ for random effects, leads to a calculation of 3.4 defects per million. The
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tolerance (T) is set by the requirements of the customers, and so it then be-
hooves the analyst to achieve a target measurement uncertainty that complies
with T = 6σ. With this target an appropriate testing and action regime can then
be put in place. The basic sequence of events associated with six sigma is
recognize–define–measure–analyze–improve–control. These events are dis-
cussed in two scenarios, one in which an existing product is found in need of
improvement after customer concerns, and the other for the development of
new products. The first scenario makes use of the acronym DMAIC, which
stands for define–measure–analyze–improve–control, and the second scenario
uses DMADV, or define–measure–analyze–design–verify. It should be noted
that the use of six sigma in the analytical laboratory does have some prob-
lems. In a process control laboratory I am familiar with, the laboratory man-
ager was arguing with his six-sigma masters when the software flagged
out-of-control data—data that he believed quite reasonable. It is important to
understand what sigma is being referred to and to understand whether or not
the system is in genuine statistical control. Is sigma the measurement repeat-
ability, the measurement uncertainty, or the overall standard deviation of the
product and measurement? Having identified an acceptable tolerance, is
mapping ± 6σ on to it a feasible proposition, and are the data appropriately
normal out to these far-flung regions? I will look at some of these issues in the
chapters of this book, but for now treat all quality approaches with some cau-
tion until you are satisfied that they do hold some use for your laboratory (and
not just the airline, car plant, or electronic manufacturer that are always used
as shining examples).

1.4.6 The Hibbert Method

There is no complete specification for an analytical result as there is for a
toaster. Quality must be inferred from a number of indicators, and a good
laboratory manager will understand this and take from popular approaches
methods sufficient to yield quality results. The purpose of this book is to
help the manager do this, not to prescribe 10 steps to enlightenment. This is
not another quality guru speaking, although if you want to read some of these
gurus, try their own words rather than those of their disciples (e.g., Ishikawa
1985, Juran 1992). In the words of Brian (eponymous hero of the Monty
Python film Life of Brian), “Make your own minds up!”

Notes

1. At the time of completing this book, the third edition of the VIM was
in its last draft before publication. Unfortunately it was not released and so
cannot be quoted as such. Some definitions in this book lean heavily on the
thoughts of the VIM revisers but without attribution. Otherwise the second
edition is quoted.
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2. Chemists are not alone. The Mars Climate Orbiter crashed into Mars in
September 1999 following a confusion in programming of software that mod-
eled forces in English units instead of the metric units that were expected by
the thruster controllers and other programs. This incident is related in the
delightfully titled NASA document “Mars Climate Orbiter Mishap Investiga-
tion Report.” (Stephenson 1999) The “mishap” cost around $125,000,000.

3. The bodies of the Treaty of the Metre, perhaps in deference to the lead-
ing role played by France, are known by their French initials. CGPM =
Conférence Général des Poids et Mesures.

4. There is only one artifact remaining as an international standard—the
international prototype kilogram. This is a platinum/iridium alloy housed
in two bell jars in a vault at the BIPM. By decree and treaty it weighs exactly
1 kg when removed and cleaned according to the specifications of the defi-
nition. When the Avagadro constant (NA) is measured or agreed to sufficient
precision, it will be possible to redefine the kilogram in terms of the mass of
NA carbon-12 atoms (see chapter 7).

5. Often misquoted, the quote refers to locking up and guarding wives to
avoid unfaithfulness [Juvenal, Satires no. 6 l.347].
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2.1 Lies, Damned Lies, and Statistics

Because volumes are devoted to the statistics of data analysis in the analyti-
cal laboratory (indeed, I recently authored one [Hibbert and Gooding 2005]),
I will not rehearse the entire subject here. Instead, I present in this chapter
a brief overview of the statistics I consider important to a quality manager.
It is unlikely that someone who has never been exposed to the concepts of
statistics will find themselves in a position of QA manager with only this
book as a guide; if that is your situation, I am sorry.

Here I review the basics of the normal distribution and how replicated
measurements lead to statements about precision, which are so important
for measurement uncertainty. Hypothesis and significance testing are
described, allowing testing of hypotheses such as “there is no significant
bias” in a measurement. The workhorse analysis of variance (ANOVA),
which is the foundational statistical method for elucidating the effects of
factors on experiments, is also described. Finally, you will discover the
statistics of linear calibration, giving you tools other than the correlation
coefficient to assess a straight line (or other linear) graph. The material in
this chapter underpins the concept of a system being in “statistical
control,”which is discussed in chapter 4. Extensive coverage of statistics is
given in Massart et al.’s (1997) two-volume handbook. Mullins’ (2003) text
is devoted to the statistics of quality assurance.
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2.2 Uncertainty in Chemical Measurements

Berzelius (1779–1848) was remarkably farsighted when he wrote about mea-
surement in chemistry: “not to obtain results that are absolutely exact—
which I consider only to be obtained by accident—but to approach as near
accuracy as chemical analysis can go.” Did Berzelius have in mind a “true”
value? Perhaps not, and in this he was being very up to date. The concept of
a true value is somewhat infra dig, and is now consigned to late-night philo-
sophical discussions. The modern approach to measurement, articulated in
the latest, but yet-to-be-published International Vocabulary of Basic and
General Terms in Metrology (VIM; Joint Committee for Guides in Metrology
2007), considers measurement as a number of actions that improve knowl-
edge about the unknown value of a measurand (the quantity being measured).
That knowledge of the value includes an estimate of the uncertainty of the
measurement result. The assessment of measurement uncertainty is facili-
tated by taking a view of the nature of each uncertainty component. There
are three kinds of errors that contribute to the variability of an analytical
result: normally distributed random errors, systematic errors (bias and re-
covery), and gross errors. Gross errors include spilling a portion of the
analyte, using the wrong reagent , and misplacing a decimal point. Results
arising from gross errors cannot be considered among measurement results
that are the subject of the analysis, but must be duly identified, documented
and set aside. Gross errors will not be discussed further. Random errors can
be treated by statistics of the normal distribution, and systematic errors can
be measured and corrected for.

2.2.1 Systematic versus Random Errors

The measurement uncertainty, quoted as a confidence interval about the
measured value, is a statement of the extent of the knowledge concerning
the value of the measurand. Nevertheless, calculating the uncertainty range
is influenced by the nature of the effects contributing to uncertainty: one
must consider whether an uncertainty contribution can be described by a
normal distribution (i.e., deemed to be random), or whether it is considered
a systematic error. Many factors that affect uncertainty are just about ran-
dom: temperature fluctuations, an analyst’s shaky hand while filling a pi-
pette to the mark, or voltage noise affecting the rate of arrival of ions in a
mass spectrometry source are some examples. The reason that the modern
approach, to some extent, blurs the distinction between random and sys-
tematic error is that it is easy to turn one form of error into the other. For
example, a 10.00-mL pipette might be sold with a tolerance of ±0.02 mL.
This means that the manufacturer assures users that the pipette will never
deliver < 9.98 mL and never > 10.02 mL. Suppose the volume of a particu-
lar pipette is 9.99 mL. If an experiment were repeated a number of times
using this pipette, all the results would be affected equally by the 0.01-mL
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short delivery. Unless the pipette were independently calibrated and the
more correct volume of 9.99 mL used in the calculations, then the system-
atic error in the results would be there forever. In contrast, if for each re-
peat of the measurement a different pipette were used, then it might be
expected that after enough repeats with one pipette delivering 10.015 mL,
and another 9.987 mL, and so on, the mean delivery should tend toward
10.00 mL, and the standard deviation of the results would be greater than if
a single pipette were used. The systematic error of using a single, uncali-
brated pipette, which gives a bias in the result, has been turned, by using
many pipettes, into a random error with less bias, but greater variance.

2.2.2 Repeatability and Reproducibility

“Precision” is the word used to describe the spread of a number of results,
and it is usually expressed as a standard deviation (σ) or relative standard
deviation (RSD; see below). “Good precision” means that the results tend to
cluster together with an appropriately small σ, “poor precision” implies that
the data are spread widely and that σ is large compared with the measure-
ment result. In chemistry, it is important to make clear under what condi-
tions the results have been replicated when quoting an estimate of precision.
The more conditions have been allowed to vary, the greater the spread of
results. Repeatability conditions allow the minimum amount of variation
in the replicated experiments. The same analyst performs experiments on
the same equipment, using the same batch of reagents, within a short time.
Repeatability (σr) is the closeness of agreement between the results of suc-
cessive measurements of the same measurand carried out subject to the fol-
lowing conditions:

• the same measurement procedure
• the same observer
• the same measuring instrument used under the same conditions
• the same location
• repetition over a short period of time (ISO 1994, terms 3.13 and 3.14)

Repeatability is expressed as a standard deviation (described below).
As soon as more of the conditions are changed, then the standard devia-

tion of results is known as the reproducibility. Reproducibility (σR) is the
closeness of agreement between the results of measurements of the same
measurand, where the measurements are carried out under changed condi-
tions, such as:

• principle or method of measurement
• observer
• measuring instrument
• location
• conditions of use
• time (ISO 1994, terms 3.17 and 3.18)
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Any or all of these conditions can be varied. To provide some guidance,
“intralaboratory reproducibility” is used to express changes only within a
laboratory, and “interlaboratory reproducibility” is used to refer to the
changes that occur between laboratories, for example in proficiency testing,
interlaboratory method validation studies, and the like. Interlaboratory re-
producibility is usually two to three times the repeatability.

2.3 Basics: Describing the Normal Distribution

2.3.1 The Normal Distribution

The normal, or Gaussian, distribution occupies a central place in statistics
and measurement. Its familiar bell-shaped curve (the probability density
function or pdf, figure 2.1) allows one to calculate the probability of finding
a result in a particular range. The x-axis is the value of the variable under
consideration, and the y-axis is the value of the pdf.
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defining the area. Figure 2.2 shows the area from –∞ to x.

F x x x dx
x x

x x

1 2

2

2

1
2 2

1

2

> >( ) = −
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=

∫ σ π
µ

σ
exp

x
(2.2)

Figure 2.1. The standardized normal or Gaussian
distribution. The shaded area as a fraction as the
entire area under the curve is the probability of
a result between x1 and x2.
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The normal distribution is characterized by two parameters. The center
of the distribution, the mean, is given the symbol µ. The width of the distri-
bution is governed by the variance, σ2. The square root of the variance, σ, is
the standard deviation.

Why is any of this of interest? If it is known that some data are normally
distributed and one can estimate µ and σ, then it is possible to state, for
example, the probability of finding any particular result (value and uncer-
tainty range); the probability that future measurements on the same system
would give results above a certain value; and whether the precision of the
measurement is fit for purpose. Data are normally distributed if the only
effects that cause variation in the result are random. Random processes are
so ubiquitous that they can never be eliminated. However, an analyst might
aspire to reducing the standard deviation to a minimum, and by knowing
the mean and standard deviation predict their effects on the results.

In any experiment, therefore, all significant systematic errors should be
measured and corrected for, and the random errors, including those pertain-
ing to the bias corrections, estimated and combined in the measurement
uncertainty.

Later, how to calculate the probability of finding results that are removed
from the mean will be explained. This is the basis of hypothesis testing. Once
the form of the distribution is known, a desired probability is then an area
under the pdf. Testing at 95% probability usually entails determining the
limits that encompass 95% of the distribution in question. There are two
ways of doing this: symmetrically about the mean, or starting at infinity in
one direction or the other. Figure 2.3 shows the difference. Most tests use
symmetrical boundaries; there is usually no reason to expect an outlier, for
example, to be much greater or much less than the mean. In cases where

Figure 2.2. The cumulative normal distribution.
F(x) is the probability of finding a result
between –∞ and x.
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only one side of the distribution is important (e.g., testing against an upper
limit of a pollutant), the test is done with all the probability at the end in
question (figure 2.3b).

2.3.2 Mean and Standard Deviation

The normal distribution of figure 2.1 is the theoretical shape of a histogram
of a large number of estimations. In chemistry often only duplicate measure-
ments are done, or in full method-validation mode, a dozen or so. Herein
lies the problem. The chemist does not have enough information to report

Figure 2.3. Ninety-five percent of a standardized
normal distribution. (a) Two tailed: 2.5% lies
at z < –1.96, and z > +1.96. (b) One tailed: 5%
lies at z > 1.65.
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the values of the mean and standard deviation of the population of experi-
ments from which the results are drawn. Instead, we calculate the sample
mean (x) and sample standard deviation (s)

x
x

n

i
i

i n

= =

=

∑
1 (2.3)
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x x
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i
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i n
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−
=
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∑ 2
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1
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In Microsoft Excel, these are calculated by the functions =AVERAGE(range)
and =STDEV(range), respectively, where range is the range of cells con-
taining the n data (e.g., A1:A5). It is said that x is an estimate of µ and s is an
estimate of σ.

In analytical chemistry, the ratio of the standard deviation to the mean,
or RSD is often quoted. This quantity is also known as the coefficient of
variation (CV), but the term is no longer favored and RSD should be used.
Remember both the mean and the standard deviation have the units of the
measurand. The relative standard deviation has unit one and is usually
expressed as a percentage.

2.3.2.1 Standard Deviation of the Mean

The mean and standard deviation of n results is given in equations 2.3 and
2.4, respectively. Suppose now that this set of n experiments is repeated a
large number of times. The average of all the values of x tends to the popula-
tion mean, µ. The standard deviation of the values of x is σ /√n. This is a very
important result, and the difference between the standard deviation and the
standard deviation of the mean must be understood. The standard deviation
calculated from all the n individual data values would tend to the standard
deviation of the population (σ), but as n becomes greater the standard devia-
tion of the means would become smaller and smaller and tend to zero, by virtue
of σ being divided by √n. As expected, the more replicates that are averaged,
the greater the confidence that the calculated sample mean is near the mean
of the population. Even when only a few results are averaged, a sample stan-
dard deviation of the mean may be calculated as s/√n. As I show in the next
section, when the sample standard deviation of the mean is used to calculate
confidence intervals, some allowance will have to be made for the fact that s
is only an estimate of σ. Another feature of averages is that the means of n
measurements tend to a normal distribution as n becomes greater, even if the
population is not normally distributed. This possibly surprising result is very
useful for measurement scientists, as it allows them to assume normality with
a certain amount of abandon, if a suitable number of replicates are used to
provide a mean result.
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2.3.2.2 Standardized Normal Variable:
z Score

When discussing normally distributed variables, a convenient way of ex-
pressing the data is the distance from the mean in standard deviations. This
is known as the standardized normal variable or z value. A result that has
z = –1.2 is 1.2 times σ less than the mean.

z
x

i
i=
−( )µ
σ

(2.5)

For data that are to be compared with expected limits of a distribution (e.g.,
in an interlaboratory trial), the z score is calculated using either the mean
and sample standard deviation of the data,

z
x x

si
i=
−( )

(2.6)

or the assigned reference value of the measurand, xa , and target standard
deviation (σtarget),

z
x x

i
i=
−( )a

targetσ
(2.7)

or one of the robust estimates described below.

2.3.2.3 Robust Estimates

If data are normally distributed, the mean and standard deviation are the
best description possible of the data. Modern analytical chemistry is often
automated to the extent that data are not individually scrutinized, and pa-
rameters of the data are simply calculated with a hope that the assumption
of normality is valid. Unfortunately, the odd bad apple, or outlier, can spoil
the calculations. Data, even without errors, may be more or less normal but
with more extreme values than would be expected. These are known has
heavy-tailed distributions, and the values at the extremes are called outliers.
In interlaboratory studies designed to assess proficiency, the data often have
outliers, which cannot be rejected out of hand. It would be a misrepresenta-
tion for a proficiency testing body to announce that all its laboratories give
results within ± 2 standard deviations (except the ones that were excluded
from the calculations).

Consider these data for an acid base titration: 10.15 mL, 10.11 mL, 10.19
mL, 11.02 mL, 10.11 mL (see figure 2.4). The result 11.02 mL is almost cer-
tainly a typo and should be 10.02 mL, but suppose it goes unnoticed. The mean
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is dragged up to 10.32 mL, and the sample standard deviation is a whopping
0.39 mL. Subsequent calculations would not represent the true picture of the
concentration of acid. One method of allowing for outliers when calculating
estimates of the mean and standard deviation is to use a robust estimate of
the mean (the median) and a robust estimate of the standard deviation (the
median absolute deviation divided by 0.6745). The median of a set of data is
the middle value when the results are sorted by order of magnitude. If there
is an odd number of data, the median is one of the values (e.g., out of five
data, the value of the third is the median: 1, 2, 3, 4, 5). If there is an even number
of data, the median is the average of the two middle values (e.g., with six values,

Figure 2.4. (a) Set of titration volumes with
outlier. Dotted line is the mean. Dashed line is
the median. (b) Set of titration volumes with
outlier corrected from 11.02 mL to 10.02 mL on
the same scale.
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the third and fourth are averaged: 1, 2, [3 + 4]/2, 5, 6). For normally distrib-
uted data, because the distribution is symmetrical, the mean, µ, and the me-
dian are the same. For small data sets with a heavy tail it has been shown that
the mean is skewed in the direction of the outlier. The median is not so af-
fected, as the end value is the end value, whatever its magnitude.

The median of the titrations in the example above is 10.15 mL, which is
a much more representative value. If the result 11.02 mL is replaced by 10.02
mL (this would require evidence that there had been an error in transcrib-
ing results), then the mean becomes the reasonable 10.12 mL and the stan-
dard deviation is 0.06 mL.

The calculation of the mean absolute deviation (MAD) is

MADi = median (|xi – median(xi)|) (2.8)

As may be seen in the example in spreadsheet 2.1, the robust estimate of
standard deviation (MAD/0.6745) agrees with standard deviation of the
amended data.

In interlaboratory trials that are not informed by an assigned value and
target standard deviation, a robust z score is used to account for all the avail-
able data

z
x x

i
i i=
− ( )median

robustσ
(2.9)

Spreadsheet 2.1. Calculation of mean, standard deviation, median,
and mean absolute deviation of titration data with outlier, and after
correction (shaded cells show the change from 11.02 to 10.02).
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The robust estimate of the standard deviation can be the MAD defined
above, or if there are sufficient data, 1.35 × interquartile range. The
interquartile range (IQR) is the range spanning the middle 50% of the data.
However, chemistry rarely has the luxury of sufficient data for a meaning-
ful calculation of the IQR.

In statistical process control when only a small set of data is avail-
able, the range of the data is often used to give an estimate of the standard
deviation. The range of a set of n data is divided by a parameter, dn (also
called d2).

σest
n

x x

d
=

−( )max min

(2.10)

Table 2.1 gives values up to n = 10, although with this number of data it
would be advisable to simply compute the sample standard deviation di-
rectly. The values of dn are nearly √n, and this is sometimes used in a quick
calculation. A better estimate of dn up to n = 10 is

dn = 2.44 × √n – 0.32 × n – 1.38 (2.11)

2.3.3 Confidence Intervals

A sample standard deviation tells something about the dispersion of data,
but a statement with a probability may be preferred. A result such as 1.23 ±
0.03 ppm means different things to different people. Even if it is annotated
by “(95% confidence interval),” there is still some doubt about its interpre-
tation. The use of plus or minus should refer to a high probability (95% or
99%) range; it should not be used to state a standard deviation. If the stan-
dard deviation is to be given, then write “the mean result was 1.23 ppm
(n = 5, s = 0.04 ppm),” and everyone will understand what is meant. If an
expanded uncertainty from an estimated measurement uncertainty (see chap-
ter 6) appears after the plus or minus sign, then there should be an appro-
priate accompanying statement. For example, “Result: 1.23 ± 0.03 ppm,
where the reported uncertainty is an expanded uncertainty as defined in
the VIM, 3rd edition (Joint Committee for Guides in Metrology 2007), cal-
culated with a coverage factor of 2, which gives a level of confidence of

Table 2.1. Values of dn used in estimating standard deviation (s)
from the range (R) of one set of data, s ≈ R/dn

n

2 3 4 5 6 7 8 10
dn 1.41 1.91 2.24 2.48 2.67 2.82 2.95 3.16

Adapted from Oakland (1992).
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approximately 95%.” Some of these words are optional, and expanded un-
certainty is not actually defined here, but the thrust of the statement is that
the range about the result is where the value of the measurand is thought to
lie with the stated confidence.

However, the GUM (Guide to the Expression of Uncertainty of Measure-
ment) approach (ISO 1993a), which leads to the verbose statement con-
cerning expanded uncertainty quoted above, might not have been followed,
and all the analyst wants to to do is say something about the standard de-
viation of replicates. The best that can be done is to say what fraction of
the confidence intervals of repeated experiments will contain the popula-
tion mean. The confidence interval in terms of the population parameters
is calculated as

µ
σα±

z
n

(2.12)

where ± zα is the range about µ of the standardized normal distribution en-
compassing 100(1 – α)% of the distribution. For a range with z = 2, approxi-
mately 95% of the distribution is contained within µ ± 2 standard deviations.
When only a sample mean and standard deviation are available, the confi-
dence interval is

x
t s

n
n± −α ", 1

(2.13)

where tα",n-1 is the two-tailed Student’s t value for 100(1 – α)% at n – 1 de-
grees of freedom.1 The added complication of using the t value is that the
confidence interval, when calculated from the sample standard deviation
(s) needs to be enlarged to take account of the fact that s is only an estimate
of σ and itself has uncertainty. The degrees of freedom are necessary because
the estimate is poorer for smaller sample sizes. Table 2.2 shows values of t
for 95% and 99% confidence intervals.

When n becomes large the t value tends toward the standardized normal
value of 1.96 (z = 1.96), which was approximated to 2 above. The 95% con-
fidence interval, calculated by equation 2.13, is sometimes explained much
like the expanded uncertainty, as a range in which the true value lies with
95% confidence. In fact, the situation is more complicated. The correct sta-
tistical statement is: “if the experiment of n measurements were repeated
under identical conditions a large number of times, 95% of the 95% confi-
dence intervals would contain the population mean.”

Table 2.2 also reveals that if only two or three experiments are performed,
the resulting confidence intervals are so large that there may be little point
in doing the calculation. Usually there will be some knowledge of the re-
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peatability of the experiment from method validation studies done at many
more degrees of freedom, and if the duplicate and triplicate experiments are
consistent with that repeatability, it may be used to calculate the confidence
interval, with a t of 2 for the 95% confidence interval.

When the repeatability standard deviation is known, it can be used to
assess results done in duplicate. If the repeatability is σr, then the 95% con-
fidence interval of the difference of two results is

r = √2 × 1.96 × σr = 2.8 × σr (2.14)

This is a useful check of day-to-day duplicated results. If the difference
is greater than the repeatability limit, r, it is advisable to perform another
experiment and test further (see ISO 1994).

2.4 Testing

2.4.1 Hypotheses and Other Beliefs

If the results of analytical chemistry are used as the bases for decisions, a cli-
ent will frequently compare the measurement result with some other value.
In process control, a company will have release specifications that must be

Table 2.2. Values of the two-tailed Student’s t
distribution calculated in Excel by =TINV(0.05,
n – 1) and =TINV(0.01, n – 1)

Student’s t value

Degrees of For 95% For 99%
freedom confidence confidence

n (= n – 1) (t0.05",n–1) (t0.01",n–1)

2 1 12.71 63.66
3 2 4.30 9.92
4 3 3.18 5.84
5 4 2.78 4.60
6 5 2.57 4.03
7 6 2.45 3.71
8 7 2.36 3.50
9 8 2.31 3.36
10 9 2.26 3.25
50 49 2.01 2.68
100 99 1.98 2.63
∞ ∞ 1.96 2.58
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met by the production samples; a regulatory authority will test product, ef-
fluent, and emissions against legal limits; and trading partners will compare
analyses made by the buyer and seller of goods. For samples that clearly pass
or fail the test, there is no great need to invoke statistics (although “clearly” is
only understood in relation to the measurement uncertainty). However, when
results are close to the limit, a knowledge of the uncertainty of measurement
is essential to correctly interpret compliance or risk. A possible rule is that a
mean value plus its 95% confidence interval cannot exceed a certain limit to
be considered compliant (positive compliance) or that both the mean and 95%
confidence interval have to exceed the limit to be noncompliant (positive
noncompliance). The default (or null) hypothesis that is being tested in each
case is “the item does not comply” (positive compliance required) or “the item
does comply” (positive noncompliance). The null hypothesis (represented as
H0) is considered to hold unless there is convincing evidence to the contrary,
at which point it is rejected. Figure 2.5 shows different situations with respect
to compliance near limits.

As the probability associated with test data and a control limit can be
calculated in Excel, rather than give confidence intervals for arbitrary cov-
erage (95%, 99%), I recommend giving the probability that the limit would
be exceeded in repeated measurements. Given a knowledge of the distribu-
tion describing results (normal, or t distribution), the areas under the pdf
either side of the control limit give the probabilities of complying or not
complying (see figure 2.6).

2.4.2 General Procedures for Testing Data

2.4.2.1 Testing Against a Given Probability

Reports often state that an effect was “significant at the 95% probability
level” or use an asterisk to denote significance at 95% and double asterisks
for significance at 99%. Significance at the 95% level means that the null
hypothesis (H0 = the effect is not significant) has been rejected because the
probability that the test statistic, which has been calculated from the data,
could have come from a population for which H0 is true has fallen below
5%. Most statistical tests have the same sequence of events:

1. Formulate the null hypothesis, H0, for which an appropriate statis-
tic can be calculated.

2. Calculate test statistic from the data (call it xdata).
3. Look up the critical value of the statistic at the desired probability

and degrees of freedom (call it xcrit).
4. If x > xcrit, then reject H0. If x < xcrit, then accept H0.

Accepting H0 can be often seen more as recognizing the case against H0 as
“not proven” than as definite support for it. It is sometimes reported, “there
is not enough evidence to reject H0.”
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2.4.2.2 Calculating the Probability
of the Data

For common statistics, such as the Student’s t value, chi-square, and Fisher
F, Excel has functions that return the critical value at a given probability
and degrees of freedom (e.g., =TINV(0.05,10) for the two-tailed t value at
a probability of 95% and 10 degrees of freedom), or which accept a calcu-
lated statistic and give the associated probability (e.g., =TDIST(t, 10, 2)
for 10 degrees of freedom and two tails). Table 2.3 gives common statistics
calculated in the course of laboratory quality control.

Figure 2.5. Measurement results and their measurement uncertainties near
a compliance limit. A clearly fails, and D clearly passes. B does not fail if
positive noncompliance is required for failure, but otherwise fails. C does
not pass if positive compliance is required, but otherwise does pass.
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The advantage of calculating the probability directly, rather than testing
against a given probability, is that it is much more informative. A t of 3.99
at 6 degrees of freedom is greater than the critical, two-tailed value at the
95% level (t0.05”,6 = 2.45), and so H0 would be rejected at this level of probabil-
ity, but discovering that the probability (calculated as =TDIST(3.99,6,2)
Pr(|T| > 3.99)) = 0.0072 tells us that H0 would be rejected at the 99% level
and indeed is significant at the 99.3% level.

It must be stressed, because this error is often made ,that the probability
calculated above is not the probability of the truth of H0. It is the probabil-
ity that, given the truth of H0, in a repeated measurement an equal or more
extreme value of the test statistic will be found.

2.4.3 Testing for Normality

I have already pointed out that the distribution of means of the results of
repeated measurements tend to the normal distribution when the number
of repeats contributing to the mean becomes large. However, the presence
of outliers in heavy-tailed distributions when there are not many replicate
measurements suggests that from time to time the analyst might need to
justify an assumption of normality. When significant effects are being
sought using an experimental design (see chapter 3), the underlying as-
sumption is that measured effects are not significant and therefore follow
a normal distribution about zero. Results that violate this assumption are
deemed significant.

Figure 2.6. Distribution about a mean in relation to a control limit. The
areas indicated are the fractions of the distributions passing and failing,
and so can be equated to the probabilities of the mean result B with 95%
confidence interval, complying or not complying.
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Table 2.3. Examples of test statistics used in laboratory testing

Example
Statistic calculation H0 Excel functions

Student’s t

Chi-square

Fisher F

Grubbs’ G for
single outlier

Grubbs’ G
for pairs
of outliers

Cochran test
for homogeneity
of variance
of k laboratories

The mean x
comes from a
population of
means with
mean = µ

The sample
variance s2

comes from a
population
with variance σ2

The variances s2
1

and s2
2 come

from popula-
tions with
equal variances

The extreme data
point xi is not
an outlier and
comes from a
normally
distributed
population with
sample mean
x and standard
deviation s

The extreme pair
of data are not
outliers and
come from a
normally
distributed
population with
sample mean
xn

The variances of
sets of data
come from a
normal popu-
lation (s is
difference
between the
results for 2
values)
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max
2
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1

=TINV(α,n – 1)
=TDIST(t,n – 1,

tails)

=CHIINV(α,n – 1)
=CHIDIST(χ2, n – 1)

=FINV(α,n1 – 1,

n2 – 1)

=FDIST(F, n1 – 1,

n2 – 1)

No Excel functions

No Excel functions

No Excel functions

In each case x and s are the mean and standard deviation of n data.
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There are several tests for normality, most requiring statistical manipu-
lation of the data. If a suitable package is available, you should consider using
a chi-square test for large samples (n >50) and the Kolmogorov-Smirnov test
for smaller samples. Here I describe a visual test that can easily be imple-
mented in Excel. In the Rankit method a graph is constructed with the or-
dered results plotted against the expected distribution if they were normal.
A straight line indicates normality, with outliers far off the line. The Rankit
plot also allows other types of non-normal distribution to be identified. With
the data in a column in a spreadsheet, the procedure is as follows for n data:

1. Sort data in increasing order of magnitude.
2. In the next column enter the “cumulative frequency” of each value

(i.e., how many data have an equal or lesser value).
3. In the next column calculate the “normalized cumulative frequency,”

f = cumulative frequency/(n + 1).
4. In the next column calculate the z value =NORMSINV(f).
5. Plot each z against the value.

Spreadsheet 2.2 and figure 2.7 give an example of 10 titration values.
Notice how the ranking is done. The Excel function =RANK(x, range, di-
rection) does not quite work, as ties are given the lower number, not the
higher. If there are sufficient data to warrant automating this step, the cal-

=COUNT($C$4:$C$13)-
RANK(C4,$C$4:$C$13,0)+1

=D4/11

=NORMSINV(E4)

Spreadsheet 2.2. Example of calculations for a Rankit plot to test normality.
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culation is = n – RANK(x, range, 0) + 1. NORMSINV(f) is the inverse
of the standardized normal distribution; that is, it returns the z score of an
area under the cumulative normal distribution.

The data fall on a straight line and are concluded to be normally distrib-
uted. Outliers in the data are seen as points to the far right and far left of the
line.

2.4.4 Outliers

If the data as a whole appear normally distributed but there is concern that
an extreme point is an outlier, it is not necessary to apply the Rankit proce-
dure. The Grubbs’s outlier test (1950) is now recommended for testing single
outliers, replacing Dixon’s Q-test. After identifying a single outlier, which,
of course, must be either the maximum or minimum data value, the G sta-
tistic is calculated:

g
x x

si
i=
−

(2.15)

There is no easy spreadsheet calculation of the probability associated with
g, so you must compare it against tables of the critical G value for n data and
95% or 99% probability (table 2.4)

In an example based on IMEP 1 (see chapter 5), lithium in a serum sample
was measured six times with the results 0.080, 0.080, 0.100, 0.025, 0.070,
and 0.062 mM. Is any result an outlier? A graph of these results (figure 2.8)
points to the value 0.025 mM as highly suspicious.

Figure 2.7. Rankit plot of the data in spreadsheet 2.2.
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The mean of these values is 0.0695 mM and the standard deviation is
0.0252 mM, which gives

g =
−

=
0 025 0 0695

0 0252
1 762

. .
.

. (2.16)

Table 2.4 gives Gcrit = 1.887. As g < Gcrit, the null hypothesis cannot be
rejected and so the point is not an outlier at the 95% probability level. How-
ever, in this case g is close to Gcrit, and there might be legitimate concern
about this suspicious value.

This Grubbs’s test is appropriate only for single outliers. Grubbs also
published a test for a pair of outliers at either end of the data. The test statis-
tic is the ratio of the sum of squared deviations from the mean for the set
minus the pair of suspected outliers and the sum of squared deviations from
the mean for the whole set:
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Table 2.4. Values of the critical two-
tailed Grubbs’s G statistic at 95% and
99% probability for a single outlier

n G0.05",n G0.01",n

3 1.154 1.155
4 1.481 1.496
5 1.715 1.764
6 1.887 1.973
7 2.020 2.139
8 2.127 2.274
9 2.215 2.387
10 2.290 2.482
25 2.822 3.135
50 3.128 3.482
100 2.800 3.754
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Note that the mean used in each calculation is the mean of the set being
considered, either all the data in the denominators, or less the two greatest
or two least. The paired G statistic is compared with critical values (see table
2.5), and, unusually, the null hypothesis is rejected if the calculated g is
smaller than the tabulated G.

If there are more suspect outliers, perhaps some scrutiny should be di-
rected at the data set as a whole and the data tested for normality.

2.4.5 Testing Variances

2.4.5.1 F test for Equality of Variances

Given two sets of repeated measurements, the question of whether the data
come from populations having equal variances might arise. This is tested
by calculating the Fisher F statistic, which is defined as

F
s
s

= 1
2

2
2 (2.18)

where the greater value is chosen as s1. The test is then whether F is sig-
nificantly greater than 1 (which is the expected value if σ1 = σ2). In Excel
the critical values of the one-tailed F distribution at probability α are given
by =FINV(α, df1, df2), where df1 are the degrees of freedom of the nu-
merator and df2 are the degrees of freedom of the denominator. Given an F
statistic calculated by equation 2.18, in repeated experiments on normally dis-
tributed systems with equal population standard deviations, an F ratio would
equal or exceed s1

2/s2
2 with probability =FDIST(F,df1, df2).

Figure 2.8. Data from replicate analyses of Li in
serum. Point 4 is a candidate outlier.
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2.4.5.2 Chi-square Test of a Variance against a
Given Variance

The purpose of the F test is to answer the question of whether data with two
different sample variances might have come from a single population.The
test does not tell one what the population variance might be. Given a value
for s2, the population variance, a sample variance (s2 from n measurements)
might be tested against it using a chi-square test:

T
n s

=
−( )1 2

2σ
(2.19)

For a two-sided test, the null hypothesis, H0, is that the variance of the
population from which the data giving s2 is drawn is equal to σ2, and the
alternative hypothesis is that it is not equal. H0 is rejected at the 95% level
if T > χ2

0.025,n–1 or T < χ2
0.975,n–1. In Excel the probability of a particular value

of chi-square is given by =CHIDIST(χ2, df), and the critical value of chi-
square is =CHIINV(α, df) for probability α and df degrees of freedom.

Table 2.5. Values of the critical two-tailed
Grubbs’s G statistic at 95% and 99%
probability for a pair of outliers at either
end of a data set (Grubbs 1950)

n G0.05",n G0.01",n

4 0.0002 0.0000
5 0.009 0.0018
6 0.0349 0.0116
7 0.0708 0.0308
8 0.1101 0.0563
9 0.1493 0.0851
10 0.1864 0.1150
11 0.2213 0.1148
12 0.2537 0.1738
13 0.2836 0.2016
14 0.3112 0.2280
15 0.3367 0.2530

The null hypothesis that there are no out-
liers is rejected if g < Gcritical where

g
x x
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2.4.5.3 Cochran Test for Homogeneity
of Variances

If a sample has been analyzed by k laboratories n times each, the sample
variances of the n results from each laboratory can be tested for homogeneity
—that is, any variance outliers among the laboratories can be detected. The
ISO-recommended test is the Cochran test. The statistic that is tested is

c
s

si
i

i k=

=

=

∑
max
2

2

1

(2.20)

where s2
max is the greatest laboratory variance and the denominator is the

sum of all the variances. If c > Ccritical (see table 2.6), then there are grounds
for rejecting the results. It is usual to test the variances first, then to test any
outliers using the Grubbs’s tests described above. Note that if n = 2 (i.e., each
laboratory only makes two measurements), equation 2.20 is used with s equal
to the difference between the results.

Following are some data from an Australian soil trial in which a sample of
soil was analyzed three times by each of 10 laboratories for TPA (total perox-
ide acidity expressed as moles per tonne). The results are given in spread-
sheet 2.3. The sample variance is calculated as the square of the sample
standard deviation, and the Cochran statistic is calculated from equation 2.20.

The Cochran critical values for 99% and 95% for 9 degrees of freedom
are 0.4775 and 0.5727, respectively. The calculated value for laboratory A
is 0.514, and so the laboratory fails at 95% but not at 99% (the actual
probability is 98.5%). In this interlaboratory trial the laboratory would be
flagged, but its data still included in calculations of group means and stan-
dard deviation if no other problems were encountered.

2.4.6 Testing Means

2.4.6.1 Testing against a Given Value

Having repeated a measurement, how can the result be compared with a given
value? We have already encountered this scenario with tests against a regula-
tory limit, and the problem has been solved by looking at the result and its
95% confidence interval in relation to the limit (see figure 2.5). This proce-
dure can be turned into a test by some simple algebra on the equation for the
95% confidence interval (equation 2.13). If the population mean, µ is to be
found in the 95% confidence interval, in 95% of repeated measurements,

µ α= ± −x
t s

n
n", 1

(2.21)

then a Student’s t can be defined,
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t
x n

s
=

−µ
(2.22)

which can be compared with the 95% value. So if t > tα”,n-1, the null hypoth-
esis that µ is within the 95% confidence interval of the measurement in 95%
of repeated experiments is rejected. Alternatively, the probability associated
with the calculated t can be obtained in Excel (=TDIST(t,n – 1,2)) and
an appropriate decision made.

For example, a trace element solution certified reference material was
analyzed seven times for chromium with results 0.023, 0.025, 0.021, 0.024,
0.023, 0.022, and 0.024 ppm. The solution was certified at 0.0248 ppm. The
mean of the seven replicates is 0.0231 ppm, and the sample standard devia-
tion is 0.0013 ppm. Using equation 2.22 with µ = 0.0248 ppm gives

Table 2.6. Critical 95% and 99% values of the Cochran statistic for k laboratories
each repeating the sample measurement n times

95% critical values 99% critical values
(α = 0.05) (α = 0.01)

n n

k 2 3 4 2 3 4

3 0.9669 0.8709 0.7978 0.9933 0.9423 0.8832
4 0.9064 0.7679 0.6839 0.9675 0.8643 0.7816
5 0.8411 0.6838 0.5981 0.9277 0.7885 0.6958
6 0.7806 0.6161 0.5321 0.8826 0.7218 0.6259
7 0.7269 0.5612 0.48 0.8373 0.6644 0.5687
8 0.6797 0.5157 0.4377 0.7941 0.6152 0.5211
9 0.6383 0.4775 0.4028 0.7538 0.5727 0.4812
10 0.6018 0.445 0.3734 0.7169 0.5358 0.4471
11 0.5696 0.4169 0.3482 0.683 0.5036 0.4207
12 0.5408 0.3924 0.3265 0.652 0.4751 0.3922
13 0.515 0.3709 0.3075 0.6236 0.4498 0.3698
14 0.4917 0.3517 0.2907 0.5976 0.4272 0.3499
15 0.4706 0.3346 0.2758 0.5737 0.4069 0.3321
16 0.4514 0.3192 0.2625 0.5516 0.3885 0.3162
17 0.4339 0.3053 0.2505 0.5313 0.3718 0.3018
18 0.4178 0.2927 0.2396 0.5124 0.3566 0.2887
19 0.4029 0.2811 0.2296 0.4949 0.3426 0.2767
20 0.3892 0.2705 0.2206 0.4786 0.3297 0.2657
21 0.3764 0.2607 0.2122 0.4634 0.3178 0.2557
22 0.3645 0.2516 0.2046 0.4492 0.3068 0.2462
23 0.3535 0.2432 0.1974 0.4358 0.2966 0.2376
24 0.3431 0.2354 0.1908 0.4233 0.2871 0.2296
25 0.3334 0.2281 0.1847 0.4115 0.2782 0.2222

The null hypothesis of homogeneity of variance is rejected if c > Ccritical.
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=E3/E14

=STDEV(B3:D3)^2

=SUM(E3:E12)

=E3/E14

=STDEV(B3:D3)^2

=SUM(E3:E12)

Spreadsheet 2.3. Cochran test for homogeneity of variances in the soil analysis example given in
the text.
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The 95% critical t value for 6 degrees of freedom is 2.45. The calculated t
has a probability of 0.027. This is less than 0.05 (or t = 3.26 > 2.45), and so
the null hypothesis that the bias is not significant is rejected, and we con-
clude that the results should be corrected for a bias of 0.0231 – 0.0248 =
–0.0017 ppm. The 95% confidence interval of this bias is 0.0013 × 2.45/√7
= ± 0.0012 ppm, which should be included in any measurement uncertainty
estimate of the corrected results.

Note that no allowance has been made for the uncertainty of the certi-
fied reference material. Analysts often assume that the value of the refer-
ence material has been determined with much greater precision than their
experiments. Suppose the certificate does give an expanded uncertainty of
0.0004 ppm (95% probability). The standard uncertainty is u = 0.0004/2 =
0.0002 ppm with, in the absence of any other information, infinite degrees
of freedom. The t value can now be recalculated as

t
x

u
s
n

=
−

+

=
−

+

=
µ

2
2

2
2
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0 0013
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(2.23)

Although the t is still significant (2.81 > 2.45), it is not as significant now
that the extra source of uncertainty is included.

2.4.6.2 Testing Two Means

In testing it is common for a measurement to be made under two different
conditions (different analysts, methods, instruments, times), and we must
know if there is any significant difference in the measurements. In chapter
3 I discuss how ANOVA generalizes this problem and can compare a num-
ber of different factors operating on a result, but here I show that a t test
provides a reasonably straightforward test of two means. There are two for-
mulas that can be used to provide the t value, depending on whether it is
assumed that the variances of the two populations from which the means
are drawn are equal. Although an F test (see 2.4.5.1 above) is a way of giv-
ing statistical evidence of the equality of the population variances, some
people suggest always assuming unequal variances, as this is the more strin-
gent test (i.e., it is more likely not to reject H0). However, if two similar
methods are being compared, it seems reasonable to assume that the preci-
sions are likely to be the same. In this case the standard deviations are pooled,
combining variances weighted by the number of degrees of freedom of each
variance. That is, if one set of data has more observations, it contributes more
to the pooled variance:
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The t value is then calculated

t
x x

s n np

=
−

+
1 2

1 21 1/ / (2.25)

If the population variances are considered not to be equal, the t value is
calculated by

t
x x

s n s n
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1 2
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When the t value is tested against a critical value, or the probability is
calculated, the degrees of freedom is
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rounded down to the nearest integer. Use the Excel function
=ROUNDDOWN(df, 0).

2.4.6.3 Paired t Test

When two factors are being compared (e.g., two analysts, two methods, two
certified reference materials) but the data are measurements of a series of
independent test items that have been analyzed only once with each instance
of the factor, it would not be sensible to calculate the mean of each set of
data. However, the two measurements for each independent test item should
be from the same population if the null hypothesis is accepted. Therefore
the population mean of the differences between the measurements should
be zero, and so the sample mean of the differences can be tested against this
expected value (0). The arrangement of the data is shown in table 2.7.

The calculation of t uses equation 2.22 with µ = 0.

2.4.7 Student’s t Tests in Excel

There are three ways to perform a t test in Excel. First, a t value can be cal-
culated from the appropriate equation and then the probability calculated
from =TDIST(t,df,tails), where df = degrees of freedom and tails = 2 or
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1 for a two-tailed or one-tailed test. Alternatively, the t value can be com-
pared with a critical t value =TINV(α, df), where α = 0.05 for a 95% test,
or 0.01 for a 99% test. Excel also provides a function =TTEST(range 1,
range 2, tails, type). The two ranges contain the data, as before tails
is 1 or 2, and type = 1 for a paired t test (in which case the lengths of the two
data ranges must be the same), = 2 for a means test with the assumption of
equal variance (using equation 2.25), and = 3 for a means test with assump-
tion of unequal variance (equation 2.26). The result is the probability asso-
ciated with the t-value.

Finally, the “Add Ins . . .” of the Data Analysis Tools gives the three
methods (paired, means with equal variance, and means with unequal vari-
ance) as menu-driven options (see spreadsheet 2.4). Access Data Analysis
. . . from the Tools menu (if it is not there, the Analysis ToolPak needs to be
installed via the Add-Ins . . . menu, also found in the Tools menu).

2.5 Analysis of Variance

The workhorse of testing, ANOVA, allows the variance of a set of data to be
partitioned between the different effects that have been allowed to vary
during the experiments. Suppose an experiment is duplicated at combina-
tions of different temperatures and different pH values. ANOVA can calcu-

Table 2.7. Arrangement of data and calculations for a paired t test

Test item Result by method A Result by method B Difference, A – B

1 xA,1 xB,1 d1 = xA,1 – xB,1

2 xA,2 xB,2 d2 = xA,2 – xB,2

3 xA,3 xB,3 d3 = xA,3 – xB,3

4 xA,4 xB,4 d4 = xA,4 – xB,4

. . . n xA,n xB,• dn = xA,n – xB,n

Mean d
d

n

i
i

i n

= =
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1deviation

t t
d n

sd
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Measurements by method A are compared with those by method B. Each item is
different and is measured once by each method.
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late the variances arising from random measurement error, from changing
the temperature, and from changing the pH. The significance of tempera-
ture and pH effects is assessed by comparing the variance attributable to each
effect with that of the measurement. (A significant effect is one that is greater
than would be expected from random measurement error alone.) ANOVA
only works on normally distributed data, but its ability to cope with any
number of factors makes it well used.

The idea behind ANOVA is that if two distributions with very different
means are combined, the variance of the resulting distribution will be much
greater than the variances of the two distributions. Here I describe one- and
two-way ANOVA in Excel. See (Massart et al 1997, chapter 6) for a more
comprehensive discussion of the use of ANOVA.

2.5.1 One-Factor ANOVA

One-factor, or one-way, ANOVA considers replicate measurements when
only one factor is being changed. Unlike a t test that can only accommodate
two instances of the factor, ANOVA is generalized for any number. Here
“factor” means the kind of thing being studied (method, temperature set-
ting, instrument, batch, and so on), whereas an instance of a factor is the
particular value (20°C, 30°C, 40°C; or types of chromatography or enzymatic
methods). Do not confuse factor and instance of a factor. A one-way ANOVA
can be used to analyze tests of three analysts analyzing a portion of test
material five times. The factor is “analyst.” and the instances of the factor
are “Jim,” “Mary,” and “Anne.” In this example three t tests could be done
between the results from Jim and Mary, Jim and Anne, and Mary and Anne,
but ANOVA can first tell if there is any significant difference among the
results of the three, and then, using the method of least significant differ-
ences, reveal which analyst is different from the other two, or if all three are
different from each other.

2.5.1.1 Data Layout and Output
in One-Factor ANOVA

The data are laid out in adjacent columns with a suitably descriptive
header. Using an example of the analysis of glucose in a sample by the three
analysts, the data would be entered in a spreadsheet as shown in spread-
sheet 2.5.

In Excel, there are three options for ANOVA: one factor, two factor with-
out replication, and two factor with replication. The different options in the
Data Analysis Tools menu are shown in spreadsheet 2.6.

Choosing the one-factor option (which must have replicate data, although
not necessarily the same number of repeats for each instance of the factor),
the output includes an ANOVA table shown in spreadsheet 2.5. In the out-
put table, SS stands for sum of squares, df is degrees of freedom, and MS is
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Spreadsheet 2.4.  (a) The Add-In menu. (b) The Data Analysis Tools menu
showing the three t test options. (c) Menu for the t test assuming equal
variances.

(a)

(b)
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the mean square. F is the Fisher F value, calculated as the ratio of between-
groups MS and within-groups MS. The degrees of freedom for the between
groups is k – 1, where there are k instances of the factor (number of columns
of data), and the degrees of freedom for the whole data set is N – 1, where N
is the total number of data. The difference, N – k, is the degrees of freedom
within the groups. The within-groups mean square is the pooled variances
of the instances of the factor and is usually equated with the random mea-
surement variance. When calculations are done using all the data, and going
across the columns, the variance is now a combination of the random mea-
surement error (which never goes away) and variance arising from the dif-
ferences between the instances (here Jim, Mary, and Anne). So the question,
is there a significant difference between the analysts can be answered by
determining if the between-groups MS (combination of measurement vari-
ance and the difference between the analysts) is significantly greater than
the within-groups MS (the measurement variance). This determination can
be made by using a one-tailed F test of the ratio of the variances. The test is
one tailed because the way the problem is set up ensures that the between-
groups MS is greater than the within-groups MS (both contain the same
measurement variance, and the between-groups MS has the extra compo-
nent due to the differences between the instances of the factor). The prob-
ability (P) is the one-tailed probability that a greater F statistic would be found
for a repeated experiment if the null hypothesis that there is no difference
between the analysts were true. As the value of 10–5 is small, the null

(c)
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Spreadsheet 2.5. (a) Input to and (b)
output from the one-factor ANOVA
example.

54

(a) (b)
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Spreadsheet 2.6. (a) Excel Data Analysis ToolPak menu showing ANOVA
options. (b) Single-factor ANOVA menu.

55

(a)

(b)
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hypothesis would be rejected. The critical 95% F value is also given, and as
the calculated F exceeds it, H0 would be rejected at this probability level. If
the mean and 95% confidence interval of each person is plotted (figure 2.9),
the fact that Anne is obtaining smaller values than the other two analysts
becomes apparent. An ANOVA with the data from Jim and Mary shows no
significant difference between them. A t test of Jim and Mary under the as-
sumption of equal variances gives the same result.

2.5.1.2 Calculating Variances

Sometimes knowing that there is a significant difference between the groups
is all that is needed. In the example of the analysts, quantifying the variances
is not particularly useful. However, if the factor were pH, it might be of inter-
est to know the variance associated with the change in this factor. Remember
that the within-groups mean square is an estimate of the measurement vari-
ance (σ2). If each of the instances has the same number of observations (n), then
the between-groups mean square estimates σ2 + nσf

2, where σf
2 is the variance

due to the factor. With different numbers of observations, the between-groups
mean square estimates σ2 + n′σf

2, where n′ is calculated as
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where ni is the number of observations for the ith factor instance. This equa-

tion is not as complex as it looks; N ni
i

i k

=
=
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∑
1

 is the total number of observa-

tions, and k is the number of instances of the factor. In the example, k = 3,
N = 15, and n′ is

n' =
−

×
=

225 77
2 15

4.93

Figure 2.9. The means and 95% confidence intervals of the data shown in
spreadsheet 2.5.
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The n′ will always fall between the minimum and maximum numbers of
observations. For the analyst example, the between-groups mean square =
0.004383, the within-groups mean square = 0.000127, and n′ = 4.93. There-
fore, the measurement standard deviation (σ) = √(0.000127) = 0.011 mM,
and the between-analysts standard deviation (σf) = √[(0.004383 – 0.000127)/
4.93] = 0.029 mM.

2.5.2 Two-Factor ANOVA

Excel can compute an ANOVA for two factors if there is a single measure-
ment at each combination of the factor instances, or if each combination has
been replicated the same number of times. In the example above, if the ana-
lysts are given a different batch of enzyme and are asked to perform dupli-
cate measurements, a two-way ANOVA can be performed. The two factors
are “analyst” with three instances (“Jim,” “Mary,” and “Anne”), and “batch”
with two instances (“batch 1” and “batch 2”). Spreadsheet 2.7 gives the data
and output from the analysis, and spreadsheet 2.8 shows the Excel menu.
With the two-factor with replication option the data in the input range must
include the row and column labels. (This is why there is no box to check for
labels, an option in the other ANOVA menus.) “Columns” refers to the fac-
tor in the columns (here the analysts) and “sample” refers to the rows (here
batches). In addition, the output table has gained an extra row called “inter-
actions.” An interaction effect is one in which the variance associated with
one factor depends on the value of another factor. If factors are indepen-
dent, then the interaction effect is zero. As before, the ANOVA shows that
the analysts factor contributed a significant variance (P = 0.007795), but the
batches of enzyme are not quite significant at the 95% level (P = 0.06163),
and the interaction is far below significance (P = 0.5958). How should this
be interpreted? Anne is still the odd person out in the analysts factor. The
batches of enzyme are likely to be of different activity because of the way
enzymes are prepared, so although the ANOVA tells us this difference is
not significant at the 95% level (in fact, it is significant at the 93.8% level),
it would be better to interpret this as a real difference. There is no reason to
believe that the analysts’ techniques and measurement procedure would
depend on which batch of enzyme was used, and so it is not surprising that
the interaction effect is small and not significant.

In the absence of replicate measurements, it is not possible to estimate
interaction effects. These are bundled into the “error” term (see spreadsheets
2.9 and 2.10). Even with the sparse data of a single measurement for each
combination of factors, the result is in agreement with the other calculations.
The analysts are still significantly different (“columns” P = 0.04452) but the
batches are not (“rows” P = 0.09274).

Because of the limitations of Excel, I will not explore the use of the
ANOVA further, but with appropriate software, or with a calculator and
much patience, the method can be applied to any number of factors.
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Spreadsheet 2.7.  (a) Input data and (b) ANOVA table for two factors with replication.

(a)

(b)
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2.6 Linear Calibration

Most analyses require some form of calibration. A typical instrument does
not give, oraclelike, the answer to the analyst’s question. An instrument
provides what is known as an “indication of a measuring instrument” (ISO
1993b, term 3.1), and then that indication must be related to the concentra-
tion or to whatever is being measured. Whether the measurements are peak
heights, areas, absorbances, counts of a mass spectrometer detector, or nuclear
magnetic resonance peak areas, each of these is related to the amount (or
amount concentration) of the species being detected by a calibration func-
tion. Typically, although increasingly not so, this function is linear in the
concentration:

y = a + bx (2.29)

where the indication is y, the concentration is x, and a and b are parameters
of the calibration model. From days when these relationships were estab-
lished by a graph, a is known as the intercept and b is the slope.

2.6.1 Slopes and Intercepts

The values of a and b are estimated by observing the indication for a series
of standard samples for which the concentrations are known. Assuming that

Spreadsheet 2.8. Excel menu for two-factor ANOVA with replication.
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Spreadsheet 2.9.  (a) Input data and (b) ANOVA table for two factors without replication.

(a)

(b)
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(1) all the variance is in y, (2) the variance is normally distributed and inde-
pendent of concentration, and (3) the measurement model is correct, then a
classical least squares gives us the estimates of the parameters:

b̂
x x y y

x x
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(2.30)

ˆ ˆa y bx= − (2.31)

where x and y are the means of the calibration data, and the model that is
fitted is

y a bx= + +ˆ ˆ ε (2.32)

and ε is the random error in y with mean zero. The hats (^) on a and b in
equations 2.30–2.32 denote that these values are estimates, but from this
point they will be omitted. Calibration is best done with a short range of
concentrations and as many points as possible. The goodness of fit is mea-
sured by the standard error of the regression (not the correlation coefficient),
sy/x, given by

Spreadsheet 2.10. Excel menu for two-factor ANOVA without replication.
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where y is the estimated value from the measurement model y = a + bx and
differs from the value of y by ε. The degrees of freedom is n – 2, or for a model
that is forced through zero (a ≡ (0), n –1, where there are n points in the
calibration. If it is necessary to know the standard errors (standard devia-
tions) of the slope and intercept, these are calculated as:
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A 95% confidence interval on slope or intercept is obtained by multi-
plying these standard errors by a t value at the desired probability and n – 2
(n – 1) degrees of freedom:

b t s",df b± α (2.36)

a t s",df a± α (2.37)

All these statistics are available in Excel in the LINEST function. This
gives an array output, and for fitting data to a straight line (equation 2.29) is
created by following these steps:

1. Choose an empty two column by five row block and select it.
2. Type =LINEST(y-range,x-range,1,1), in the function menu bar,

where x-range are the cells containing the x values, and y-range are
the cells containing the y values

3. Press Ctrl-Shift-Enter. (If only one cell appears, then only Enter has
been pressed, or the block was not selected).

The output contains the information shown in table 2.8. The values of
slope and intercept are in the first row, and their standard errors are below
these in the second row.

2.6.1.1 Forcing through the Origin

If the analysis is corrected for background or blanks, there is often a pre-
sumption that the calibration line will pass through the origin. Thus the
calibration is
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(y – yblank) = bx (2.38)

and a concentration that is calculated from equation 2.38 is

x
y y

b
=

−( )blank (2.39)

and yblank stands in for the calculated intercept, a. The good news is that a
degree of freedom is gained, only calculating one parameter (the slope) from
the calibration data. However, there is a risk that if yblank is not a true indi-
cation of the tendency of the calibration at x = 0, there still might be a non-
zero intercept. As part of the method validation, and from time to time, the
calibration data should be fitted to the model with an intercept (equation
2.29), and the 95% confidence interval of the intercept shown to include
zero. This is important because even a small nonzero intercept can lead to
huge errors if it is not noticed and the line is forced through zero.

2.6.1.2 One-Point and Two-Point Calibration

A single measurement of a calibration sample can give the concentration of
the test solution by a simple ratio. This is often done in techniques where a
calibration internal standard can be measured simultaneously (within one
spectrum or chromatogram) with the analyte and the system is sufficiently
well behaved for the proportionality to be maintained. Examples are in
quantitative nuclear magnetic resonance with an internal proton standard
added to the test solution, or in isotope dilution mass spectrometry where
an isotope standard gives the reference signal. For instrument responses IIS

and Isample for internal standard and sample, respectively, and if the concen-
tration of the internal standard is cIS, then

c
I c

Isample
sample IS

IS

= (2.40)

Table 2.8. Output of the Excel LINEST function, =LINEST(y-range,x-range,1,1)

Slope: b Intercept: a

Standard deviation of slope: sb Standard deviation of intercept: sa

Coefficient of determination: r2 Standard error of regression: sy/x

Fisher F statistic: F
SS
SS

= regression

residual
Degrees of freedom of the regression:
df = n – 1 or n – 2

Sum of squares due to regression: Sum of squares due to residual:
SSregression SSresidual
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If the concentrations of sample and internal standard are carefully matched,
then the method can be very accurate (Kemp 1984).

A variation of this technique that gives a bit more information is to bracket
the concentration of the test sample by two calibration samples (c1 and c2,

giving instrument responses I1 and I2), when

c c
c c
I I

I Isample sample= +
−
−

× −( )1
2 1

2 1
1 (2.41)

Neither one-point nor two-point calibrations have room to test the model
or statistical assumptions, but as long as the model has been rigorously
validated its use in the laboratory has been verified, these methods can work
well. Typical use of this calibration is in process control in pharmaceutical
companies, where the system is very well known and controlled and there
are sufficient quality control samples to ensure on-going performance.

2.6.2 Estimates from Calibrations

The purpose of a calibration line is to use it to estimate the concentration of
an unknown sample when it is presented to the instrument. This is achieved
by inverting the calibration equation to make x the subject. For an indica-
tion y0,

ˆ
ˆ

ˆx
y a

b
=

−0 (2.42)

The uncertainty of this estimate is
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where the indication of the unknown solution has been observed m times
(if m is greater than 1, y0 is the average of the m observations), and other
coefficients and terms have been defined above. Multiplication by the 95%,
two-tailed t value at n – 2 degrees of freedom gives the 95% confidence in-
terval on the estimate:

ˆ ", ˆx t sn x± −α 2 0
(2.44)

This confidence interval arises from the variance in the calibration line
and instrument response to the test sample only. Any other uncertainties
must be combined to give the overall confidence interval (expanded uncer-
tainty). The form of equation 2.43 is instructive. The standard deviation of
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the estimate is reduced by (1) having more points in the calibration line
(greater n), (2) repeating the unknown more times (greater m), (3) having a
greater sensitivity (slope), (4) having a better fit (smaller sy/x) and (5) per-
forming the measurement in the middle of the calibration (y0 – y) = 0. The
effect of the number of points in the calibration line is twofold. First, n ap-
pears in equation 2.43 as 1/n, but more important for small n (say < 10), it
sets the t value in equation 2.44 through the n – 2 degrees of freedom. The
slope of the calibration, b, is also known as the sensitivity of the calibration.
A greater sensitivity (i.e., when the instrument reading increases rapidly with
concentration), leads to a more precise result. When validating a method
(see chapter 8) these calibration parameters are established, together with
the detection limit and range of linearity.

Note

1. “Student” was the pseudonym of W.S. Gosset, brewing chemist and
part-time statistician. Now the t value may be referred to without “Student,”
but I like to mention its originator.
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3
Modeling and Optimizing Analytical Methods

66

3.1 Introduction

I asked a professor, visiting from a nation well regarded for its hardworking
ethos, whether in his search for ever better catalysts for some synthesis or
other, he used experimental design. His answer was, “I have many research
students. They work very hard!” Many people believe that an infinite num-
ber of monkeys and typewriters would produce the works of Shakespeare,
but these days few organizations have the luxury of great numbers of re-
searchers tweaking processes at random in order to make them ever more
efficient. The approach of experimental scientists is to systematically
change aspects of a process until the results improve. In this chapter I look
at this approach from a statistical viewpoint and show how a structured
methodology, called experimental design, can save time and effort and
arrive at the best (statistically defined) result. It may be a revelation to some
readers that the tried-and-trusted “change one factor at a time” approach
might yield incorrect results, after requiring more experiments than is
necessary. In the sections that follow, I explain how experimental design
entails more than just having an idea of what you are going to do before
beginning an experiment.
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3.2 Optimization in Chemical Analysis

3.2.1 What Is Optimization?

Optimization is the maximizing or minimizing a response by changing one
or more input variables. In this chapter optimization is synonymous with
maximization, as any minimization can be turned into a maximization by a
straightforward transformation: Minimization of cost can be seen as maximi-
zation of profit; minimization of waste turns into maximization of produc-
tion; minimization of f(x) is maximization of 1/f(x) or -f(x). Before describing
methods of effecting such an optimization, the term optimization must be
carefully defined, and what is being optimized must be clearly understood.

There are some texts on experimental design available for chemists, al-
though often the subject is treated, as it is here, within a broader context. A
good starter for the basics of factorial designs is the Analytical Chemistry
Open Learning series (Morgan 1991). Reasonably comprehensive coverage
is given in Massart et al.’s (1997) two-volume series, and also in a book from
the Royal Society of Chemistry (Mullins 2003). If you are an organic chem-
ist and want to optimize a synthesis, refer to Carlson and Carlson (2005).
Experimental design based on the use of neural networks to guide drug dis-
covery is treated by Zupan and Gasteiger (1999). For the historically minded,
original papers by Fisher (1935) and, for Simplex optimization, Deming and
Morgan (1973) should be consulted.

3.2.2 What Do You Want to Optimize?

Everyone wants to improve their existence. Many philosophies stress that a
good life is one that leaves the world a better place than when that life began.
So what is better? Before trying to make improvements, one must know
exactly what is being improved and whether the improvement can be mea-
sured. This sounds simpler than it often is. A synthetic organic chemist
usually wants to maximize yield of product, but would a sensible person
spend an extra month going from 90% yield to 91%? Perhaps they would.
Someone working for a major multinational company that improved the
efficiency of the production of chlorine by 1% would save their company
millions of dollars each year. The first message is that optimization lies very
much in the eye of the beholder, and that whatever is being optimized, the
bottom line is invariably time and cost. Indeed, if time is money, as Henry
Ford observed, cost is only ever optimized.

The second message is that whatever is being optimized must be mea-
surable. It must be possible objectively determine whether the endeavors of
the scientist have been successful. To obtain the full benefit from optimiza-
tion, the entity measured (called a “response”) should have a clear mathe-
matical relationship with the factors being studied to effect the optimization.



68 Quality Assurance for the Analytical Chemistry Laboratory

The approach I am describing comes from the great improvements in manu-
facturing that were wrought in the first half of the twentieth century by stal-
warts such as Shewhart, Ishikawa, and Deming. They viewed the production
of a factory in terms of inputs, the process, and outputs (figure 3.1).

By observing and measuring the output (cars, ball bearings, washing
machines), the inputs (not just raw materials but personnel, energy, etc.),
and the process (settings of machines and other variables) could be changed
to effect a measurable improvement. Once the process was optimized, the
output could be continuously monitored for noncompliance and feedback
used to correct and prevent future noncompliance. An analytical experiment
may be fitted into this view at two levels. At the highest, the systems level,
a sample is the input, and by virtue of an analytical procedure a result is
achieved as output. At a level that would be amenable to experimental de-
sign, a number of controllable factors relating to an instrumental measure-
ment in the analytical procedure lead to observations made (“indications
of the measuring instrument”). Changing the values of the factors causes the
observations to change, and allowing for optimization of the values of the
factors.

This is a very brief representation of a major subject, but in so far as the
principles of process control and experimental design can be applied to
analytical chemistry, suitable ideas and concepts will be plundered that will
help the improvement of an analysis.

Figure 3.1. The process view of chemical analysis.
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What does optimization mean in an analytical chemical laboratory? The
analyst can optimize responses such as the result of analysis of a standard
against its certified value, precision, detection limit, throughput of the analy-
sis, consumption of reagents, time spent by personnel, and overall cost. The
factors that influence these potential responses are not always easy to de-
fine, and all these factors might not be amenable to the statistical methods
described here. However, for precision, the sensitivity of the calibration
relation, for example (slope of the calibration curve), would be an obvious
candidate, as would the number of replicate measurements needed to achieve
a target confidence interval. More examples of factors that have been opti-
mized are given later in this chapter.

3.2.3 What Do You Change to Reach
an Optimum?

3.2.3.1 Factors

Having thought carefully about what should be optimized, your next task
is to identify those factors that have some effect on the response. There is
no point in changing the temperature of an experiment if temperature has
no effect on the measured response. When doing experimental design, the
first exercise is to perform experiments to identify which factors have a
significant effect and that therefore will repay the effort of optimization.
Sometimes this step is not required because the factors for optimization
are obvious or are already given. Factors that influence the response are
called “controlled” if there is some way of setting their values and “un-
controlled” if not. Whether a factor is controlled or uncontrolled depends
on the experiment. With a water bath, temperature becomes controlled to
about ± 0.5°C; in the open laboratory without climate control, a variation
of 5° or 10°C might be expected, and temperature would be considered
uncontrolled. There is always a range of factor values implied or explicit
in any optimization. Temperature cannot go below absolute zero, and for
many processes the practical limit is the temperature of liquid nitrogen or
even an ice bath. The maximum temperature is constrained by available
heating and by the physical and chemical limits of the experiment and
apparatus.

The term “factor” is a catch-all for the concept of an identifiable prop-
erty of a system whose quantity value might have some effect on the response.
“Factor” tends to be used synonymously with the terms “variable” and “para-
meter,” although each of these terms has a special meaning in some branches
of science. In factor analysis, a multivariate method that decomposes a data
matrix to identify independent variables that can reconstitute the observed
data, the term “latent variable” or “latent factor” is used to identify factors
of the model that are composites of input variables. A latent factor may not
exist outside the mathematical model, and it might not therefore influence
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the response directly, but the concept is a convenient umbrella for a large
number of factors that have an effect on the response.

Ranges of factors studied and the values investigated are often shown on
a graph in n dimensions in which the ranges of values of n factors define a
set of axes and points indicate the experimental values investigated. Such
graphs are most useful for two or three factors because of the obvious limi-
tations of drawing in multiple dimensions. The area or volume described is
called “factor space,” being the combinations of values of factors for which
experiments can be performed (see figure 3.2).

A final point about factors. They need not be continuous random vari-
ables. A factor might be the detector used on a gas chromatograph, with
values “flame ionization” or “electron capture.” The effect of changing the
factor no longer has quite the same interpretation, but it can be optimized—
in this case simply by choosing the best detector.

3.2.3.2 Local and Global Optima

The optimum response is found within the factor space. Consider an n + 1
dimensional space in which the factor space is defined by n axes, and the
final dimension (y in two dimensions, and z in three) is the response. Any
combination of factor values in the n dimensional factor space has a response
associated with it, which is plotted in the last dimension. In this space, if
there are any optima, one optimum value of the response, called the “global
optimum,” defines the goal of the optimization. In addition, there may be
any number of responses, each of which is, within a sublocality of the fac-
tor space, better than any other response. Such a value is a “local optimum.”

A response can only be drawn as a function of one or two factors because
of the constraints of the three-dimensional world, but real optimizations are
often functions of tens of factors, which is why a more structured approach
to optimization is necessary. Although the systems requiring optimization
can be very complex, in reality experimental systems are rarely as multi-
modal as the purely mathematical example in figure 3.3b and c. The effect
of a factor such as temperature, pressure, or the concentration of a reagent
may not necessarily be linear, but it always has a single value (i.e., for a given
set of factor values, there is only one response), and it rarely exhibits more
than one maximum, and sometimes not even one.1 Thus, across a chosen
range, the response increases with a factor, and so the optimum response
has more to do with determining the maximum factor value possible than it
does with locating the position of a real maximum in the factor range. In
figure 3.3a, a common situation is portrayed in which the response is more
or less flat across a range of factor values. Here, the yield falls off at high
and low pH, but around neutral the yield is acceptable. So, although there
is a maximum that could be located by experiment, the indicated range is
more than adequate, and time should not be wasted finding the ultimate
optimum. Having discovered the shape of the response of figure 3.3a, other
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Figure 3.2. The factor space of two and three factors. The square (a) and
cube (b) define the space within which combinations of factor values can
be applied to experiments.
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Figure 3.3. Examples of local and global optima. (a) One factor (pH) with
the response (yield) giving a maximum, but with a wide acceptable range.
(b) Function of two variables giving a number of maxima. The global
maximum and one local maximum are shown. (c) The response surface of
graph b as a contour map.
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considerations may be used to choose a particular pH to run the experiment.
Alternatively, these other considerations, perhaps the time or cost of the
experiment, could be combined in the response to be optimized (e.g., yield
× time) to give a more defined maximum. Remember that the shape of the
response curve is rarely known, and the aim of the procedure is to find a
reasonable value of the factor with a reasonable effort (i.e., low number of
experiments). The experimenter must rely on the results of the experiments
that have been performed.

3.2.3.3 Correlation between Factors

A two- or three-dimensional graph drawn with axes at right angles implies
that each factor can take completely independent values and that a response
exists for every point on the graph. This may be the case for many factors. If
the effects of initial pH and time of an experiment are being studied, for
example, it is probably acceptable to set the pH of the solution then allow
the experiment to go for as long as required. However, if a simple water/
methanol mobile phase for liquid chromatography is used, it would be a
waste of an axis to try to optimize both water and methanol concentration,
because what is not water is methanol and vice versa. This is only a one-
factor problem—the fraction of water (or methanol).

Figure 3.4 shows the water–methanol mobile phase example of a mix-
ture problem. A three-component mixture that must add up to 100% can be
represented on a triangular graph, also called a ternary or trilinear diagram
(see figure 3.5). When a system is optimized, it is important to be alert for
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possible correlations among factors because this may influence the choice
of method or the treatment of results.

3.2.4 Methods of Optimization

With due deference to the myriad mathematics dissertations and journal
articles on the subject of optimization, I will briefly mention some of the
general approaches to finding an optimum and then describe the recom-
mended methods of experimental design in some detail. There are two broad
classes that define the options: systems that are sufficiently described by a
priori mathematical equations, called “models,” and systems that are not
explicitly described, called “model free.” Once the parameters of a model
are known, it is often quite trivial, via the miracles of differentiation, to find
the maximum (maxima).

3.2.4.1 Experimental Design

Experimental design lies between a fully characterized system and a sys-
tem without a model. In this case it is accepted that a theoretical model of
the system is not known but the response is sufficiently well behaved to
be fitted to a simple linear or quadratic relationship to the factors (i.e., a
straight or slightly curved line). Although I use the language of slopes and
intercepts, do not confuse experimental design with calibration, in which
there is often a known (linear) relationship between the indication of the
measuring instrument and the concentration of analyte. The models of
experimental design are used more in hope than certainty, but they do lead
to improvement of the process. Take the example of optimizing the num-
ber of theoretical plates of a high-performance liquid chromatography
(HPLC) experiment by changing the water/methanol ratio (R) and the con-

Figure 3.4. Optimizing a water–methanol mobile
phase.
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Figure 3.5. A three-component (mixture) system
whose values must total 1. (a) The allowed values
in three-dimensional space. (b) A ternary diagram
of the three-component system.
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centration of acetic acid modifier (A). In experimental design the response
is fitted to models such as:

N = α + β1R + β2A+ β12(R × A) (3.1)

N = α + β1R + β2A+ β11R2 + β22A2 + β12(R × A) (3.2)

How and why the response is fitted to these models is discussed later in this
chapter. Note here that the coefficients β represent how much the particu-
lar factor affects the response; the greater β1, for example, the more N changes
as R changes. A negative coefficient indicates that N decreases as the factor
increases, and a value of zero indicates that the factor has no effect on the
response. Once the values of the factor coefficients are known, then, as with
the properly modeled systems, mathematics can tell us the position of the
optimum and give an estimate of the value of the response at this point
without doing further experiments. Another aspect of experimental design
is that, once the equation is chosen, an appropriate number of experiments
is done to ascertain the values of the coefficients and the appropriateness of
the model. This number of experiments should be determined in advance,
so the method developer can plan his or her work.

An optimum is a maximum (or minimum), and this is described mathemati-
cally by a quadratic equation. The linear function of equation 3.1 can only go
up or down, so the optimum will be at one end or the other of the factors. The
absence of a maximum or minimum is often found in chemistry. Increasing
temperature will speed reactions up, with the cutoff not being dependent on
the temperature effect, which is always positive, but on the stability of com-
pounds or other experimental factors. If there is a genuine maximum in the
factor space, then this must be modeled by a quadratic (or greater power)
equation. However, merely having fitted some data to an equation like equa-
tion 3.2 does not guarantee an optimum. The function might not have its
maximum within the factor space. Perhaps the function happens to have a
saddle point and does not go through a maximum or minimum at all. So your
should not necessarily expect to find the optimum so easily.

3.2.4.2 Simplex Optimization

Another class of methods is based on model-free, hill-climbing algorithms
(Deming and Morgan 1973). After some initial experiments in a likely region
of factor space, the results indicate values at which to perform the next ex-
periment, which in turn leads to further values, and so on, until a response is
achieved that fits some predefined requirement. Ponder the hill-climbing
analogy. You are lost in the fog on the side of a hill and want to climb to the
top in the hope of seeing above the mist. Totally disoriented, you stagger about
until a structured approach occurs. The algorithm is as follows. Take one step
forward, one step back, one to the right, and one to the left. Decide which
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step took you the farthest upward and move to that location. Repeat until you
are at the top. Mathematically, this is refined and embodied in a procedure
known as the Simplex algorithm, and it is a remarkably powerful method of
reaching the optimum. Rather than all the points of the compass, a Simplex
is an n + 1 dimensional figure in the n-dimensional factor space (figure 3.6).
The hill-climbing problem only requires a series of triangles (rather than the
rectangles suggested in my simple solution offered above) to be mapped, with
the worst-fitting point of a triangle being reflected in the line joining the other
two (see figure 3.6). Starting with the triangle (Simplex) with vertices labeled
1, 2, and 3, the point 2 has the lowest response and so is reflected in the line
joining 1 and 3 giving the new point 4. The new point plus the remaining two
of the original triangle becomes the new Simplex. In figure 3.6, the new Sim-
plex 1,3,4 becomes 3,4,5 when vertex 1 is reflected, and so on.

Simplex has been used in analytical method development. Its advantages
are that the response should improve with each round of experiments, al-
lowing the experimenter to decide when to discontinue the experiments;
there are no arbitrary relations involved in the choice of the model equa-
tion; and the methodology used to select the next point can easily be imple-
mented in a spreadsheet. Disadvantages are that the Simplex method is an
open-ended procedure, for which the number of experiments depends on

Figure 3.6. A Simplex optimization of a two-factor
system. Numbers give the order of experiments.
The first three experiments (points 1, 2, and 3)
define the initial Simplex, and dashed-line arrows
indicate which points are dropped in favor of new
factor values.
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the step size and the starting point, and it is prone to finding the nearest
hill, not necessarily the highest hill (i.e., a local rather than a global opti-
mum). Simplex is an optimization procedure, so the factors must already
be chosen. The inclusion of a factor that has little or no effect can result in
a lot of wasted effort.

3.2.4.3 Change One Factor at a Time

Ask anyone how they would investigate the effect of pH and temperature
on the results of an experiment, and they would probably suggest an experi-
ment that varied the temperature at constant pH, followed by more experi-
ments at the now-fixed optimum temperature, this time changing the pH.
Most would be astounded to learn that the final temperature–pH combina-
tion is not necessarily the optimum and that they have performed more
experiments than they needed to. The problem lies in any correlation be-
tween the factors. When the effects of the factors are totally independent—
that is, the changes in response with changes in temperature are the same
whatever the pH, and vice versa—then change-one-factor-at-a-time approach
does give the optimum within the step size of the factors (figure 3.7a). When
there are significant interaction effects (e.g., nonzero values of β12 in equa-
tions 3.1 and 3.2), then one pass through the change-one-factor-at-a-time
approach does not achieve the optimum (figure 3.7b). The recommended
methodology, experimental design, is discussed in more detail in the rest
of this chapter.

3.3 Experimental Design

3.3.1 Which Factors Are Important?

Although the influences of some factors are self-evident, if experimental data
are sparse, it can be difficult to determine all the significant factors. Experi-
ence will help provide a list of candidates, and the suite of factors to be
investigated will be constrained by the time and effort available. At first,
the linear coefficients of the model will give most information about the
system. Equation 3.1 is written in a more general form for k factors (x1, . . . , xk)
in equation 3.3. The linear coefficients comprise the “main effects,” βi, and
the “two-way interaction effects” βij The term ε has been added to denote
the error (i.e., the difference between the value of Y [the response] calcu-
lated by the model and the true value). Epsilon is the combination of mea-
surement error and lack of fit of the model.
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Figure 3.7. Why changing one factor at a time
might not work. (a) A two-factor response (dotted
circles) with independent effects. Possible experi-
ments are shown, starting with keeping factor 1
constant and varying factor 2, and then keeping
factor 2 constant at its optimum and varying factor
1. The result is near the true optimum. (b) A two-
factor response (dotted ellipses) with correlated
effects. A procedure similar to that shown in panel
(a) no longer finds the optimum, although the final
experiment gives the best result of the experiments
performed.
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When there are more than two factors, the possible interactions increase.
With three factors there can be three, two-way interactions (1 with 2, 1 with 3,
and 2 with 3), and now one three-way interaction (a term in x1 x2 x3). The
numbers and possible interactions build up like a binomial triangle (table
3.1). However, these higher order interactions are not likely to be signifi-
cant, and the model can be made much simpler without loss of accuracy by
ignoring them. The minimum number of experiments needed to establish
the coefficients in equation 3.3 is the number of coefficients, and in this
model there is a constant, k main effects and ½k (k – 1) two-way interaction
effects.

Once factor values are determined, the minimum number of experiments
is governed by the number of coefficients in the model, but if only the mini-
mum number of experiments is done, there is no way to check the model.
An analogy is drawing a straight line through two points, which cannot fail,
but measurement of a third point will allow a least squares fit with some
indication of the status of the linear model.

The starting point of an experimental design optimization is to survey as
great a number of factors as is practicable and reasonable using a near-mini-
mum set of experiments. Once the factors that are significant are identified,
further experiments can be done to effect an optimization.

3.3.2 Randomization

It is important to note that, although the tables of experimental designs in
this chapter show an orderly progression of experimental conditions, when
the experiments are done, the order must be randomized. A random order
can be generated in a spreadsheet, or if statistical or validation software is
used, the program might randomize the order. Randomizing the order of
experiments is the best way to confound uncontrolled effects and should
always be employed.

Table 3.1. The numbers of coefficients in a linear effects model as a function
of factors

Two-way Three-way Four-way
Factors Constant Main effects interactions interactions interactions
(k) (α) (βi) (βij)  (βijm) (βijmn)

1 1 1 0 0 0
2 1 2 1 0 0
3 1 3 3 1 0
4 1 4 6 4 1
5 1 5 10 10 5
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3.4 Factorial Designs

Look at the experiments performed in figure 3.7. Even if the system is more
like that depicted in figure 3.7a, where the nine experiments are near the
optimum, in terms of determining the response of the experiment in factor
space, the choice of values has kept to narrow ranges about the two selected
fixed values of the factors. The area in the top right-hand corner is terra
incognita as far as the experimenter is concerned. If nine experiments were
done to find out about the response of a system, then perhaps the configu-
rations of figure 3.8 would give more information.

Both of the patterns shown in figure 3.8 are common experimental de-
signs and have a logic about them that recommends their use over the un-
structured experiments of figure 3.7. The most straightforward pattern is one
in which every combination of a chosen number of factor values is investi-
gated. This is known as an L-level full-factorial design for L values of
each factor. For k factors, Lk experiments are indicated. A two-level design
(L = 2) is most common for initial screening, and three-level designs are some-
times seen in optimization, but never more levels in a full-factorial design.
With increasing L, the number of experiments becomes prohibitive, and there
are better ways of gathering information. The two-level design is akin to
drawing straight lines between two points. Such a design cannot detect
curvature in a response, so it cannot be used to find an optimum (defined as
a value greater than those around it), but it can be used to estimate main
effects and interaction effects. Experimental points for two- and three-factor,
two-level designs are shown in figure 3.9.

Figure 3.9 is another representation of the data in figure 3.2(a), with experi-
ments performed at all combinations of the minimum and maximum values of
each factor. The high and low values of a two-level experimental design are
denoted + and –, respectively. The values +1 and –1 are “contrast coefficients”
and are used when calculating the effects from experimental results. Remem-
ber that experimental designs can be done for any number of factors. The use
of two and three factors in textbook examples is due to a problem of depicting
higher dimensions. The number of experiments in a full factorial, two-level
design is therefore 4, 8, 16, 32, …, 1024 for 2, 3, 4, 5, …, 10 factors, respec-
tively, of which the two- and three-factor designs are shown in figure 3.9.

3.4.1 Calculating Factor Effects

Before the significance of the effect of a factor is considered, there must be
an estimate of the effect. This is simply how much the response changes as
the factor changes. It is a slope, and the value is a coefficient β in equation
3.3. The task is therefore to find the coefficients of the model equation (e.g.,
equation 3.3). A positive β1, for example, means that as the factor 1 increases,
the response of the experiment also increases. A coefficient that is not



Figure 3.8. Possible configurations of nine sets of
factor values (experiments) that could be used to
discover information about the response of a
system. Dotted ellipses indicate the (unknown)
response surface. (a) A two-factor, three-level
factorial design; (b) a two-factor central composite
design.
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Figure 3.9. Two-level, full factorial designs for (a)
two and (b) three factors. The low value of each
factor is designated by a contrast coefficient of—
and the high value designated by +.
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significantly different from zero means that the factor has no effect at all on
the response. Calculating effects is easy if you know the contrast coefficients
of the experimental design and, of course, the responses. Consider the table
of contrast coefficients for experiments corresponding to the two-level, three-
factor design shown in table 3.2.

Factor A might be temperature with a low of 20°C and high of 30°C. Fac-
tor B might be pH with a low level (–) of 5.5 and high (+) of 8.5, and C might
be the HPLC column used with low a Dionex column and high a Waters
column. Where the factor is an entity with discrete choices, the factor effect
is simply the difference in response when the two entities are used. How-
ever, its significance can still be tested, even if optimization simply means
choosing one or the other. I explain more about the choice of factor values
later in this chapter. The full experimental design model for this three-fac-
tor system gives the response of experiment i, Yi , as

Yi = α + βAxA + βBxB + βCxC + βABxAxB + βBCxBxC

+ βCAxBxA + βABCxAxBxC + ε  (3.4)

where xA is the value of factor A, and so on. To generalize and aid interpre-
tation, instead of computing values of β that are the coefficients multiply-
ing the values of the factors (and therefore having units of factor-1), equation
3.4 is usually written

Yi = Y + bAa + bBb + bCc + bABab + bBCbc + bCAca + bABCabc + ε (3.5)

where a is the contrast coefficient (+1 or -1) for A, and Y is the average re-
sponse of all the experiments and is also the response for factors with con-

Table 3.2. Contrast coefficients for a two-level,
three-factor, full-factorial experimental design

Factor

Experiment A B C

1 – – –
2 + – –
3 – + –
4 + + –
5 – – +
6 + – +
7 – + +
8 + + +

Minus (–) represents the low level of the factor,
and plus (+) the high level. The order in which
the experiments are performed should be ran-
domized.
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trast coefficients of zero. The coefficients b have the dimension of Y and are
the changes in the response as the factors go from low values to high values.

For this particular design, there are only as many coefficients as experi-
ments (8), and so there no way to estimate how good the model is (ε). As
the number of factors increases, the possible experiments that can be done
(N = Lk) increases faster than the number of coefficients in the model (see
fractional designs below).

The symmetry of the contrast coefficients is quite beautiful. When con-
structing designs, it is easy to see if a mistake has been made because break-
ing the symmetry is readily apparent. The experiments (runs) can be grouped
in several ways. Consider runs (1,2), (3,4), (5,6), and (7,8). Each pair is char-
acterized by factor A going from low to high, while factors B and C do not
change. Therefore, if the main effect of factor A is of interest, it should be
estimated by the average of the differences in responses of these experiments.
To say this another way, if only A is changing in these pairs, then it alone
must be responsible for the change in response. Therefore

b
Y Y Y Y Y Y Y Y

A =
−( )+ −( )+ −( )+ −( )2 1 4 3 6 5 8 7

4
(3.6)

where Yi is the response of the ith experiment. It is possible to pick out four
pairs of experiments for each factor that have the structure of keeping the
other two factors constant and allowing that factor to change from low to
high. These four pairs are

b
Y Y Y Y Y Y Y Y

B =
−( )+ −( )+ −( )+ −( )3 1 4 2 7 5 8 6

4
(3.7)

b
Y Y Y Y Y Y Y Y

C =
−( )+ −( )+ −( )+ −( )5 1 6 2 7 3 8 4

4
(3.8)

Here is the power of experimental design. From only 8 experiments,
3 parameters have been estimated 12 times. Further scrutiny of table 3.2
shows pairs of experiments that will allow estimation of interaction effects.
What is the AB interaction effect? Mathematically in the model of equation
3.5, the AB interaction effect is the coefficient bAB, the effect of A on the
effect of B or, equivalently, the effect of B on the effect of A. The implica-
tion is that there is a different change when A goes from low to high, when
B is low, than when B is high. The value of the interaction effect is the change
of the change. This is illustrated more clearly in figure 3.10.

Like main effects, interaction effects can be positive, negative, or zero.
Higher order effects are viewed in the same way: The three-way interaction
effect ABC is the change in the change of the change of response as A goes
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Figure 3.10. (a) No interaction effect between
factors A and B. The change in response as factor
A goes from low to high is the same whether B is
low or high. (b) Positive interaction effect be-
tween factors A and B. The change in response as
factor A goes from low to high is greater when
factor B is high than when it is low.
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from low to high, as B goes from low to high as C goes from low to high. It
may be appreciated why high-order effects are usually insignificant, as the
existence of such multi-way effects is difficult to conceive. Two-way effects
are not uncommon, however. For example, if the yield of a synthesis (this is
the response) is being studied as a function of time and temperature, an
interaction effect might be expected. At low temperatures the effect of in-
creasing time is likely to be greater than at high temperatures, when the
reaction might be completed quickly. In figure 3.11, the increase of yield is
less pronounced at high temperatures because the reaction is kinetically
activated, and therefore the rate increases with temperature.

Note that the approximations of straight lines imposed on the responses (in
figure 3.11 the dotted lines joining the experimental points represent the ex-
perimental design model) certainly do not follow the real profiles of
the experiment, but the results would be good enough to give some idea of the
effects and indicate that there was, indeed, an interaction. Consider Table 3.2:
Runs 1 and 2 and 5 and 6 are when A goes from high to low while B is low. C
doesn’t matter as long as it is the same. Runs 3 and 4 and 7 and 8, are when A
goes from high to low when B is high. The interaction effect is the difference
between these averages divided by the number of differences (here 4).

b
Y Y Y Y Y Y Y Y

AB =
−( )+ −( )⎡⎣ ⎤⎦ − −( )+ −( )⎡⎣ ⎤⎦2 1 6 5 4 3 8 7

4
(3.9)

There is a very easy way to perform the calculations. Multiply the response
(Y) by the contrast coefficient of the effect to be estimated, sum the values,

Figure 3.11. Example of a negative interaction
effect between temperature and time on the yield
of a synthetic product.
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and divide by half the number of runs. For interaction effects, multiply the –
and + values to give an interaction column. For example, the contrast coeffi-
cients for the interaction between factors A and B (usually written AB) are
calculated by multiplying the contrast coefficients of A by the equivalent
coefficients of B. Table 3.3 gives the contrast coefficients for all two-way in-
teractions and the three-way interaction for the two-level, three-factor design
of table 3.2. According to this formulation, the main effect for A is

b
Y Y Y Y Y Y Y Y

A =
− + − + − + − +1 2 3 4 5 6 7 8

4
(3.10)

and the three-way interaction ABC is

b
Y Y Y Y Y Y Y Y

ABC =
− + + − + − − +1 2 3 4 5 6 7 8

4
(3.11)

3.4.2 Uncertainty of an Effect Estimate

As I have shown, the response given by the model equation (3.5) has an error
term that includes the lack of fit of the model and dispersion due to the mea-
surement (repeatability). For the three-factor example discussed above, there
are four estimates of each effect, and in general the number of estimates are
equal to half the number of runs. The variance of these estimated effects gives
some indication of how well the model and the measurement bear up when
experiments are actually done, if this value can be compared with an expected
variance due to measurement alone. There are two ways to estimate measure-
ment repeatability. First, if there are repeated measurements, then the stan-
dard deviation of these replicates (s) is an estimate of the repeatability. For
N/2 estimates of the factor effect, the standard deviation of the effect is

Table 3.3. Contrast coefficients for interaction effects of a two-level, three-
factor, full-factorial experimental design

Factor

Experiment A B C AB BC CA ABC

1 – – – + + + –
2 + – – – + – +
3 – + – – – + +
4 + + – + – – –
5 – – + + – – +
6 + – + – – + –
7 – + + – + – –
8 + + + + + + +
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s
s
Neffect =
2 2

(3.12)

In the case where duplicate measurements are made and there is no other
estimate of the measurement precision, the standard deviation of the effect
is calculated from the differences of the pairs of measurements (di)

s
d

Neffect = ∑ 2

2
(3.13)

Second, if each run is performed only once, the effect standard deviation
can still be estimated because high-order effects should be zero. A non-zero
estimate of a third-order effect, therefore, may be attributed to random error
and used to estimate the standard deviation of all effects. If m high-order ef-
fects can be calculated, the standard deviation of the effect is estimated as

s
E

m

i
i

i m

effect = =

=

∑ 2

1 (3.14)

If there is only one high-order effect (E), then equation 3.14 is simply seffect = E.
How is this used? If an effect were really zero, then estimates of that ef-

fect should have a mean of zero and standard deviation seffect. Therefore a
t test done at N/2 degrees of freedom can give the probability of the null
hypothesis that the factor effect is zero from a calculation

t
E
s

=
−0

effect
(3.15)

and the probability α = Pr(T ≥ t). If α is small (say, < 0.05), the null hypoth-
esis is rejected at the 100(1 – α)% (e.g., 95%) level, and we can conclude
that the effect is indeed significant. The probability is calculated in Excel
by =TDIST(t, N/2, 2). Alternatively, if 95% is a given decision point,
the 95% confidence interval on the effect is E ± t0.05”,N/2 × seffect, and if this
encompasses zero, then we can conclude that the value of the effect cannot
be distinguished from zero. The Student’s t value is computed in Excel by
=TINV(0.05,N/2).

3.4.3 Fractional Designs

It is not unusual to want to investigate 10 factors, but it is unusual, and not
necessary, to do 1024 experiments to discover 10 main effects and 45 two-
way effects. However, care must be taken when deciding not to perform
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experiments at all possible combinations. Consider the case of three factors
(figure 3.9b). Suppose only four experiments were possible to estimate the
constant, plus the three main effects. There are four coefficients and four
experiments, so just enough for the math, but which four? Does it matter?
Yes, there are only two combinations of four experiments that allow calcu-
lation of all main effects, and these are shown in figure 3.12.

Figure 3.12. Fractional factorial designs for two
levels and two factors that can be used to estimate
the main effects and constant. The experiments in
(a) and (b) are complements of each other. Either
design can be used.
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The problem with just leaving out four experiments at random is that in
the remaining combinations of factor levels, there must be at least one high
and one low for each factor. The two sets of four combinations shown in
figure 3.12 are the only way to do this.

In general, a factorial design is fractionated by deciding which high-
order interaction effects are to be “aliased” or “confounded” with the main
effects. Doing fewer experiments means that the ability to discover every
possible high-order interaction effect is sacrificed, and these effects are
lumped in with the estimates of main and lower order interaction effects. If
one assumes that interactions of order greater than two are insignificant, then
it does not matter if the interactions are added to main effects, as adding
zero does not change the estimate of the main effect. The choice is made by
manipulating contrast coefficients. If a particular j-way interaction is to be
aliased with a main effect (the main effect factor is not included in the j
factors), then the experiments for which the product of the contrast coeffi-
cients of the j effects is the same as that of the main effect should be per-
formed. The rules of multiplying signs mean that, for example, + – + and –
– – give an overall –, while – – + and + + + give +. If the procedure goes well,
half the experiments will have been chosen, and if desired and it is possible,
they can be repeated for a different set of aliases. A half design in which the
three-way effect of factors 1, 2, and 3 is aliased with the main effect of fac-
tor 4 in a two-level, four-factor design is given in table 3.4.

Table 3.4. Fractionating a two-way, four-factor design by aliasing the
three-way 1 × 2 × 3 effect with the main effect of 4.

Experiment 1 2 3 4 1 × 2 × 3

1a + + + + +
2 – + + + –
3 + – + + –
4a – – + + +
5 + + – + –
6a – + – + +
7a + – – + +
8 – – – + –
9 + + + – +
10a – + + – –
11a + – + – –
12 – – + – +
13a + + – – –
14 – + – – +
15 + – – – +
16a – – – – –

a 1 × 2 × 3 effect = effect of 4.
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All fractional factorial designs give numbers of experiments in which the
exponent of the number of factors is reduced. A full factorial design at L
levels on k factors requires Lk experiments. When fractionated this is reduced
to Lk-1, or Lk-2, and so on; in general to Lk-p, where p is an integer less than k.
In the example in table 3.4 the design is halved from 24 = 16 to 24 – 1 = 8,
and in the simple three-way design from 23 = 8 to 23 – 1 = 4. The resolution of
a fractional design (R) is defined as the property that no m-way effect is
aliased with an effect greater than R – m. Thus, a design of resolution III
(resolution is usually given as a Roman numeral) means that main effects
(m = 1) are aliased with 3 – 1 = 2–way effects, but not other main effects.
This is the case for both examples given here. A resolution IV design means
that main effects are aliased with three-way effects (4 – 1), but two-way ef-
fects can be aliased with each other (4 – 2 = 2). Experimental design soft-
ware usually has a facility to calculate fractional designs of a particular
resolution.

3.5 Plackett–Burman Designs

Method validation (chapter 8) involves the effects of factors on the results
of experiments. A method is robust if ordinary changes, such as small fluc-
tuations in temperature or changing a source of reagent, do not significantly
affect the measurement result. To claim that a method is robust in respect
of certain parameters needs only the main effects of those parameters to be
shown to be negligible. A highly fractionated design, which is ideal for
method validation, was first reported by Plackett and Burman (1946). In their
design a minimum 4n experiments is required to estimate the main effects
of 4n – 1 factors. If there are 3, 7, or 11 factors, then 4, 8, or 12 experiments,
and so on, are performed to obtain estimates of the main effects. If there are,
say, only six factors of interest, the extra factor can be used as a dummy factor
to assess the model error. In a dummy experiment a parameter is chosen
that does not influence the result. I prefer testing the influence of my rota-
tion on the result: In the – setting I turn once clockwise before making the
measurement, and in the + setting I turn once counterclockwise. The gyra-
tions of the analyst do not make any real difference to the ultimate analyti-
cal result, so the value of the dummy main effect should be zero, within
experimental error, and can be used to estimate the expected random compo-
nent of the result. The Plackett and Burman design works only for multiples of
4 experiments, so if 8 factors have been identified, then 12 experiments must
be done for 11 factors. Either three dummy factors are added, or some other
real factors to be investigated can be found.

Each experiment is performed at one of two levels of each factor, just as
for the two-level factorial designs described above. The contrast coefficients
are a consequence of by the method and are generated from the conditions
of a seed experiment by advancing each designated level around the fac-
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tors. Table 3.5 gives the contrast coefficients for experiments that must be
carried out for a seven-factor Plackett-Burman design.

In table 3.5, the factors A–G are the parameters being studied: tempera-
ture, mobile phase, pH, dummy, etc. Note that one experiment is done at all
low levels (experiment 8). If the low (–) level is chosen as the nominal value
for the experiment, the result of experiment 8 is the benchmark. Consider
the structure of table 3.5. All the pluses and minuses in the first seven ex-
periments are in a line diagonally and wrap over from factor G to factor A.
In fact, after the first row, for experiment 1, each subsequent row is just the
same order of signs moved over one factor, with the sign for factor G wrap-
ping back to the next factor A. As there are seven factors, if the process were
repeated for experiment 8, this would be a repeat of experiment 1, so the
last experiment terminates the process with all minuses. Note that each fac-
tor (down a column) has four minus signs and four plus signs. The seed
contrast coefficients for n = 2 to 5 are given in table 3.6. To use them, ar-
range the given contrast coefficients in the first row in a table, as shown in
table 3.5. Then create the next 4n – 2 rows by moving the coefficients over
one factor and wrapping from the last factor to the first. The last row is all
minuses.

The value of an effect and its standard deviation are calculated in the same
way as for factorial designs. Multiply the responses by their contrast coeffi-
cients for a given factor, sum them, and divide this number by half the num-
ber of experiments (2n, for 4n experiments) to give the value of the effect.
With no high-order interactions available in the design, either an indepen-
dent estimate of repeatability or the use of dummy variables is essential. For
m dummy variables, the effect standard deviation is calculated using equa-
tion 3.14, where Ei is the measured effect of the ith dummy factor. The sig-
nificance of the effect is then determined by a Student’s t test described
earlier.

Table 3.5. The designated levels as contrast coefficients for a seven-
factor, eight-experiment Plackett-Burman design.

Factor

Experiment A B C D E F G

1 + + + – – + –
2 – + + + – – +
3 + – + + + – –
4 – + – + + + –
5 – – + – + + +
6 + – – + – + +
7 + + – – + – +
8 – – – – – – –
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3.6 Central Composite Designs

The central composite design is the workhorse design for determining an
optimum. Each factor has experiments performed at one of five levels, thus
allowing one to fit a quadratic model that has opportunity for turning points
(maximum or minimum). It is not a five-level factorial design (the experi-
ments become prohibitive very quickly; e.g., with 5k, k = 2 would be as far
as anyone might want to go), but it takes a two-level design and adds a cen-
ter point and star configuration of experiments that may go outside the two-
level design (figure 3.13).

With five levels, contrast coefficients are not simply plus and minus,
but give the spacing of the values. They are sometimes referred to as
“coded” values. It is possible to choose designs where the star points are
outside of the two-level design (central composite circumscribed), wholly
inside the two-level design (central composite inscribed), or in the face of
each side of the two-level design (central composite face centered). The
first configuration is most often encountered, but if there are limits on factor
values defined by the two-level design, then face centered or inscribed are
used. If the corner and outer points can fit on a circle (sphere, or n-dimen-
sional equivalent), the design is said to be rotatable. In this case the five
levels of points are –α, –1, 0, +1, +α; where α = nc

1/4, and nc is the number
of points in the cube. So for 2, 3, 4, and 5 factors, α = 1.41, 1.68, 2.00, and
2.38 respectively. Table 3.7 gives the 15 experiments that must be done
for a three-factor, rotatable, central composite circumscribed design. As
always, the order of the experiments is randomized, and replicates should
be done at the center point. The values each factor takes are mapped on to
the –α, –1, 0, +1, +α scheme. For example, in the three-factor design, sup-
pose one factor is temperature and you select 10° and 30°C as the –1 and
+1 levels . The center point is half way between –1 and +1, and therefore
is at 20°C. The lowest point at –α then comes in at 20 – (30 – 20) × 1.682
= 3.18°C and the highest (+α) at 20 + (30 – 20) × 1.682 = 36.82°C. This
calculation starts with the center point (0), which is (–1 value) + [(+1 value)
– (–1 value)]/2. The calculation [(+1 value) – (–1 value)]/2 gives the change

Table 3.6. Seed contrast coefficients for Plackett-Burman
experimental designs.

na Contrast coefficients for the first experiment

2 + + + – – + –
3 + + – + + + – – – + –
4 + + + + – – – – – – + + + – +
5 + – + + – – – – + – + – + + + + – – +

awhere the number of factors studied is 4n – 1 in 4n
experiments
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in factor value corresponding to a change in 1 in the coded values. There-
fore a change in α from zero in the coded values gives a change in
[(+1 value) – (–1 value)]/2 from zero in the real factor values. Hence -α is
(0 value) – α × [(+1 value) – (–1 value)]/2, and +α is (0 value) + α × [(+1
value) – (–1 value)]/2. These calculations are easier with actual numbers,
and most experimental design software can calculate these levels for the
user.

Figure 3.13. Central composite designs for (a) two
and (b) three factors. The design in panel a is
rotatable.
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3.6.1 Models and Factor Effects

Typical models for two- and three-factor systems subjected to a central com-
posite design are

Yi = Y + bAa + bBb + bAAa2 + bBBb2 + bABab + ε  (3.16)

Yi = Y + bAa + bBb + bCc + bAAa2 + bBBb2 + bCCc2

+ bABab + bBCbc + bCAca + ε (3.17)

Dedicated software is often used to fit the data, but it is also possible to
calculate the coefficients easily in Excel. Equations 3.16 and 3.17 are linear
in the coefficients of the equation and therefore can be obtained by the usual
methods such as LINEST. Create columns for the values of each of the fac-
tor codes, then add extra columns for the square of these codes (a2, etc.) and
their products (ab, etc.). When fitting these with LINEST, chose the whole
matrix for the x values and the column containing the responses for y. The
LINEST output array is now p columns by five rows, where p is the number
of coefficients, including the mean response.

3.6.2 Factor Standard Deviations

You should always replicate the center point; the standard deviation of
the effect is calculated from the standard deviation of these replicates. The

Table 3.7. Levels for a three-factor, rotatable, central
composite design.

Factor

Experiment A B C

1a –1 –1 –1
2a +1 –1 –1
3a –1 +1 –1
4a +1 +1 –1
5a –1 –1 +1
6a +1 –1 +1
7a –1 +1 +1
8a +1 +1 +1
9b –1.682 0 0
10b +1.682 0 0
11b 0 –1.682 0
12b 0 +1.682 0
13b 0 0 –1.682
14b 0 0 +1.682
15c 0 0 0

aFull two-level factorial design. bStar design. cCenter point.
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significance of any effects is tested as before, with n – p degrees of free-
dom (n is the number of experiments and p the number of coefficients
calculated).

3.7 Other Designs

There are a number of other designs that have advantages in particular cir-
cumstances. Many are just variants on the theme of maximally spanning the
factor space. The Box-Behnken design is a two-level, spherical, rotatable
design (Box and Behnken 1960). For three factors it has experiments at the
center and middle of each edge of a cube (figure 3.14).

The uniform shell or Doehlert design (Doehlert 1970) has fewer points
than the central composite design, but it still fills the factor space. It is de-
rived from a simplex, which is the uniform geometrical shape having k + 1
vertices for k factors. Thus, for two factors the simplex is an equilateral tri-
angle, and for three factors it is a regular tetrahedron. The rest of the design
is obtained by creating points by subtracting every point from every other
point. To illustrate this for two factors, start with a triangle with coordinates
(0,0), (1,0), (0.5, 0.866). Subtraction generates further points at (–1,0), (–0.5,
–0.866), (–0.5, +0.866) and (0.5, –0.866). These describe a hexagon with a
center point (see figure 3.15).

D-optimal designs (Mitchell 1974) are used when a subset of candidate
experimental points are chosen to optimize some criterion, such as the great-
est volume enclosed by the points or the maximum distance between all
points. These designs are very useful under two circumstances. The first is
when a traditional design cannot be used because of experimental reasons.
In an optimization of temperature and concentration, the combination of
lowest temperature and highest concentration may be ruled out because of
low solubility. With any constraints that limit the factor space, a traditional
design with smaller spacing is mapped over the space, including overlap-
ping the areas without data. A smaller subset is chosen to optimize D, and
these become the experiments to be performed. The second circumstance
arises when the factor to be optimized can only take a limited number of
values that are set by the nature of the factor. In experiments that require
solutes of different solubility, the experimenter can choose from the candi-
date set, but cannot change the solubilities. A D-optimal design then takes
the values that best fit the problem. Sometimes the choice of the design points
is not easy. The solution to the smallest total distance is akin to the travel-
ing salesman problem, in which a salesman must visit towns via the short-
est total route, and it is an “NP-complete” problem. There is no algorithmic
solution, and the number of possible solutions scales as a power law in the
number of points (in the salesman example, towns). However, there are
approximate solutions, and searching algorithms such as genetic algorithms
can also yield solutions.
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3.8 Worked Example

Here is an example from my research group’s work on biosensors. The sen-
sor has an electrode modified with a peptide that binds a target metal ion,
which is then electrochemically reduced, the current being proportional to
the concentration of metal. The electrode is calibrated with solutions of
known concentration. Two experimental designs were used. The first was a
two-level factorial design to find the effects of temperature, pH, added salt,
and accumulation time. Spreadsheet 3.1 shows the design.

Figure 3.14. Box-Behnken design for three factors.
The design is spherical and rotatable.
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The order of experiments was randomized : 2, 6, 12, 8, 16, 13, 10, 15, 14,
11, 4, 1, 7, 5, 3, 9. Each experiment was performed in duplicate, and a pooled
standard deviation was calculated as 4.14 µA cm-2. From equation 3.12, with
N = 16, seffect = √(4.142 / 8) = 1.46 µA cm-2. The main effects were calculated
by summing the contrast coefficient for the effect and experiment multiplied
by the response (current) from each experiment, dividing by half the num-
ber of experiments (here 8). The significance of each effect was tested by
computing the t value of the effect divided by seffect. In each case the prob-
ability of finding an equal or greater t value in repeated experiments on the
system assuming the effect is not significant is less than 0.000 (i.e., all the
effects are significant at least at the 99.9% level). Note that the effect of added
salt has a negative effect; that is, adding 500 mmol L-1 sodium chloride re-
duces the current by an average of 9.48 µA cm-2.

The second experimental design was for an interference study performed
with a Plackett-Burman design. A cadmium electrode was run in a solution of
0.2 µM Cd2+ to which a low level (0.05 µM) or high level (0.5 µM) of potentially
interfering ions Pb2+, Cu2+, Ni2+, Zn2+, Cr3+, Ba2+ had been added. Recall that in
a Plackett-Burman design there are 4n experiments for 4n – 1 factors, so one
dummy factor was added to the list to make 7 factors total. The response was
the current, and the aim was to determine whether any of the metals caused a
significant change in the current when they went from low to high concentra-
tion. The design shown in spreadsheet 3.2 was used, after suitably randomiz-
ing the order. The results (currents) are shown in column J, returned to the
logical order in which the contrast coefficients were generated.

Figure 3.15. Doehlert design for two factors,
with coded values. The shaded triangle is the
generating simplex.
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Spreadsheet 3.1. Results
of a two-level full
factorial experimental
design to investigate
the effects of tempera-
ture (–1 = 10°C, +1 =
35°C) , pH (–1 = 3, +1
= 9), added salt (–1 =
no added salt, +1 =
500 mmol L-1), and
accumulation time (–1
= 1 min, +1 = 15 min)
on the current of a
modified electrode
detecting Cu2+.

=SUMPRODUCT(B11:B26,$F$11:$F$26)/8

=B27/SQRT(G29)

=TDIST(B28,8,2)

=SUMSQ(G11:G26)/16

=G28/8

=AVERAGE(F11:F26)

=SUMPRODUCT(B11:B26,$F$11:$F$26)/8

=B27/SQRT(G29)

=TDIST(B28,8,2)

=SUMSQ(G11:G26)/16

=G28/8

=AVERAGE(F11:F26)
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=SUMPRODUCT(C4:C11,$J$4:$J$11)/4

=TDIST(ABS(C12)/$I$12,4,2)

=IF(C13<0.01,"**",IF(C13<0.05,"*"," "))

=SUMPRODUCT(C4:C11,$J$4:$J$11)/4

=TDIST(ABS(C12)/$I$12,4,2)

=IF(C13<0.01,"**",IF(C13<0.05,"*"," "))

Spreadsheet 3.2. Results of a Plackett-Burman design to discover if interfering metals have a significant
effect on the current of a peptide biosensor for cadmium.

101
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The effects are calculated easily by the Excel function SUMPRODUCT—for
example, the effect of copper is =SUMPRODUCT(C2:C9,$J2:$J9)/4. This
can be copied across the row to calculate the rest of the effects.2 At first sight
it looks as if copper had a possibly significant negative effect and lead a
positive one. The rest, including the dummy, are less convincing. The sig-
nificance of the effects were tested in two ways, using a Rankit plot and com-
paring the effects to the dummy. In a Rankit plot, the distribution of the
results are compared to the expected normal distribution. A straight line
through zero indicates a normal distribution of the effects, whereas outliers
at the ends of the line point to significant, non-zero effects that add to (or
subtract from) the underlying random distribution (see also chapter 2).

The calculation for the Rankit plot is shown in spreadsheet 3.3. The ef-
fects are ordered from most negative to most positive. A column of the rank
of each effect is then created, with ties (none here) taking the higher rank
(e.g., 1, 2, 4, 4, 5). The column headed z is the point on the cumulative nor-
mal distribution of the rank/(N + 1), where N is the number of experiments.
The z score is calculated by the function =NORMSINV(z). When this is plot-
ted against the effect (see figure 3.16), it is clear that copper and lead do,
indeed, appear to be off the line, and all the other effects are concluded to
be insignificant.

Alternatively, the dummy effect can be taken as the repeatability of the
factor effects. Recall that a dummy experiment is one in which the factor is
chosen to have no effect on the result (sing the first or second verse of the
national anthem as the –1 and +1 levels), and so whatever estimate is made
must be due to random effects in an experiment that is free of bias. Each
factor effect is the mean of N/2 estimates (here 4), and so a Student’s t test
can be performed of each estimated factor effect against a null hypothesis
of the population mean = 0, with standard deviation the dummy effect.
Therefore the t value of the ith effect is:

Spreadsheet 3.3. Data for the Rankit plot of interference effects in a cadmium biosen-
sor determined from a Plackett-Burman experimental design. See figure 3.16 for the
plot.

=NORMSINV(C29/8)=NORMSINV(C29/8)
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Figure 3.16. Rankit plot of the effects of interferences on a cadmium
biosensor, determined from a Plackett-Burman design. See spreadsheet
3.3 for data.

t
E
Ei

i=
−0

dummy
(3.18)

The probabilities of each effect are given in spreadsheet 3.2, calculated
by =TDIST(t, df, tails) in row 13. Note the flagging of significant ef-
fects using the =IF function. Often it is as easy to decide the significance of
an effect manually, but if many calculations are to be done, the automation
is worth it. This calculation confirms the significance of the copper and lead
interferences, but it also suggests that barium may interfere. This is the prob-
lem of interpreting statistics with only a few data, and the analyst should
always use proper judgment. There are good chemical reasons that copper
and lead would interfere in the way they do, but barium was not thought to
be a significant source of interference (i.e., we went with the Rankit plot
rather than the t test). If the issue were important, then more experiments
would have to be done to obtain a better estimate of the barium effect or to
obtain a better estimate of the standard deviation of an effect.

Notes

1. In the realms of chaos and catastrophe theory, there are systems that
have different values depending on their past history, but chemical analy-
sis may be considered to be (mostly) well behaved.

2. The dollar sign in front of the column letter ($J) is to stop the column
reference moving when the formula is copied across.
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4.1 Introduction

Although thoroughly convinced that no laboratory can function without
proper regard to quality in all its myriad forms, the question remains, What
do we do? As a quality control manager with a budget and the best aspira-
tions possible, what are the first steps in providing your laboratory or com-
pany with an appropriate system (other than buying this book, of course)?
Each laboratory is unique, and what is important for one may be less impor-
tant for another. So before buying software or nailing control charts to your
laboratory door, sit down and think about what you hope to achieve. Con-
sider how many different analyses are done, the volume of test items, the
size of the operation, what level of training your staff have, whether the labo-
ratory is accredited or seeking accreditation, specific quality targets agreed
upon with a client, and any particular problems.

This chapter explains how to use some of the standard quality tools, in-
cluding ways to describe your present system and methods and ongoing
statistical methods to chart progress to quality.

4.2 The Concept of Statistical Control

Being in “statistical control” in an analytical laboratory is a state in which
the results are without uncorrected bias and vary randomly with a known
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and acceptable standard deviation. Statistical control is held to be a good
and proper state because once we are dealing with a random variable, fu-
ture behavior can be predicted and therefore risk is controlled. Having re-
sults that conform to the normal or Gaussian distribution (see chapter 2)
means that about 5 in every 100 results will fall outside ± 2 standard devia-
tions of the population mean, and 3 in 1000 will fall outside ± 3 standard
deviations. By monitoring results to discover if this state is violated, some-
thing can be done about the situation before the effects become serious (i.e.,
expensive).

If you are in charge of quality control laboratories in manufacturing com-
panies, it is important to distinguish between the variability of a product
and the variability of the analysis. When analyzing tablets on a pharmaceu-
tical production line, variability in the results of an analysis has two contri-
butions: from the product itself and from the analytical procedure. Your
bosses are interested in the former, and you, the analyst, must understand
and control the latter. It is usually desired to use methods of analysis for
which the repeatability is much less than the variability of the product, in
which case the measured standard deviation can be ascribed entirely to the
product. Otherwise, analysis of variance can be used to split the total vari-
ance of duplicate results into its components (chapter 2). In the discussion
that follows, the emphasis is on measurement variability, but the principle
is the same, and the equations and methods can be used directly to obtain
information about the product or manufacturing process.

4.2.1 Statistical Process Control

Statistical process control (SPC) is the use of the statistics of the normal
distribution to monitor the output of a process (Montgomery 1991). Statis-
tical process control is used largely in the manufacturing industry, where
the aim is to reduce defects, or non-conforming items, to as near zero as
practical. In the analytical laboratory the output is a result, and, according
to the tenets of SPC, this can be monitored in the same way as a ball-bearing,
computer component, or automobile. A process is said to be “capable” if
the output is within specified tolerances. Take some measure of the output—
in an analytical laboratory this could be the difference between the result of
the analysis of a certified reference material and the certified value. The
material being analyzed should be as near in composition to routine samples
as possible, and it should not also be used as a calibration standard, nor
should it be used to estimate bias or recovery. The result (call it the
error, δ) is expected to have a mean of zero and standard deviation equal to
the precision of the analysis (σ). The tolerance is whatever has been decided
to be the maximum permissible error and is designated as ± T about zero
(see figure 4.1). (There may be different risks associated with having results
that are too high or too low or associated with a nonsymmetrical distribu-
tion of results, but for ease a symmetrical tolerance range is assumed.)
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iSixSigma provides good web site devoted to SPC, with useful articles
and tips on control charts and the like (iSixSigma 2006). NASA (1999) has
published a bibliography of SPC, which is a useful start. Software for SPC
for MS Excel is also available (McNeese 2006).

A popular approach to comparing the tolerance and standard deviation
of measurements is to define the process capability index, Cp or CI, as

Cp
T

=
2
6σ

(4.1)

Thus, the tolerance range is mapped on to six standard deviations.
If Cp is 1, then 0.3% of results are outside the tolerance levels (i.e., the

mean ± 3σ of a normal distribution covers 99.7% of the distribution). In
modern manufacturing this is still not acceptable, and ± 4σ is the norm,
which leads to a criterion of Cp > 1.33 for a capable process. Now only
0.006% of results are not acceptable (see figure 4.2 a). The ultimate goal is
to move toward Cp = 2 or ± 6σ. At the other end, for 1.33 > Cp > 1.00, some
control is necessary; for 1.00 > Cp > 0.67 the system is considered unreli-
able; and for Cp < 0.67 is unacceptable. A value of Cp = 0.67 corresponds to
± 2σ spanning the tolerance range, with an expected failure rate of 5% (see
figure 4.2 b). If σ is not known, it is estimated from the range of a set of re-
sults (see chapter 2, section 2.3.3).

Suppose over a number of results the mean error is not zero. In SPC the
mean error as a percentage of the tolerance half-range (which is T when the
tolerance is ± T) is known as the index of accuracy, or capability index for
setting:

Figure 4.1. Tolerance limits for a chemical analysis. δ = cCRM(reported) –
cCRM(certified). Acceptable limits lie within ± T. LTL = lower tolerance
limit. UTL = upper tolerance limit.
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C
TA = ×
δ

100 (4.2)

If CA is < 12.5, the process is considered reliable; between 12.5 and 25 some
control is considered necessary; between 25 and 50, the process is unreli-
able; and if CA is > 50 the process it is not acceptable.

There is one more index that is used, the overall quality index, or the
corrected process capability index, Cpk. This is the distance of the mean of
the measure to the nearest tolerance limit.

Figure 4.2. Tolerance limits for a chemical analy-
sis. δ = cCRM(reported) – cCRM(certified). Overlays
are possible distributions of results. (a) Ideal
situation with Cp > 1.33. Less than 0.006% of
results will be outside the tolerance. (b) Poor
situation with Cp < 0.67. More than 5% of data
will be outside the tolerances.
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Cpk
T

Cp
CA⎛

⎝
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⎞
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⎛
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⎟⎟⎟⎟1 1

100
δ

Cp= − (4.3)

Thus Cpk is Cp corrected for a shift in the mean, measured by CA. The inter-
pretation of Cpk is the same as that for Cp.

The approach described here is one way of arriving at a target measure-
ment precision. If a client specifies that results must be within ± T, then the
target standard deviation is

σt etarg =
2
6

T
Cp

(4.4)

which is T/4 for Cp = 1.33. The difficulty of achieving this is another mat-
ter, but this is a useful starting point for a round of continual improvement.

4.3 Tools to Describe Non-numerical Information

Before delving into SPC, one needs to have an understanding of the system as
a whole. What happens in a laboratory, what variables are important, what
variables are likely to need monitoring and optimizing? If you subscribe to
any of the popular approaches (total quality management, Six sigma, Crosby,
Juran, Deming, Peters, etc.), you will have a shining path to a structured analy-
sis of laboratory operation (Juran and Godfrey 1999). Read and enjoy all of
these approaches, and then do what is sensible for your laboratory. It is use-
ful to formally map out what is actually done in the laboratory, down to an
appropriate level of detail. There are a number of graphical tools to help
(Nadkarni 1991). Some of these are embedded in quality control software, and
some come with more general popular spreadsheet and presentation software.

4.3.1 Flow Charts

Because a chemical analysis tends to have a linear structure in time, from
acquiring the sample through to presentation of the results, it lends itself to
graphing as a flow chart. Most operations can be described using the sim-
plest conventions of rectangles containing actions, rounded rectangles with
the entry and exit points, and diamonds for decision points that split the
chart. Flow charts can be applied to the organization of the laboratory as
organizational charts (figure 4.3), work flow charts (figure 4.4), or operations
charts for a particular analysis (figure 4.5).

Flow charts can become very complicated. The New South Wales Envi-
ronmental Protection Agency has a system to aid analysts in the identifica-
tion of unknown substances (known as Tiphus) that spans 20 full flowcharts
that cover every possibility for the analyses required, including treatments
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of solids, liquids, and their mixtures. It has recently been put on their local
intranet. When computerized, it also acts as an audit of procedures followed
by a particular analyst for a particular sample.

4.3.2 Cause-and-Effect Diagrams

A cause-and-effect diagram, also known as an Ishikawa diagram or fish bone
diagram, is a way of illustrating concepts or activities that impinge on a
particular problem. The issue being investigated is placed at the end of an
horizontal arrow, then major causes label arrows at 45° joining the main line,
and the process continues with sub-causes coming into these lines, and so
on (see figure 4.6).

A cause-and-effect diagram can be used as an alternative to a flow dia-
gram, but it is most effective when there is a hierarchy of causes leading to
a specified effect. Such a diagram can be used to great effect to identify com-
ponents of measurement uncertainty (see chapter 6). As an example of
troubleshooting a hypothetical problem, consider the liquid chromatogra-
phy analysis of a raw material. Results of analyses of ostensibly the same
material have varied with greater than the expected standard deviation. A
first pass might look like figure 4.7, although in a brainstorming session, some
of the possible causes may eliminated, perhaps because the answer is known
or because that the kind of fault would not cause greater variability but would
simply cause a wrong answer.

The use of cause-and-effect diagrams is highly recommended as a tool
for structured thinking about a problem. A chemical example is given by
Meinrath and Lis (2002).

Figure 4.3. Organizational chart of an analytical laboratory (Dodgy
Laboratories Inc.).
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4.4 Graphical Tools for Working with Data

The result of a chemical measurement is a number, with measurement un-
certainty and appropriate units. Analysts are accustomed to working with
numbers, calibration graphs have been drawn for years, and a laboratory with
any kind of commercial success will generate a lot of data. If the results fol-
low a particular distribution, then this statistical knowledge can be used to

Figure 4.4. Flow chart of analytical operations in Dodgy Laboratories Inc.
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predict the behavior of future results and therefore satisfy the laboratory and
its clients. A quality control program will monitor the results of analysis of
check samples included in each batch. Ideally, a matrix-matched certified
reference material will be available that can be taken as a blind sample
through the analytical procedure. The mean of a number of analyses of this
material allows one to assess bias (or recovery), and the standard deviation
of these results can be compared with a target repeatability.

Figure 4.5. Flow chart of a
simple titration.

Figure 4.6. Generic cause-and-effect (Ishikawa)
diagram.
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4.4.1 Histograms and Scatter Plots

Histograms are plots of the frequency of the occurrence of ranges of values
against the ranges of values. An example is given in figure 4.8, which shows
the errors of 75 titration results done by high school students in Sydney in
1997.

Because there were three different solutions being measured, the x-axis
is expressed as a percentage error = 100 × (Cstudent – Cassigned)/Cassigned , where

Figure 4.7. Cause-and-effect diagram for a problem with a liquid
chromatographic analysis.

Figure 4.8. Histogram of the results (expressed as
percent error) of the 1997 Royal Australian
Chemical Institute titration competition held in
Sydney.



114 Quality Assurance for the Analytical Chemistry Laboratory

Cassigned is the correct result and Cstudent is the result reported by the student.
There is an immediate impression of a bell-shaped curve around zero with
greater numbers at higher and lower errors. In the figure, “less” includes
results down to -40% and “more” includes results up to +700%. Twenty-
one students (28% of the total) had these extreme results, but the remaining
72% appeared to follow a normal distribution with mean 0.07% and stan-
dard deviation 0.84%. It is possible to analyze these data further, but the
histogram is a good starting point (Hibbert 2006).

Scatter plots are graphs of one variable against another. A scatter plot is
the basis of a calibration graph, but in preliminary data analysis this plot is
often used to compare and find correlations in data. As with any method,
care must be taken not to be misled by first impressions. The student titra-
tors were in groups of three, each of whom was given a slightly different
sample, and there may be an interest in finding out if there is any correla-
tion among their results. Do better schools breed better chemists, for ex-
ample? If all the results of team member A are plotted against those of team
member B, it appears as if this hypothesis may be true (see figure 4.9).

All members of one team arrived at results that were considerably higher
than the correct values.1 This has the unfortunate effect of skewing the whole
graph. A correlation coefficient squared is a gratifying, but misleading, 0.994,
but if this point is removed along with all the outlying points identified in
figure 4.8, the scatter plot of figure 4.10 remains. The r2 is now only .02, and
there is clearly no significant correlation.

Which plot is correct? A proper interpretation must consider both graphs
and must conclude that the outlying results do show a correlation, possibly
due to the fact that some school teams used only one member’s value for

Figure 4.9. Scatter plot of the results of team
member A against the results for team member B
of the 1997 Royal Australian Chemical Institute
titration competition held in Sydney.
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the concentration of a standard solution. This was measured as a prelimi-
nary step (even though they were counseled to each standardize their own
solutions), and so any error here would have been manifest in each person’s
result. Results near the assigned value have only random error, which is not
expected to be correlated.

4.4.2 Control Charts

For any laboratory that performs a particular activity time and time again,
showing the results in a control chart is a good way to monitor the activity
and to discover whether a change has caused some deviation in the expected
results. In 1924 Walter Shewhart was asked for some kind of inspection
report that “might be modified from time to time, in order to give a glance
at the greatest amount of accurate information” (Baxter 2002). He duly re-
sponded with a sample chart “designed to indicate whether or not the ob-
served variations in the percent of defective apparatus of a given type are
significant; that is, to indicate whether or not the product is satisfactory”
(Baxter 2002). This was the first control chart, and it has been the basis of
statistical quality control ever since. Some averaged measure of the process
is plotted over time, and trends or movement outside specifications can be
seen. Shewhart was interested in numbers of defects on a production line.
The analytical chemists product is a result, and the immediate equivalent
to Shewhart’s situation would be to repeatedly analyze a certified reference

Figure 4.10. Scatter plot of the results of team
member A against the results for team member B
of the 1997 Royal Australian Chemical Institute
titration competition held in Sydney, for results
that follow a normal distribution (in the “bell” of
figure 4.8). Dashed lines show the assigned values
of the concentration of each solution.
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material and count the number of analyses outside some predefined toler-
ance. It may be more informative to simply plot the results over time (as-
suming the same material is analyzed) or, if different reference materials are
used, to plot the frequency of the differences between the result and certi-
fied quantity value, as was done with the histogram of the titration results
(figure 4.8). Shewhart overlaid a graph of the results with the limits expected
from a statistical treatment of results and stipulated procedures to follow if
the points went outside these limits. See Woodall (2000) for an overview of
the issues relating to the use of control charts.

4.4.2.1 Shewhart Means Chart

The Shewhart means chart is probably the most widely used and can be
easily set up in a spreadsheet. First decide what is being charted—for ex-
ample, the concentration of a check reference material analyzed twice a day,
in duplicate, as part of the regular batches in the laboratory.2 The check
samples should not be distinguished from real unknowns, and the order of
their analysis should be randomized. It should be evident why always ana-
lyzing the check samples first, or perhaps last, could lead to results that
are not representative of the process. You must select the number of rep-
licates to average (n). Because the number of replicates appears in the stan-
dard deviation of the mean (= σ/ √n), which is used to set the acceptable
limits of the graph, this decision requires some thought. If n is too small,
the control limits might be too wide to quickly pick up changes in the pro-
cess, but if it is too great, then individual outliers might become lost in
the average and not picked up. The cost of replicate measurement must
also be considered, and in an analytical laboratory duplicate or triplicate
measurements are often chosen. Grouping may also be done over an ex-
tended time. Perhaps morning and afternoon measurements of the certi-
fied reference material are combined to give a daily average, or single
measurements made each day are averaged for a weekly average. The choice
depends on what knowledge is required about the performance of the labora-
tory and on the timescale.

A Shewhart means chart is a graph of the mean of the replicates against
time (see figure 4.11). Overlaid on the chart are five lines, a center line at
the mean of long-term measurements, two lines equally spaced above and
below the center, called the upper and lower warning limits, and a two more
lines outside the warning lines called upper and lower control (or action)
limits. There are several methods for deciding where the lines go, and the
choice should be made by considering risk and the associated cost of hav-
ing out of specification results versus stopping the process and inspecting
what is going on. Here is the most simple approach. Assume a certified ref-
erence material has been analyzed 4 times each day for 20 days. The mean
for each day (x), and global mean ([) and standard deviation (s) of all the
results are calculated, and the chart may now be drawn.



Quality Control Tools 117

1. Plot the daily mean (xi) for each of the daily results against day.
2. Draw a line at the global mean ([).
3. Draw warning lines at [ + 2×s/√4 and [ – 2×s/√4.
4. Draw action lines at [ + 3×s/√4 and [ – 3×s/√4.

By plotting the average of n results (here 4), the lines are based on the stan-
dard deviation of the mean, which is s/√n.

The analyst might have elected to follow the process more closely and
plot the duplicate means twice a day. Now the warning and action lines are
at ±2 × s/√2 and ±3 × s/√2, respectively (figure 4.12). Comparing figures
4.11 and 4.12, although the lines are wider apart with fewer repeats, the
points are more scattered, too.

The rationale and statistics of the warning and control limits are as fol-
lows. For averages of n values of a normally distributed random variable
with mean µ and standard deviation σ the means will also be normally dis-
tributed with mean µ and standard deviation σ/√n (see chapter 2). Because
of the properties of the normal distribution, 95.4% of all values lie between
±2 standard deviations of the mean, and 99.7% of all values lie between ±3
standard deviations. If quality control procedures require noting the 4.6%
of cases that, although part of the normal distribution, lie outside ±2σ and
require that the analysis be stopped and investigated for the 0.3% of cases
outside ±3σ, then this chart is extremely helpful. This is done because, apart
from the false alarms (Type I errors) given by these percentages (4.6% and
0.3%), genuine outliers that really do require action are discovered.

Under certain circumstances the system is deemed to be out of statistical
control. In this case the analysis must be stopped and the causes of the
problem investigated. There are eight indicators of a system being out of

Figure 4.11. Shewhart means plot of the duplicate
analysis of a certified reference material, twice per
day for 20 days. Each point is the mean of the
day’s four results. Warning limits (UWL and LWL)
are at the global mean ± 2×s/√4 and control
(action) limits (UCL and LCL) at the global mean ±
3×s/√4, where s is the standard deviation of all
the data.
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statistical control according to the Western Electric rules (Western Electric
Corporation 1956), but these indicators can be simplified. The probability
of finding this situation given a system that is actually in statistical control
(a Type I error) is given in parentheses:

1. One point lies outside a control limit (P = .003).
2. Two consecutive points lie between a warning limit and its control

limit (P = .0021).
3. Seven consecutive points on the same side of the center line

(P = .008).
4. Seven consecutive points are increasing or decreasing.

How does a chart work? If the system is in control and the true mean
coincides with the mean of the chart, then all is well and the frequency of
alarms will be given by the probabilities above. But if the mean of the analysis
has changed because of an unknown bias, the mean about which the results
scatter is µ + δ. This mean is nearer one set of warning and control limits, so
the probability that points will exceed those limits increases. (Of course,
the probability that the limits on the opposite side will be exceeded de-
creases, but overall the chance of observing one of the out-of-control situa-
tions is increased.) To illustrate this using the example of figure 4.11, an
increase in the true mean by 1 standard deviation of the mean after 10 days
has been simulated, and the points now fall around µ + σ/√n (see figure 4.13).
The existing warning and control limits remain as they were. The upper
warning limit is now 1 standard deviation of the mean away, not 2, the prob-
ability of exceeding it is 0.16 (not the 0.023 of an in-control system), and
the probability of exceeding the control limit is 0.023 (not 0.003). Action is
triggered on day 14 when 2 consecutive means have been above the upper
warning limit.

Figure 4.12. Shewhart means plot of the duplicate analysis of a certified
reference material, twice per day for 20 days. Each point is the mean of
one set of duplicate results. Warning limits (UWL and LWL) are at the
global mean ± 2×s/√2 and control (action) limits (UCL and LCL) at the
global mean ± 3×s/√2, where s is the standard deviation of all the data.
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Note that had these new points been used to fix the global mean, nothing
untoward would have been registered because the center and limit lines
would have all moved up together. This shows the importance of choosing
the mean and standard deviation correctly. Any data that are used to calcu-
late these parameters must be good. If this sounds like a chicken-and-egg
problem, it is, but you should be able to find data you are comfortable with.
Alternatively, if measurement is made against a known value, for example
a certified reference material, then the center line can be the known value
(not the mean of the laboratory’s measurement results). In addition, if there
is a target measurement uncertainty, then the repeatability component of
this measurement can be used as σ. With time, as the number of quality con-
trol data increases, better estimates of the mean and standard deviation can
be made. Remember that if you use target measurement uncertainty or other
estimates of the standard deviation, unless the system’s repeatability hap-
pens to coincide with this value, statistical consideration of the σ used will
not reveal the fractions of results lying outside the limits.

The average run length (ARL) of a chart is, as the term implies, how many
points on average must pass before action is triggered given a change in the
mean by a given amount. Average run length is the reciprocal of the prob-
ability of encountering a change. The Shewhart means chart is very good if
the mean suddenly increases by a large amount, but for relatively small
changes, which still may be important, it might be a long time before the
control limit is violated (table 4.1). Fortunately, the seven consecutive re-
sults might show up sooner.

If the standard deviation of the process suddenly increased, then the scat-
ter of the results would increase, and the chance of the system violating the
action conditions would be greater. In the example above, the mean has been

Figure 4.13. Shewhart means plot of the duplicate
analysis of a certified reference material, twice per
day for 20 days. Each point is the mean of the
day’s four results. A simulated increase in the
mean of one standard deviation of the mean is
applied after day 10.
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returned to its rightful place, but the standard deviation doubled after day
10 (figure 4.14).

The results of the continued simulation are given in figure 4.14.There is
a problem on the first 2 days after the change when both points exceed the
lower warning limit. In both figures 4.13 and 4.14, the changes are quite
obvious on the graph, and an alert quality control manager should be sensi-
tive to such changes, even if action is not taken.

Table 4.1. Average run length (ARL) for exceeding an upper or lower control
limit 1/p(total), or giving seven results on one side of the center line 1/p(7) of a
Shewhart means chart for deviations from the mean indicated

Increase in ARL= ARL=
mean/(σ/√n) P (LCL) P (UCL) P(total) 1/P(total) P(7) 1/P(7)

0 0.001 0.001 0.003 370 0.008 128
0.25 0.001 0.003 0.004 281 0.028 36
0.5 0.000 0.006 0.006 155 0.076 13
0.75 0.000 0.012 0.012 81 0.165 6
1 0.000 0.023 0.023 44 0.298 3
1.25 0.000 0.040 0.040 25 0.458 2
1.5 0.000 0.067 0.067 15 0.616 2
1.75 0.000 0.106 0.106 9 0.751 1
2 0.000 0.159 0.159 6 0.851 1
2.25 0.000 0.227 0.227 4 0.918 1
2.5 0.000 0.309 0.309 3 0.957 1
2.75 0.000 0.401 0.401 2 0.979 1
3 0.000 0.500 0.500 2 0.991 1

LCL = lower control limit, UCL = upper control limit.

Figure 4.14. Shewhart means plot of the duplicate
analysis of a certified reference material, twice per
day for 20 days. Each point is the mean of the
day’s four results. A simulated doubling of the
standard deviation is applied after day 10.
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4.4.2.2 Shewhart Range Charts

As shown in the preceding section, the Shewhart means chart reacts to changes
not just in the mean but also to changes in the standard deviation of the re-
sults. Nonetheless, I recommend that a separate chart be plotted for the range
of the data used to calculate the mean. The range is the difference between
the maximum and minimum values, is always positive (or zero), and has a
known distribution for normal data. The range is plotted against time, as with
the means chart, and the average range across all the data is used to calculate
the upper and lower warning and control limits. Perhaps unexpectedly, there
are lower limits. If suddenly the range becomes very small the process has
changed, although this may be temporarily welcome, it is important to un-
derstand what has happened. On the range chart the limit lines are:

Upper control line: D0.001]
Upper warning line: D0.025]
Lower warning line: D0.975]
Lower action line: D0.999]

where ] is the global average range, and the parameter D at different prob-
ability values is given in table 4.2. Range charts for the two sets of data in
figures 4.11 and 4.12 are given in figures 4.15 and 4.16, respectively. As with
the means charts, the range charts show all is well with the process.

4.4.2.3 CuSum Charts

In terms of breaching the warning and control limits, it will take a long time
for a Shewhart means chart to show that the process mean has shifted by a
small fraction of the process standard deviation. The ARL for deviation of
half a standard deviation from the mean is 155 (table 4.1), so on average 155

Table 4.2. Parameters for calculating the warning and control
limits for ranges as a function of the number of data (n)

n D0.001 D0.025 D0.975 D0.999

2 4.12 2.81 0.04 0.00
3 2.98 2.17 0.18 0.04
4 2.57 1.93 0.29 0.10
5 2.34 1.81 0.37 0.16
6 2.21 1.72 0.42 0.21
7 2.11 1.66 0.46 0.26
8 2.04 1.62 0.5 0.29
10 1.93 1.56 0.54 0.35

The average range of the data is multiplied by D to give the
lower control limit (D0.001), lower warning limit (D0.025), upper
warning limit (D0.975) and upper control limit (D0.999). Adapted
from Oakland (1992).
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measurements must be made before there is a 50% chance of detecting this
error. (Using the full suite of triggers, the condition of 7 results on one side
of the mean will be noticed after 13 points.) A more immediate approach to
detecting warning and control limits is to plot a CuSum chart, which is a
kind of moving average, and is more responsive to persistent but small bi-
ases. In a CuSum chart, the cumulative sum of the difference between each
mean result (xi) and the target value (xtarget) is plotted against time. Thus for
each result (the mean of n observations) xtarget –xi is calculated, keeping the
sign. Then in a separate column a running total of the differences is made.
Spreadsheet 4.1 presents some hypothetical numbers to show how the ac-
cumulation is done.

Note that for a CuSum chart the expected value of the result is used in-
stead of the mean calculated from the data. In an analytical laboratory this

Figure 4.15. Shewhart range plot of data in figure
4.11. The range is of the four points taken each
day. Dashed lines are control limits and dotted
lines are warning limits.

Figure 4.16. Shewhart range plot of data in figure
4.12. The range is of the duplicate points taken
twice a day. Dashed lines are control limits and
dotted lines are warning limits.
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could be the certified value of a reference material. For an unbiased system
in statistical control, results are normally distributed about xtarget and so the
expectation of the difference is zero. The data from the spreadsheet are dis-
tributed in this manner (see figure 4.17).

A bias will cause an accumulation of differences that can be detected quite
early. In the days of graph paper, a V-shaped mask was placed over the graph

Spreadsheet 4.1. Hypothetical data showing how to calculate the data for a
CuSum chart, as it might look in a spreadsheet.

Figure 4.17. CuSum chart of the data in
spreadsheet 4.1. Data in column D is plotted
against the day (column A).

=B4-$B$1

=D4+C5

=B4-$B$1

=D4+C5
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with points outside the V indicating a system out of control. In a spreadsheet,
the preferred method of plotting control charts, the following calculations are
performed. Two situations are investigated using different calculations, the
case of a positive bias and the case of a negative bias. Often the data are clear
and only one of these needs to be plotted, but in setting up a spreadsheet
you may as well make a column for each. For a positive shift from the mean,
the quantity Si

+ is calculated (NIST 2006):

S S
x x

ki i
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x

+
−

+= +
−
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⎨
⎪⎪
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max ,0 1 σ (4.5)

where σx is the standard deviation of the mean, and k is the allowable change
in one measurement period expressed in standard deviations of the mean
(usually k = 0.5). Equation 4.5 shows that only changes greater than k stan-
dard deviations contribute to the increase of S+. The standard deviation of
the mean can be a target uncertainty or a value calculated from long-run data.
Because of its cumulative nature, each value depends on the previous, and
so the first in the series (i = 0) must be defined as S0 = 0. The equivalent
equation for a negative shift is
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Si
+ and Si

- are plotted against time, and when either exceeds the threshold
h = 4, the process is considered out of control.

An example of this scenario is shown in spreadsheet 4.2 and figure 4.18.
Here the motor octane number of a standard sample of 95 octane fuel is
measured each month in duplicate. The Shewhart means chart never goes
over the warning limit, let alone the control limit (see figure 4.19), but some-
thing is clearly wrong. The seven-in-a-row rule would be triggered, but
CuSum also reveals that the system is out of control at about the same time.

Table 4.3 compares the ARL of a CuSum chart with that of a Shewhart
means chart. The CuSum chart picks up even small changes quickly and
has a good false positive rate (ARL = 336), and this makes it superior to the
run of seven.

A CuSum chart can be used as a general quality control device, even if
the system does not go out of control. Inspection of a CuSum chart can be
tied to changes in the routine and process because often results in a labora-
tory are affected by a one-off change. For example, the usual analyst might
go on holiday and be replaced by a less (or more) experienced colleague. A
new supplier of reagent might be used, or a new instrument might be ac-
quired. Each of these will introduce change in the results that will be sus-
tained until the system reverts to its original condition or changes again.



Q
uality Control Tools

125

Spreadsheet 4.2. Calcu-
lation of S+ and S- for

the CuSum control
chart example of

research octane
number.

=AVERAGE(B24:C24)=C20/SQRT(2)

=D24-$C$19)

=E24/$C$21

=MAX(G34+F35-$C$22,0)

=MAX(H34-E35-$C$22,0)

=AVERAGE(B24:C24)=C20/SQRT(2)

=D24-$C$19)

=E24/$C$21

=MAX(G34+F35-$C$22,0)

=MAX(H34-E35-$C$22,0)
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Consider some hypothetical data plotted as a means chart in figure 4.20
and as a CuSum chart in figure 4.21. Because the CuSum chart is creating a
moving average, the random component is more smoothed out, and the fig-
ure detects changes in slope around changes in the mean at observations
10, 19, and 25. The responsiveness of the CuSum chart is due to the fact
that when the underlying mean changes, the change adds to every measure-
ment thereafter, which shows up as a clear change in slope of the chart. A
Shewhart means chart has to rely on the change being picked up over a
number of measurements where each one is affected separately.

One way to use a CuSum chart to understand such changes is to plot a
regular analysis of a reference material (which does not have to be a certi-
fied reference material, rather a material which is the same and stable over
time) and note any obvious changes to the system on the chart. The quality
assurance manager can then evaluate any effects due to the changes and take

Figure 4.18. CuSum S chart of the data of research
octane number in spreadsheet 4.2. The system is
out of control when S exceeds h = 4. Open points
S+, closed points S– .

Figure 4.19. Shewhart means chart of the means of
duplicate data of research octane number in
spreadsheet 4.2. The target mean was 95 and the
standard deviation was 2.1.
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appropriate action or start discussions in the quality committee. Realizing
that every time a new calibration solution is made the results change some-
what, even if the effect does not trigger wholesale suspension of the process
and serious scrutiny, it might lead to concern about measurement uncer-
tainty and a desire to minimize the effect.

4.4.2.4 Plotting Charts in Excel

If a laboratory subscribes to statistical software, it is likely that control charts
will be available and the data just need to be entered. When using a regular
spreadsheet, there are a couple of tips for drawing the limit lines that might

Table 4.3. Average run length for a CuSum chart with h = 4 and k = 0.5 (both
in standard deviations of the mean)

Shewhart ARL for exceeding
Standardized mean shift ARL for h = 4  control limits

0 336 370
0.25 74 281
0.5 27 155
0.75 13 81
1.0 8 44
1.5 5 15
2 3 6
2.5 3 3
3 2 2

Shewhart ARLs for exceeding the control limits are also shown (see also
table 4.1).

Figure 4.20. Shewhart means chart of data that
change their mean (arrows) at observations 10
(ytarget +1σ), 19 (ytarget +2σ), and 25 (ytarget). The
target mean is shown at ytarget = 10, and warning
and control lines are at ± 2σ and ± 3σ.
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be helpful. If you want to draw a horizontal line at a value that is computed
on the spreadsheet, then there is no need to create columns of identical
numbers to be plotted like an ordinary series. For example, to draw a line at
the upper control limit, with the chart in focus, but no particular points
highlighted, type =SERIES(“UCL”,(cell with start time, cell with
end time), (cell with UCL, cell with UCL),1) and press Enter.
An example might be =SERIES(“UCL”,(B2, B10), (D5, D5),1). A col-
ored maker will appear on the chart at the start and end times. Double click
on one of the markers to give the dialogue box for the Format Data Series,
and, on the Patterns tab, switch off markers and switch on a line with suit-
able color and pattern. This series can be created just as well from the menu
bar Chart>Source Data and then from the dialogue box Series tab, Add, and
within x-values type “= (“, then click on the cell with the start time, comma,
and then click on this cell again followed by closing parenthesis. Similarly,
choose the cell containing the y-values. This method is much better than
trying to add a drawing line at about the correct value on the y-axis. As soon
as either axis scale changes, the line will be stuck in the wrong place. (And
if you forgot to highlight the chart before drawing the line, then it will not
even move when the chart is repositioned.)

If you want to put the numbers in directly, rather than refer to cells containing
the numbers, use curly brackets. For example, =SERIES(,{0,10},{0,10},1)
puts points at 0,0 and 10,10 and causes a diagonal to be drawn across a chart
when a line pattern is switched on. =SERIES(,{0,10} ,{1,1},1) puts
two points at x = 0, y = 1 and x = 10, y=1. Double click on a point, de-
select points, and choose a line style, color, and weight to draw the hori-
zontal line.

4.4.3 Pareto Diagrams

Pareto diagrams (see figure 4.22) are used to compare magnitudes of quanti-
ties and share their name with the Pareto principle, which states something

Figure 4.21. CuSum chart of the data in figure 4.20.
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akin to “80% of the work is done by 20% of the people.” In this statement,
“work” can be replaced by “wealth,” “measurement uncertainty,” “savings,”
or “gross domestic product,” and “people” can be replaced by “country,”
“effect,” or “contributing component.” In quality control, the Pareto diagram
is used to describe the relative contributions to measurement uncertainty. a
Pareto chart has two parts. A vertical bar chart gives the contributions of
the components being displayed, usually expressed as a percentage of the
whole, in descending order along the x-axis. On top of this, a line with the
cumulative total increases from the top of the first bar to 100%. The example,
which appears to follow the 80:20 rule, is the components of the uncertainty
of the 31P nuclear magnetic resonance analysis of the agricultural chemical
Profenofos (Al-Deen et al. 2002). Intralaboratory precision has the greatest
uncertainty, followed by the purity of the standard (trimethylphosphate) with
weighings and molecular weights a long way behind. The actual contribu-
tion to the combined standard uncertainty shows an even greater disparity,
as the effects are squared and added.

4.5 Quality Control Strategies in the Laboratory

Procedures carried out in the laboratory, as opposed to proficiency testing
or other interlaboratory collaborations, are known as in-house or internal
quality control procedures. When running batches of samples with calibra-
tion solutions and unknowns, there are a number of extra samples that can
be analyzed that cover different aspects of quality control (QC samples).
These QC samples should be documented in the quality manual and be part

Figure 4.22. Pareto chart of the contributions to
the uncertainty of the quantitative NMR analysis
of Profenofos. The effects are σ (intra), the
intralaboratory precision; P(std), the purity of
the proton standard; w, weighings of unknown
and standard; MW, the molecular weights of
unknown and standard. (Data kindly supplied by
T Saed Al-Deen.)
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of the test procedure. If there is no particular place in a batch for a given QC
sample, these should be randomly analyzed.

4.5.1 Blanks

A blank is a sample that does not contain analyte. It might be pure solvent
used to establish a baseline for an instrument, or it might be a complex
sample matrix. The purpose of a blank is to confirm the absence of analyte.
Completely or partially analyzing a blank will reveal contamination of sam-
ples during collection, storage, preparation, and analysis. Frequently ana-
lyzing blanks (sometimes known as washout samples) will also detect
whether there has been carry over of analyte from a previous sample that
might have adsorbed on containers, transfer tubing or instruments. When
measurements are close to the detection limit, incorporating suitable blanks
become more important.

A reagent blank is used to estimate the blank contribution to the instru-
ment response (i.e., the baseline) and is not subjected to all the sample prepa-
ration procedures. It is usually the solvent or carrier used to introduce the
sample into the instrument. A method blank contains all the components of
a sample except the analyte, and it is taken through all steps of the analyti-
cal procedure, including digestion, filtration, preconcentration, and deriva-
tization. When samples are prepared and analyzed in batches there should
be at least one method blank per batch of samples. For quality control pur-
poses, the method blank is a more complete check of lack of contamination,
and the results of this analysis should be used to assess batch acceptance. A
batch can be accepted if the method blank is below the detection limit (or
limit of quantitation). If analyte is detected at a significant level, the source
of contamination must be investigated and measures taken to eliminate or
minimize the problem. Correction for a blank measurement should be a last
resort, and the uncertainty of the correction must be included in the mea-
surement uncertainty. A regulatory body might set the acceptance criterion
for a method blank. If not, the acceptance criterion should be set by the labo-
ratory and documented in its quality manual.

For environmental samples a field blank is similar to a method blank,
but it has been exposed to the site of sampling. A field blank is used to screen
for contamination during on-site sample collection, processing, sample
handling, and transport. For example, in air sampling through a filter that
is digested and analyzed in the laboratory, a field blank would be a filter
from the same package with the collected filters. The blank filter would be
placed in the equipment, and then, without operating the air pump, removed
and retained in the same manner as a real sample. In the laboratory the
sample would be treated as if it were a routine sample, with the laboratory
information management system identifying it as a field blank. In forensic
samples where, for example, DNA contamination has been the savior of many
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a defense case, a blank swab taken to scene and then processed with other
samples can be used to argue for a clean process.

4.5.2 Replicates

In chapter 2 I introduced the statistics of repeated measurements. Here I
describe how these statistics are incorporated into a quality control program.
In a commercial operation it is not always feasible to repeat every analysis
enough times to apply t tests and other statistics to the results. However,
validation of the method will give an expected repeatability precision (sr),
and this can be used to calculate the repeatability limit (r), the difference
between duplicate measurements that will only be exceeded 5 times in every
100 measurements.

r = 2.8 × sr (4.7)

Any replicated samples, whether QC materials or regular samples, should
be monitored by the system, and the sample should be flagged if the differ-
ence between duplicates exceeds r. Remember that this limit should be ex-
ceeded 5 times in 100, so a single result outside the range need not be a cause
for immediate concern. On one hand, if no results were flagged, this would
be a problem because the repeatability precision in the laboratory does not
reflect the reported method precision. On the other hand, this might be good,
showing that you are a very careful and precise analyst, in which case a
revised repeatability should be calculated from control chart data (see sec-
tion 4.2). However, a process that has gone wrong and gives the same an-
swer for all samples would also appear to have excellent precision. ISO 5725
(ISO 1994) recommends a third measurement which has its own acceptance
criterion, and if that fails further action is warranted.

In some sectors the difference between repeated samples is expressed as
the relative percentage difference (RPD), which is defined as

RPD
x x

x
=

× −( )100 max min  (4.8)

In other words, the range is expressed as a percentage of the mean. (With
only duplicate results the range is just the difference between the two re-
sults.) If a laboratory uses the RPD, then an acceptance criterion is set in the
standard operating procedure stating what to do if the criterion is exceeded.

4.5.3 Added Control Materials

A variety of reference materials can be added to a sample or analyzed with
a batch of samples. These are known in terms of their function.
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4.5.3.1 Matrix Spike Samples

To assess recovery in samples with complex matrices requiring extensive
processing, a traceable reference material is added to a sample, which is then
taken through the analysis. Sometimes this is done in duplicate. The recov-
ery is defined as

R
x x

x
= ×

−( )
100 spiked unspiked

added

(4.9)

where xunspiked and xspiked are the measurement results before and after add-
ing a known amount of analyte (xadded). The spike can be used to assess re-
covery for each sample, if the matrix varies greatly from sample to sample,
or to check a recovery determined as part of the method validation or veri-
fication. The amount of spike chosen should give a measurable increase and
still lie within the calibration range of the method. It is important not to
disturb the matrix, so a spike is usually added as a solid or concentrated
solution. Adequate homogenization is then an issue, which you should ex-
plore during the validation of the method. The spike material should be an
independent sample, not be a calibration solution, and if a correction is to
be made for recovery (even if after measurement it is decided to make no
correction), its quantity value must be traceable. This is necessary to main-
tain the unbroken traceability chain.

4.5.3.2 Surrogate Samples

A surrogate is a compound not usually found in a sample that is similar in
physical and chemical properties to the analyte. When analyzed, a surro-
gate should be distinguished from the target analytes but otherwise behave
as closely as possible to the analyte in terms of recovery and response of the
instrument. The behavior of a surrogate is characterized during method
validation. One to four surrogates can be added to each blank and sample
immediately before sample preparation. Surrogates are particularly useful
in chromatography and are chosen to appear across the chromatogram. Typi-
cal organic surrogates are compounds that have been isotopically labeled
or that have non-reactive groups added such as fluorine or bromine. A sur-
rogate is used as a general quality control material, not for estimating re-
covery or for calibration. Typically the analysis of a surrogate is plotted in
a control chart and trends, and outliers from the average instrumental re-
sponse are considered in the usual way (see section 4.2).

For environmental analyses in which the matrix varies from sample to
sample, the analysis of a surrogate gives a warning if a particular sample is
not behaving as expected fashion. As with all QC materials, there must be
criteria for the acceptance of surrogate analyses. When there is more than
one surrogate, whether all or some fail the criteria is a useful diagnostic. If
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all fail, this indicates a gross processing error or problematic sample ma-
trix. If only one surrogate has problems, then the analyst needs to decide if
this is peculiar to the surrogate or if the concentrations of analytes in the
sample are suspect.

4.5.3.3 Internal Standards

Internal standards are sometimes used in chromatography (especially with mass
spectrometry detection) to quantitatively adjust for variability during a run. The
internal standard, like a surrogate, is a compound expected to behave similarly
to the analyte but which is not usually present in a sample. If a known and
constant amount of the internal standard is added to each measured sample
(including calibration solutions, blanks, and QC material), the ratio of the analyte
to the internal standard is taken as the instrumental response (y). For mass
spectrometric detection, isotopically labeled internal standards are preferred,
whereas in gas chromatography chlorinated analogues often have similar re-
tention times and detector response. A typical method of employing an inter-
nal standard is to add a known and constant amount of internal standard to
each sample just before presenting it to the instrument. The ratio of the peaks
for the analyte and internal standard is then used for calibration and to mea-
sure the unknown. Use of an internal standard can reduce the repeatability of
a chromatographic analysis from tens of percent to a few percent.

Internal standards are also used in trace metal analysis by inductively
coupled plasma atomic emission spectrometry (ICP-AES) and inductively
coupled plasma mass spectrometry (ICP-MS) techniques. An internal stan-
dard solution is added to ICP-MS and ICP-AES samples to correct for ma-
trix effects, and the response to the internal standard serves as a correction
factor for all other analytes (see also chapter 2).

4.5.3.4 Calibration Verification Standards

An initial calibration verification standard should be measured after cali-
bration and before measuring any sample. A calibration verification stan-
dard is a standard solution or set of solutions used to check calibration
standard levels. The concentration of the analyte should be near either the
regulatory level of concern or approximately at the midpoint of the calibra-
tion range. These standards must be independent of the calibration solutions
and be prepared from a stock solution with a different manufacturer or
manufacturer lot identification than the calibration standards. An acceptance
criterion is set, usually as a maximum allowable percentage variation (e.g.,
5%, 10%). The calibration can be continually verified using either a cali-
bration standard or the initial calibration verification standard. Acceptance
criteria must be set and action taken when results fall outside the limits (i.e.,
stop the analysis, investigate, correct the problem and rerun samples run
between the verification standards that were not limits).
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4.5.3.5 Interference Check Standards

An interference check standard is a standard solution used to verify an ac-
curate analyte response in the presence of possible interferences from other
analytes present in the samples. For methods that have known interference
problems arising from the matrix or that are inherent in the method, such as
ICP-AES (spectral interference lines) and ICP-MS (isotope combinations with
similar masses to analyte), these solutions are used in the batch. The inter-
ference check standard must be matrix matched to acid content of the sam-
ples. Acceptance criteria are set—for example, the magnitude of uncorrected
background and spectral interference must not be greater than a stated value.

Notes

1. A chemical metrologist might wonder how the RACI assigned the
correct answer. The titrations were performed a number of times by at least
two senior chemists, and the means of the student results that followed
normal distributions were not statistically different from the assigned val-
ues. Furthermore, the judges decision was final.

2. Already I am assuming that there is enough activity on the analytical
production line to warrant this level of checking. For a more modest labora-
tory a sample may only be measured weekly, or at some other interval.
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5
Interlaboratory Studies

136

5.1 Introduction

No matter how carefully a laboratory scrutinizes its performance with in-
ternal quality control procedures, testing against other laboratories increases
confidence in a laboratory’s results and among all the laboratories involved
in comparison testing. Although without independent knowledge of the
value of the measurand it is possible that all the laboratories involved are
producing erroneous results, it is also comforting to know that your labora-
tory is not too different from its peers.

An interlaboratory study is a planned series of analyses of a common test
material performed by a number of laboratories, with the goal of evaluating
the relative performances of the laboratories, the appropriateness and accu-
racy of the method used, or the composition and identity of the material
being tested. The exact details of the study depend on the nature of the test,
but all studies have a common pattern: an organizing laboratory creates and
distributes a test material that is to be analyzed to the participants in the
study, and the results communicated back to the organizing laboratory. The
results are statistically analyzed and a report of the findings circulated.
Interlaboratory studies are increasingly popular. Ongoing rounds of inter-
laboratory studies are conducted by most accreditation bodies; the Key
Comparison program of the Consultative Committee of the Amount of Sub-
stance (CCQM) is one such interlaboratory study (BIPM 2006). There is a
great deal of literature on interlaboratory studies (Hibbert 2005; Horwitz
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1995; Hund et al. 2000; Lawn et al. 1997; Maier et al. 1993; Thompson and
Wood 1993), and an ISO/IEC guide for the conduct of proficiency testing
studies is available (ISO/IEC 1997).

5.2 Kinds of Interlaboratory Studies

There are three principal groups of studies: studies that test laboratories
(proficiency tests), studies that test methods, and studies that test materials
(table 5.1). Laboratories that participate in method and material studies are
chosen for their ability to analyze the particular material using the given
method. It is not desirable to discover any lacunae in the participating labo-
ratories, and outliers cause lots of problems. The aim of the study is to obtain
information about the method or material, so confidence in the results is of
the greatest importance. When laboratories are being studied, the method may
or may not be prescribed, and in this case outliers are scrutinized very care-
fully. Often proficiency testing (PT) is done on a regular basis, with material
sent to a laboratory for analysis as frequently as once a month. A laboratory
can then test itself, not only against its peers in the current round, but also
against its past performance.

5.3 General Methodology

All interlaboratory studies have a common overall procedure (figure 5.1):

1. The organizing body writes the rules for the study, appoints the
organizing laboratory, and invites participants.

2. If required, the test material must be prepared or analyzed so that
the quantity value is assigned. For example, in interlaboratory com-
parisons of elements in water organized by the Institute for Refer-
ence Materials and Measurements (IRMM) under the International
Measurement Evaluation Programme (IMEP), the test materials were
prepared by gravimetry or analyzed by a primary method such as
isotope dilution mass spectrometry by an independent laboratory
with good metrological credentials. Some analysis is usually per-
formed by the organizing laboratory (e.g., to demonstrate homoge-
neity and stability of the test material).

3. The organizing laboratory sends test portions to the participating
laboratories with instructions and timetable for reporting measure-
ment results.

4. On receipt of the measurement results, the organizing labora-
tory collates the data and statistically analyzes the results. The
treatment of outliers and missing data is important in any type of
study.

5. The organizing body distributes a report to the participating labo-
ratories and may make the report public as part of a process of
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Table 5.1. Kinds of interlaboratory studies

Name Purpose Comments

Studies to test laboratories
Proficiency testing
Laboratory performance

study
Round-robin

To determine the
performance of a
laboratory with respect
to other participants,
and (if available) to
an independently
assigned reference
value

Often employed as part
of an accreditation
scheme (e.g., to ISO/
IEC 17025); usually
repeated over an
extended period of
time

Cooperative trial One-off comparison of
laboratory performance

May be for contractual
purposes

Key Comparisons Assessment of national
capability in analysis
of specified materials.

Organized by the
CCQM and covers
important areas
related to trade, the
environment, and
human health;
participation is by
NMIs.

International Measure-
ment Evaluation
Program (IMEP)

To provide direct
evidence for the
degree of equivalence
of the quality of
chemical measure-
ments (IMEP 2005)

Organized by IRMM for
the European Union
Laboratories from
around the world
participate

Studies to test materials
To assign a consensus

value to a test material
Used as part of a

certification scheme,
although this does
not ensure traceability

Studies to test methods
Collaborative trial
Method performance

study
Method precision study

To provide data for a
method validation
study

Determines the
repeatability and
reproducibility
precision of a method
and, if a CRM is used,
the method or
laboratory bias

Interlaboratory bias
study

To determine method
bias or laboratory bias
of a standard method

Similar to a collabora-
tive trial but with a
nominated aim

Material certification
study

Improvement schemes Validation of new or
improved methods by
comparison with fully
validated method

Less costly exercise
than full validation
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deciding if a method is to be adopted as a standard, or if the study
is a Key Comparison. Usually the performance of individual labo-
ratories is not disclosed; codes are used to anonymously label the
participants.

6. The organizing body reviews the round of tests and prepares for the
next round.

Figure 5.1. Schematic of the work flow of an interlaboratory study,
showing the sequence of actions by each laboratory or organization.
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5.3.1 Organizing Structure

There are three kinds of players in most interlaboratory studies: the orga-
nizing body, under whose auspices the study is conducted, the referee (or-
ganizing) laboratory, and the participating laboratories. The organizing body
may be an accreditation body (see chapter 9), an international agency such
as the International Bureau of Weights and Measures (BIPM), a national
measurement laboratory, a standards organization such as the American
Society for Testing and Materials (ASTM) or the International Organization
for Standardization (ISO), or the quality assurance section of a large com-
pany that wants to compare test results across the laboratories of the com-
pany. The organizing body articulates the purpose of the study—for example,
to obtain a quantity value for a particular material, to fulfill accreditation
requirements of the participants, or to provide evidence of competence for
mutual recognition trade agreements. Interlaboratory studies are expensive
to set up and maintain, and the cost is borne by the organizing body, often
from government funds, or by the participants, as is the case in proficiency
studies.

The bureaucrats and politicians who decree an interlaboratory study are
not involved in the work of the study. A referee laboratory, often within the
organizing body, is tasked with formulating the rules of the study, liaising
with the participants, sourcing and characterizing the test material, distrib-
uting test materials to participants, receiving and analyzing the results, and
issuing the study report. The organizing laboratory must be of the highest
competence and totally impartial in its discharge of the duties of the ref-
eree. Often the participating laboratories must remain anonymous, and labo-
ratories are identified by a code. Only the participating laboratory will know
its code, and participants must be confident that the system will protect their
privacy. When the quantity value of the test material must be measured
before the study, the organizing laboratory should be able to perform the
analysis to an appropriate measurement uncertainty, which will be at least
one-tenth that of the reproducibility standard deviation of the participating
laboratories. This task is sometimes delegated to national measurement in-
stitutes that use primary methods of analysis with small measurement un-
certainty and demonstrable metrological traceability.

The participating laboratories might be self-selecting as part of an accredi-
tation program that requires proficiency testing for continued accreditation.
For method validation and materials testing studies, laboratories are invited
to participate on the basis of their demonstrated competence. Because the
results are subjected to statistical analysis, there is a minimum number of
laboratories that should take part in a study, below which the statistics are
unreliable. It may be prudent to choose more than the minimum number to
guard against unexpected outliers, or missing data (e.g., from a laboratory
that drops out of the program).
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5.3.2 Materials

The test material must have the basic properties of identity, stability, and
homogeneity.

5.3.2.1 Identity

The test material is chosen to fulfill the aims of the study. In a proficiency
testing scheme or a method validation study, the test material is usually as
near as possible to typical field samples. There is no advantage in compe-
tently analyzing an artificial sample if the same laboratory has difficulty with
real samples. The organizing laboratory must know the composition of the
test material, and must be sure that the analyte for which a quantity is to be
measured is present in about the desired amount. For pure materials this is
not a problem, but for natural test materials or complex matrix materials,
the organizing laboratory may have to do some analyses before the samples
can be sent out to the participants. If the value of the measurand is to be
established by an independent laboratory before the study, then the iden-
tity requirement is also fulfilled when the measurand is stated.

5.3.2.2 Homogeneity

All bulk material is heterogeneous to some extent. Solutions tend to be more
homogeneous than gases and solid mixtures, but the organizing laboratory
must demonstrate the homogeneity of the test materials. Sufficient homo-
geneity is demonstrated when the sampling standard deviation, σsample, is
much less than the measurement standard deviation of the laboratories in
the trial (or target standard deviation in a proficiency testing scheme), σp.
The criterion for homogeneity is σsample ≤ σallowed, where the allowed stan-
dard deviation is the maximum permissible and is equal to 0.3(σp). The test
involves calculating a critical (95% level) standard deviation based on σallowed

and an estimate of the measurement standard deviation smeas. The critical
value is given by
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where χ2 is the chi-square distribution, F is the Fisher F distribution, and m is
the number of samples analyzed for homogeneity. If s2

sample ≤ c2, the sampling
variance is acceptable. In Excel the required functions to calculate the critical
value c are χ2 =CHIINV(0.05,m-1), and F =FINV(0.05, m, m–1).

Experimentally, homogeneity is assessed by analyzing in duplicate, using
a suitably precise method (with repeatability at least half the target standard
deviation of the test), m (at least 10) test samples that have been prepared
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for distribution. The 2m samples should be analyzed in random order to
ensure repeatability conditions. Estimates of the sampling variance, s2

sample,
and the measurement variance, s2

meas, are obtained from a one-way ANOVA
(see chapter 2), with the m samples being the grouped variable. If the within-
group mean square is Swithin and the between-group mean square is Sbetween,
then

s2
meas = Swithin (5.2)

s
S S

sample
between within2

2
=

−
(5.3)

The denominator 2 in the equation 5.3 reflects duplicate experiments.
s2

sample is then compared with the critical value that is calculated from equa-
tion 5.1 to determine homogeneity.

5.3.2.3 Stability

The test material must be stable because the nature of the analyte and the
value of the measurand must be maintained until a laboratory measures it.
The organizing laboratory must account for likely transport and storage
conditions during the time of testing. In a recent major international pro-
gram, the Australian result was poor for just one organic compound out of
six. Investigation showed that the results appeared to correlate with the
distance from the European referee laboratory, and subsequent analysis
showed a steady decomposition of that compound. In some long-term stud-
ies a great amount of material is made at the outset and used over many years.
As long as the material is entirely stable, this approach guards against any
variation introduced with the making a new sample each year, but the ref-
eree laboratory needs to be sure of the sample’s integrity.

5.3.3 Statistics

5.3.3.1 Identification of Outliers

The organizing laboratory performs statistical tests on the results from par-
ticipating laboratories, and how outliers are treated depends on the nature
of the trial. Grubbs’s tests for single and paired outliers are recommended
(see chapter 2). In interlaboratory studies outliers are usually identified
at the 1% level (rejecting H0 at α = 0.01), and values between 0.01 < α
< 0.05 are flagged as “stragglers.” As with the use of any statistics, all data
from interlaboratory studies should be scrutinized before an outlier is
declared.
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5.3.3.2 Graphical Presentation of Data

Data are often presented as returned results in ranked order, with the mean,
robust mean, or assigned reference value for comparison. Some data from a
university laboratory practical to determine the fraction of carbonate in a
mixture of carbonate and bicarbonate are shown in figure 5.2. The data have
been ranked, and the mean ± 2 standard deviations of the set of results are
shown. A Grubbs’s test on the greatest value (52.2%) gives g = 1.98, which
is less than the critical value of 2.29 (95%) or 2.48 (99%), so on a statistical
basis there is no outlier, but this is due to the large standard deviation (12.4%)
of the set. If a z score is calculated based on the assigned value and a target
standard deviation of 6% (the experiment requires two titrations, one of
which has a difficult end point), analyst 4 would probably be scrutinized
(see figure 5.3). Other examples of data analysis and presentation come from
the IMEP rounds (IRMM 2006; see section 5.5.1).

Another graphical description of the data is used when comparing the re-
sults of several trials is the box plot (also called box-and-whisker plot). A box
represents the range of the middle 50% of the data, and whiskers extend to the
maximum and minimum values. A line is drawn at the median value. A glance
a this plot allows one to assess the symmetry and spread of the data. Figure 5.4
is a box plot for the carbonate data of figure 5.2. Specific plots, such as Youden
two-sample plots for method performance studies, are discussed below.

5.3.4 Reporting

There are two aspects to a report of an interlaboratory study. First the na-
ture, organization, and treatment of results of the trial must be specified,

Figure 5.2. Plot of ranked data from an analysis of
a carbonate–bicarbonate mixture. Lines are drawn
at the mean (solid) and ± 2 s (the sample standard
deviation of the data) (dotted).
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and any deviations from the planned procedures should be noted (e.g., miss-
ing data). The results should be displayed in a clear manner, with labora-
tory codes to protect identity if required. The organizing body should write
to any laboratories that have been identified in a proficiency test as of con-
cern, and corrective measures (e.g., special monitoring or a site visit to dis-
cuss the problems) should begin. The organizing laboratory usually issues

Figure 5.3. Data of figure 5.2 plotted as z scores
with mean = 23.6% (assigned reference value)
and σ = 6.0% (target standard deviation).

Figure 5.4. Box and whisker plot of the
data of figure 5.2.
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an internal report to the sponsor of the study with a range of details and
commentary on the results.

5.4 Detailed Protocols

5.4.1 Method Performance Studies
(Validation)

Standard methods of analysis published by bodies such as the American
Society for Testing and Materials (ASTM), Comité Européen de Normalisa-
tion (CEN), or ISO are rigorously tested and validated in method perfor-
mance, or validation, studies. These interlaboratory trials can establish
reproducibility and method bias and also give some confidence that the
method can be used in different environments. Laboratories are chosen with
an expectation that they can competently follow the proposed method, which
will have already been extensively validated before an interlaboratory trial
is contemplated. To this end, a pilot trial is sometimes undertaken to en-
sure the method description can be followed and to give an initial estimate
of the precision of the method.

5.4.1.1 Trial Procedures

For a full validation trial a minimum of 8 laboratories is recommended, al-
though 15 is considered ideal for establishing reproducibility. Because most
methods are used over a range of concentrations, at least five or six samples
of concentrations that span the expected range should be analyzed. Dupli-
cate samples should be sent to the laboratories, with either the same con-
centration or slightly different concentrations (“Youden pairs”).

5.4.1.2 Statistical Treatment of Results

One of the aims of a validation study is to establish the repeatability and
reproducibility precision. Experiments performed under repeatability con-
ditions (see chapter 2) are those repeated over a short period of time, with
the same analyst and same equipment. For an analysis, the repeats must be
independent, involving the entire method, and not simply the operation of
the instrument several times. Reproducibility conditions are the sine qua
non of the interlaboratory study. Different laboratories, with different ana-
lysts, instruments, reagents, and so on, analyze the sample at different times,
but all with the same method. The relationship among these parameters is
shown in figure 5.5.

The mean result from the interlaboratory study, x, follows a model:

xi = x + (δi – δ |) + εi (5.4)
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where xi is the value obtained by laboratory i, δ i is the laboratory bias, δ | is
the method bias, and εi is the within-laboratory random error (which has an
expectation of zero). It is possible to define laboratory bias as the deviation
from the method bias, and not from the accepted reference value, although
I do not recommend this for validation studies. A more elaborate picture is
shown in figure 8.10 where the intralaboratory or intermediate reproduc-
ibility is described. This covers the variability over time and in laboratories
within which more than one analyst or instrument is regularly used. Across
a number of laboratories, δi will average to the method bias with the stan-
dard deviation of the results equaling the between-laboratory standard de-
viation (sL). Together these combine to give the reproducibility standard
deviation (sR):

s s sR r L= +2 2 (5.5)

Thus, while an individual laboratory has a bias, δi , when combined with
the results of other laboratories, this is now a random variable that contrib-
utes to the reproducibility.

The above analysis assumes that the results are normally distributed and
without outliers. A Cochran test for homogeneity of variance and Grubbs’s
tests for single and paired outliers is recommended (see chapter 2). Data from

Figure 5.5. Diagram showing the relationship between repeatability and
reproducibility and laboratory bias and method bias in the context of an
interlaboratory study.
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laboratories failing these tests at the 99% level (α = 0.01) should be rejected,
while failure at the 95% level (α = 0.05) should cause some scrutiny of the
data, but if there are no other counter indications, the data should be re-
tained. If after these tests more than two out nine of the laboratories are
excluded, the trial should be halted and no data used. Any outlier should
be investigated carefully. I also recommend that only complete data from
laboratories be used. If a laboratory reports a missing value, then all the
laboratory’s results should be excluded.

When duplicate or split samples are sent for analysis, the repeatability
and reproducibility can be calculated from an ANOVA of the data with the
laboratories as the grouping factor. If the between-groups mean square is
significantly greater than the within-groups mean square, as determined by
an F test, then the variance due to laboratory bias can be computed as de-
scribed in chapter 2.

s2
r = within-laboratory mean square (5.6)

s2
L = (between-laboratories mean square –s2

r)/2 (5.7)

and then sR is calculated by equation 5.5.
The reproducibility determined by such a study is often compared with

a calculation for the relative standard deviation (RSD) using the Horwitz
formula

log2 (R%) = 1 – 0.5 log10(x) (5.8)

where x is the mass fraction of the analyte. A reproducibility that is not near
the Horwitz prediction (a so-called Horrat of near unity; see chapter 6) should
be scrutinized and a rationale for the discrepancy found. The use of inter-
laboratory studies and the Horwitz formulas to estimate measurement un-
certainty is also discussed in chapter 6.

5.4.1.3 Interlaboratory Bias Study

An interlaboratory bias study is a limited form of method performance study
used to determine the bias of a standard method or the bias introduced by
laboratories that use the standard method. Laboratories are chosen for their
competence in performing the method, and the organization is the same as
for a method performance study. The number of laboratories in the study is
determined by the statistics required. If the bias (δ) is calculated as the dif-
ference between accepted reference value and mean of n laboratories’ re-
sults, the significance can be tested using the standard deviation of the mean,
sR/√n. The Student’s t statistic is calculated as

t
s n

n
R

= −
δ
/

, deg1with rees of freedom (5.9)
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and the null hypothesis, that the estimated bias comes from a population
having mean zero (i.e., there is no bias) is rejected at an appropriately small
probability. Knowing the reproducibility from earlier studies, the smallest
bias that can be detected by a study can be calculated as a function of n, and
hence the number of laboratories determined. The standard deviation of the
results of the bias study can be tested against the known reproducibility by
a chi-square test. If the test reveals a significant difference, the reason for
this difference should be investigated, possibly repeating the analyses. Note
that testing the bias in this way gives only the probability of a Type I error.
At 95% probability a bias will be concluded to be significant 5 times in 100
when it is actually not significant. The probability of an actual bias is not
known.

5.4.2 Laboratory Performance
(Proficiency Testing)

Proficiency testing is increasingly used as part of an accreditation system
and used in general to demonstrate the ability of a laboratory to deliver ac-
curate results. Participation in proficiency testing schemes is one of the six
principles of valid analytical measurement articulated by the Laboratory of
the Government Chemist (see chapter 1). The aim is to determine whether
laboratories can achieve a consensus with reasonable dispersion and/or
report an accurate result. The latter is only possible if the sample has an
accepted reference value against which to compare a laboratory’s results.
Proficiency testing is used to assess the day-to-day performance of a laboratory,
and it should not be used as an opportunity for a laboratory to demonstrate
its capacity for higher than average performance. Although it is inevitable that
laboratories may take more care with their proficiency testing samples, and
perhaps use their proficiency testing results in advertising, the real benefit
of proficiency testing is as an aid to quality control. Proficiency testing
schemes comprise a continuing series of rounds of testing and are not ex-
pected to be a single event. It is the evolving as well as the short term per-
formance of a laboratory that is being assessed.

5.4.2.1 Procedures

Because the laboratories are being tested, and perhaps found wanting, in a
proficiency testing scheme, the role of organizer becomes more of judge, jury,
and executioner than the collaborative partner of a method validation trial.
It is therefore important that absolute probity is maintained by the organizer,
which will often be an accreditation body or other official organization. Also,
the rules and consequences of participation must be clear. Proficiency test-
ing in itself has nothing to say about accreditation. If an accreditation body
decides to take certain actions in response to a laboratory’s performance,
these actions should be determined and documented in advance. For ex-



Interlaboratory Studies 149

ample, how many times can a laboratory have results outside a z score of ±3
before the accreditation body takes action?

The proficiency testing organization should include an advisory body that
has representatives who are practicing chemists, drawn from the sponsor of
the program, participants, contractors, and professional organizations. The
advisory board should have access to statistical advice. Its job is to oversee
testing and make recommendations to the organizing body on matters such
as the frequency of testing rounds, the numbers and kinds of samples, docu-
mentation and instructions provided to the participants, and treatment and
reporting of results.

To ensure fairness for all participants, the rules of proficiency testing
schemes are often more exact than other interlaboratory trials. Results must
be returned by a specified time and must follow the defined format to be
valid. Collusion between laboratories is unprofessional and is against the
spirit of testing. To discourage collusion, the organizing body may announce
that slightly different materials will be sent out at random to the participants.
Where split pairs are sent for analysis, it is possible to design the difference
in levels of the pair to maximize the probability of detecting collusion be-
tween laboratories (Wang et al. 2005). Because of the use of a standard de-
viation for proficiency testing, the participants are usually instructed not to
return a measurement uncertainty.

5.4.2.2 Samples and Methods

Samples distributed for analysis should have known quantity values with
estimated measurement uncertainties, although, of course, these are not
released to the participants until after the tests. The value of the measurand
(Xassigned) can be assigned by

1. Analysis by an expert laboratory of high metrological quality. This
will often be one or more reference laboratories such as a national
measurement institute.

2. The value and measurement uncertainty of a certified reference
material.

3. A formulation using materials of known composition and certified
quantity values.

4. The post-hoc consensus value from the testing round.

Post-hoc consensus does not independently establish the value of the
measurand, and although it provides internal consistency, comparison with
other testing rounds and proficiency tests should be made with care. In some
cases the outliers from the consensus mean in a round may be the only ones
with the correct answer. When an empirical method is used to establish the
assigned value, this method should be made known to the participants in
advance. Where the assigned value is provided with an uncertainty (as it
would be in cases 1–3 above), the uncertainty should be small compared to
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the standard deviation used to calculate the z score (see next section). For
unequivocal use of the results, the following condition should hold

u2
x < 0.1σ2

p (5.10)

where uX is the standard uncertainty of the assigned value, and σp is defined
in the next section.

The method of analysis is either prescribed, when this is regulated by
law, for example, or the choice is left to the participant. In the latter case
the method is reported with the result. In keeping with the aims of a profi-
ciency testing scheme, the method used should be the routine method em-
ployed by the laboratory, and not some enhanced protocol designed to
improve performance in the scheme.

5.4.2.3 Statistical Treatment of Results

In contrast to the use of collaborative trials to estimate repeatability, repro-
ducibility, and bias of a method, where the participating laboratories are
treated as random representatives of a population of competent laborato-
ries, in proficiency testing each laboratory is an independent entity that is
being assessed for its ability to return an accurate measurement result. In
the terms used in ANOVA, the factor “laboratory” in proficiency testing is a
fixed effect, while in method validation it is a random effect. Therefore in
this case, the within and between variables variance has no useful mean-
ing, particularly of laboratories use different methods, other than to deter-
mine if there is significant differences among the group of laboratories.

The results of the laboratories are assessed by converting them to a z score
(see chapter 2).

z
x X

i
i assigned

p

=
−

σ (5.11)

where xi is the result of laboratory i, Xassigned is the assigned reference value,
and σp is the assigned standard deviation, known as the standard deviation
for proficiency assessment. The variable σp has also been called the target
standard deviation, but this terminology is not now recommended. Because
σp is not necessarily the standard deviation of the normally distributed re-
sults of the testing round, it is not possible to ascribe a significance to a
particular value. Thus z = ±2 should not have connotations of a 95% prob-
ability range. The organizing body should give some guidance as to the in-
terpretation of the z score. Often σp is chosen to make scores outside ±3
unwanted and subject to scrutiny, but the usual statistical interpretations
must not be made without some understanding of the implied distribution.
When deciding on a fit-for-purpose standard deviation, a value should be
chosen that trades off a few incorrect decisions that might be made as a re-
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sult of a greater measurement uncertainty and the cost of achieving a lesser
measurement uncertainty.

Although independent assignment of the value of the measurand is pre-
ferred, many proficiency tests use the consensus mean and standard devia-
tion to calculate the z scores. This is the cheapest method, and it has a kind
of egalitarian feel, in which everyone contributes to the assignment of the
right answer. To avoid the problem of outliers skewing the normal statisti-
cal parameters, a robust mean and standard deviation are calculated. For
Xassigned the median is chosen (see chapter 2; i.e., the middle value of the
data arranged in order of magnitude). The robust standard deviation should
be calculated from the MAD (median absolute deviation) or IQR (interquartile
range; see also chapter 2).

The data should always be scrutinized carefully. Extreme results might
be due to individual laboratory error, but sometimes there are two or more
groups of results that correspond to a particular source of bias. Identifying
such groups can be very informative and lead to highlighting particular forms
of bad practice. However, the presence of groups makes a sensible assign-
ment of quantity value from the results very difficult, if it is impossible to
decide which group has the more correct result. In some cases the results
will have to be reported in their raw state with no attempt to calculate
z scores. When more than one sample has been analyzed, the individual re-
sults can be quoted, or a lumped statistic such as the sum of squared z scores
can be used (Uhlig and Lischer 1998).

5.4.2.4 Reporting Proficiency Tests

The report should contain a clear statement of procedures for dealing with
the data and the determination of test statistics (e.g., treatment of missing
data and method of calculation of z scores). The identity of the laboratories
should be coded. Ideally, all data should be reported to allow a laboratory
to check the calculation of its z score. In these days of Internet and spread-
sheets, there should be no impediment to providing this information. Graphs
of the z scores against laboratory code or ordered z scores or laboratory means
are often reported. Where split level samples have been distributed, a Youden
plot is given. I do not recommend ranking z-scores in a league table of labo-
ratories. The outcome of proficiency testing is not to highlight winners and
losers but to encourage acceptable practice by every laboratory.

5.4.3 Materials Certification

Because a consensus value does not guarantee a correct result, the use of
interlaboratory studies to establish the quantity value of a would-be refer-
ence material must be undertaken with great care. A traceable quantity value
per se is not established by the consensus of a number of laboratories, but if
each of those laboratories can demonstrate that they have reported a traceable
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measurement result, the weight of the group of these measurements is com-
pelling evidence that the combined measurement result is an appropriate
estimate of the true value. It follows that only laboratories of the highest
metrological standards should be used to certify the values of quantities of
reference materials.

The organizer of an interlaboratory study to assign a quantity value to a
reference material is usually a national or international certifying author-
ity, such as the International Atomic Energy Agency (United Nations), the
Community Bureau of Reference (European Union), or a national measure-
ment institute.

5.4.3.1 Choice of Materials, Methods,
and Laboratories

Because the material will be distributed as a reference material after the
study, there must be enough material to satisfy the needs of the test and its
future uses. Homogeneity and stability must be demonstrated, and after the
first certification round, later rounds can be planned to establish shelf life
of the material. Usually one laboratory has the responsibility for perform-
ing homogeneity and stability tests. Subsamples are stored at temperatures
ranging from –20°C to +50°C and analyzed once a month for a period of 3 or
4 months.

Analysis of a material by a small number of laboratories using the same
method runs the risk of introducing a method bias into the result. At least 20
laboratories are chosen for their high standard of analytical competence and
their ability to apply different methods, where this is appropriate. If necessary
the laboratories will also be asked to use different pretreatment methods.

5.4.3.2 Procedure for Materials
Certification

A round of preliminary tests establish homogeneity and a likely consensus
value. If there is any discrepancy among the results, a second round may be
needed. Only those laboratories that achieve reasonable results in the ini-
tial rounds participate in the final certification round, although any labora-
tories that do not achieve consensus should be investigated to make sure
they are not the only ones doing the analysis correctly. For the certification
round, at least four subsamples, distributed on different days, should be
analyzed in duplicate to allow estimation of repeatability (sr) and the effect
of the influence factor, time.

5.4.3.3 Statistical Treatment of Results

The normality of the distribution of results is checked by an appropriate test,
such as the Kolmogorov-Smirnov test, and outlier tests are performed on
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variances and means. It is important that outliers or other untoward results
are properly investigated. The organizers and testing laboratories must be
confident about the consensus mean result. ANOVA is used to calculate the
different contributions to the variance, between-laboratory reproducibility,
and within-laboratory repeatability. If different methods have been used,
the method is also investigated as a factor.

The certified value is usually taken as the grand mean of the valid re-
sults. The organizer uses standard deviation as the basis for calculating the
measurement uncertainty. Results from the laboratories will include their
own estimates of measurement uncertainty and statements of the metrologi-
cal traceability of the results. There is still discussion about the best way to
incorporate different measurement uncertainties because there is not an
obvious statistical model for the results. One approach is to combine the
estimates of measurement uncertainty as a direct geometric average and then
use this to calculate an uncertainty of the grand mean. Type A estimates will
be divided by √n (n is the number of laboratories), but other contributions
to the uncertainty are unlikely to be so treated.

5.5 International Interlaboratory Trials

International interlaboratory trials are conducted to assess or demonstrate
the ability of laboratories across nations to achieve comparable measurement
results. International trials have become of interest as international trade
that depends on chemical analysis grows. The IMEP program compares field
laboratories, while the Key Comparisons program of the CCQM targets na-
tional measurement institutes and is the basis of mutual recognition arrange-
ments of the International Committee for Weights and Measures (CIPM). The
goal of these initiatives is make measurements acceptable everywhere, no
matter where they are made

5.5.1 International Measurement
Evaluation Program

In a farsighted move in 1989, the European Union laboratory IRMM started
a series of interlaboratory comparisons to provide objective evidence for the
degree of equivalence and the quality of chemical measurements by com-
paring a participant’s measurement results with external certified reference
values (IRMM 2006). At the time most proficiency testing schemes used
consensus results for the mean and standard deviation to derive z scores.
With the IMEP-1 analysis of lithium in serum, the world was alerted to the
problem of lack of accuracy in analytical measurements. The data of the first
IMEP-1 trial are replotted in figure 5.6; notice that the apparent outlier was
the only laboratory to come close to the assigned value.
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The results of IMEP-1 clearly pointed to the problem of lack of equiva-
lence of measurement results and demonstrated that studies needed to use
independently established quantity values. IMEP operated from the begin-
ning under the auspices and with the support of the International Union of
Pure and Applied Chemistry, EURACHEM, the Association of European
Metrology Institutes, and Cooperation in International Traceability in Ana-
lytical Chemistry.

The methodology of IMEP is the same as for any proficiency testing scheme.
The participating laboratories conduct analyses using their routine proce-
dures. The IMEP-certified test sample is well characterized and has refer-
ence values certified by laboratories that have demonstrated capability to
make the particular measurement. In some cases, such as trace elements in
water, the samples are natural samples that have been analyzed by a pri-
mary method (e.g., isotope dilution MS), or synthetic samples, in this case
high-purity water to which elements have been added in known amounts.
Unlike other proficiency testing schemes, participants in IMEP are invited
to state uncertainty estimates for their reported results, together with the
method used and their self-assessed competence and accreditation status.
IRMM has become the leader for these kinds of studies and provides char-
acterized samples for the CCQM Key Comparisons and pilot studies for
national metrology institutes worldwide.

The IMEP rounds involve laboratories are from all around the world of
different metrological function and experience. Measuring the same quan-
tity in the same sample yields evidence of measurement capability. Com-
plete anonymity of laboratories is preserved, and although the program
provides analysis of the results in the form of tables and graphs, laborato-
ries draw their own conclusions about the accuracy of their results.

Figure 5.6. Results of IMEP-1. Two samples of
serum containing 0.019 ± 0.001 mmol L-1 Li were
analyzed by six laboratories with the results as
shown. (Reproduced with permission from Hibbert
and Gooding 2005.)
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The analytes and matrices are chosen for their prominence in cross-bor-
der trade and environmental or political issues, and they include substances
such as rice, wine, water, fuel, and human serum. Table 5.2 is a list of IMEP
rounds up to the end of 2006. The majority of analytes are elements. This
reflects the history of IRMM, which has been prominent in the measurement
of atomic weights and the development of IDMS as a primary method for
the analysis of elemental amounts.

Table 5.2. The International Measurement Evaluation Programme (IMEP) rounds up
to 2006 arranged by analyte and matrix (IRMM 2006)

IMEP Years of
comparison Material and matrix Elements study

4 Bovine serum Li, Cu, Zn 1991–1995
11 Car exhaust catalysts Pt, Zr, Ce, Hf 1998–1999
8 CO2 n(13C)/n(12C) and 1997–1999

n(18O)/n(16O)
1 Human serum Li 1989
5 Human serum Fe 1991–1994
7 Human serum Ca, Cl, Cu, Fe, K, Mg, Na, 1997–1998

Se, Zn
17 Human serum Ca, K, Li, Mg, Na, Zn and 2000–2003

minor organic constituents
2 Polyethylene Cd 1990–1991
10 Polyethylene Cd, Cr, Hg, Pb, As, Cl, Br, S 1997–1998
13 Polyethylene Cd, Cr, Hg, Pb, As, Cl, Br, S 1999–2000
19 Rice Cu, Cd, Zn, Pb 2002–2003
14 Sediments Trace elements 1999–2000
21 Sewage sludge Metals, PCBs and PAHs 2005
18 Sulfur in diesel fuel S 2004–2005

(gasoil)
22 Sulfur in petrol S 2006
3 Trace elements in B, Ca, Cd, Cu, Fe, K, Li, 1991–1993

water Pb, Rb, Zn
6 Trace elements in Ag, B, Ba, Cd, Cu, Fe, Li, 1994–1995

water Mo, Ni, Pb, Rb, Sr, Tl, Zn
9 Trace elements in B, Ca, Cd, Cr, Cu, Fe, K, 1998–1999

water Li, Mg, Ni, Pb, Rb, Sr,
U, Zn

12 Trace elements in Ag, B, Ba, Ca, Cd, Cu, Fe, 2000–2001
water K, Li, Mg, Mo, Ni, Pb,

Rb, Sr, Tl, Zn
15 Trace elements in As, B, Cd, Cr, Cu, Fe, Mg, 2001–2002

water Mn, Ni, Pb
20 Tuna fish As, Hg, Pb, Se, methyl 2003–2004

mercury
16 Wine Pb 1999–2001
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IMEP-12, the study of trace elements in water, followed studies (IMEP-3,
6, 9) that focused on the ability of laboratories to correctly analyze a suite of
elements at trace, but not ultra-trace, levels. Because of the general impor-
tance of measuring elements in the environment, a large number of labora-
tories took part (348 laboratories from 46 countries on 5 continents), which
provided a spread of experience, methods, and results. Participants of IMEP-
12 measured the amount content of the elements As, B, Cd, Cr, Cu, Fe, Mg,
Mn, Ni, and Pb in two samples of water. The samples for analysis were
subsamples of a single solution that was prepared by gravimetric addition
of concentrated mono-elemental solutions in purified water in order to keep
the approximate concentration of the elements for measurement close to the
legal limits for water intended for human consumption (European Union
1998). Five institutes of high metrological standing analyzed the solutions
and provided measurement results for each element and sample and a full
measurement uncertainty (GUM; see chapter 6). These institutes were Uni-
versity of Natural Resources and Applied Life Sciences (BOKU Vienna,
Austria), IRMM (Geel, Belgium), Federal Institute for Materials Research and
Testing (BAM Berlin, Germany), National Measurement Institute Japan (NMIJ
Tsukuba, Japan) and the Laboratory of the Government Chemist (LGC Ted-
dington, UK). According to the IMEP policy, if the RSD uncertainty of the
value of a measurand is less than 2%, it is deemed certified; if the value is
greater than 2%, the result is “assigned.”

The participants were free to use whatever methods they preferred. The
majority used inductively coupled plasma (ICP; with optical emission or
mass spectrometry) or atomic absorption spectrometry (AAS; flame or elec-
trothermal), although 38 different named techniques were used. The results
are fully documented in the report from IRMM (Papadakis et al. 2002) and
plotted as ordered results with reported measurement uncertainties. There
is a great range of results and reported measurement uncertainties. Out of
242 laboratories that returned results for As, I counted (from the graph in
the report, so there is an uncertainty here of plus or minus a couple of labo-
ratories) 104 with results in the certified range, and if laboratories whose
error bars make it into the certified range are also counted as successful, this
becomes 149, or 61% of the total. Thirty-six laboratories (15%) are outside
± 50%. The IMEP studies have also shown great variation in the reported
measurement uncertainty. One laboratory that obtained a result that was
within the assigned range also reported a measurement uncertainty of greater
than ± 50%, thus making the result useless.

An interesting conclusion from many IMEP studies is the lack of correla-
tion between results and (1) method used, (2) accreditation status of the
laboratory, (3) reported familiarity with the method, and (4) country or re-
gion of origin. In all cases some laboratories obtain reasonable results and
some do not. For many studies participation in a series of rounds appears to
lead to some improvement, but the one-quarter to one-third of laboratories
not obtaining a result that can be said to be equivalent to the certified or
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assigned value seems to hold in many studies (see chapter 1). One of the
leading European chemical metrologists, Professor Paul De Bièvre, has in-
terpreted these observations as an argument for well-trained and commit-
ted staff. It could be that funds spent on the latest technology that is claimed
to be idiot proof might not be so well placed. The analysis of a sample is
much more than knowing which buttons to press on the instrument.

5.5.2 Key Comparison Program of CCQM

In 1999, the BIPM started the Key Comparisons program in which countries
(member states of the Metre Convention and Associates of the General Con-
ference on Weights and Measures) sign mutual recognition arrangements
(MRAs) to accept standards, and, if desired, calibration and measurement
certificates issued by other signatories’ national measurement institutes. A
result of the program is that participating national metrology laboratories can
establish the degrees of equivalence of their national measurement standards.

According to the BIPM (BIPM 2006) the objectives of the CIPM MRA
are to:

• Provide international recognition of, and to improve the realization
of national standards,

• Provide confidence in, and knowledge of the measurement capa-
bilities of participating laboratories for all users, including the regu-
latory and accreditation communities,

• Provide the technical basis for acceptance between countries of
measurements used to support the trade of goods and services—
“equivalent” certificates issued in the framework of the MRA, which
can be accepted worldwide,

• Reduce technical barriers to trade arising from lack of traceability
and equivalence.

To maintain membership of the mutual recognition arrangement, a na-
tional measurement institute must take part in rounds of the Key Compari-
sons. The Key Comparisons organized by the CCQM have consisted of a wide
variety of matrices and measurands. As of 2006, 80 key comparisons cover-
ing all areas of chemical measurement had been completed. As with IMEP,
the attempt is to cover all important areas that are involved in international
commerce, but the Key Comparisons program covers a wider range of analytes
and matrices. Examples of areas include health (cholesterol in fish), food
(arsenic in fish), environment (gases in air), advanced materials (semicon-
ductors), commodities (sulfur in fossil fuels), forensics (ethanol in air/
breathalyzer), biotechnology (DNA profiling), and general analysis (pH).

5.5.2.1 An Example: CCQM-K6

In 2001, a comparison was undertaken to assess the capability of countries
to measure cholesterol in human serum (Welch et al. 2001). After a pilot
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study, seven national measurement institutes took part in a round to ana-
lyze two samples of serum provided by the National Institute for Standards
and Technology. All the laboratories in the study used an isotope dilution/
GCMS method, which involves adding a known mass of a cholesterol mate-
rial with a stable isotope label to a known mass of serum. Esters of choles-
terol are hydrolyzed to cholesterol, which is converted to a trimethylsilyl
derivative to improve separation and detection. The ratio between the na-
tive cholesterol and the isotopically labeled material that was added is
measured by GCMS. The cholesterol content of the serum is measured by
comparing this ratio with that of known calibration mixtures of the same
labeled cholesterol and unlabeled cholesterol of known purity. The results
for one material are graphed in figure 5.7, together with the assigned value
and expanded uncertainty.

Of importance to the traceability of the results is a proper estimate of the
measurement uncertainty of each participant. The error bars in figure 5.7
are the expanded uncertainties reported by the laboratories, in some cases
with a coverage factor relating to more appropriate degrees of freedom. Table
5.3 gives the uncertainty budget from one of the participants, the National
Analytical Reference Laboratory, now part of the Australian National Mea-
surement Institute. The repeatability of the measurements of standard and
test material contributes the greatest uncertainty.

5.5.2.2 Degree of Equivalence

A measure of the agreement between results from two laboratories, or between
a laboratory result and the assigned value, has been developed in the Key

Figure 5.7. Results of the analysis of cholesterol in
serum in a round of the CCQM Key Comparisons
(CCQM-K6). The laboratories are identified in the
KCDB report (Welch et al. 2001).
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Table 5.3. Measurement uncertainty budget for the measurement of cholesterol
in serum by isotope dilution/GCMS

Relative
uncertainty Degrees of

Source of uncertainty Type (%) freedom

Initial mass sample solution B 0.008 ∞
Final mass sample solution after dilution B 0.0004 ∞
Mass sample solution for blend B 0.008 ∞
Mass spike solution for blend B 0.014 ∞
Mass standard for calibration blend B 0.008 ∞
Mass spike for calibration blend B 0.014 ∞
Concentration of calibration solution B 0.06 ∞
Repeatability of cholesterol/13C3- A 0.426 5

cholesterol ratio for sample blends
Repeatability of cholesterol/13C3- A 0.397 6

cholesterol ratio for standard blends
Calculation of expanded uncertainty
Combined RSD % 0.59 10
Coverage factor k 2.28
Relative expanded uncertainty (%) 1.29
Mean of results 2.250 mg/g
Expanded uncertainty (U) 0.029 mg/g

Data recalculated from Welch et al. (2001).

Comparisons program and is known as “degree of equivalence.” This consists
of the signed difference between the results, with a combined expanded un-
certainty. Thus, for two laboratories with results x1 ± U1 and x2 ± U2, the
degree of equivalence is (x1 – x2), with expanded uncertainty √U2

1 + U2
2. A

Student’s t test with H0 that the results come from a population with degree
of equivalence = 0 can then be used to determine if there is a significant dif-
ference between the results.
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6.1 Introduction

One of the great revolutions in metrology in chemistry has been the under-
standing of the need to quote an appropriate measurement uncertainty with
a result. For some time, a standard deviation determined under not particu-
larly well-defined conditions was considered a reasonable adjunct to a
measurement result, and multiplying by the appropriate Student’s t value
gave the 95% confidence interval. But knowing that in a long run of experi-
ments repeated under identical conditions 95% of the 95% confidence in-
tervals would include the population mean did not answer the fundamental
question of how good the result was. This became evident as international
trade burgeoned and more and more discrepancies in measurement results
and disagreements between trading partners came to light. To determine if
two measurements of ostensibly the same measurand on the same material
give results that are equivalent, they must be traceable to the same metro-
logical reference and have stated measurement uncertainties. How to achieve
that comparability is the subject of this chapter and the next.

When making a chemical measurement by taking a certain amount of the
test material, working it up in a form that can be analyzed, calibrating the
instrument, and performing the measurement, analysts understand that there
will be some doubt about the result. Contributions to uncertainty derive from
each step in the analysis, and even from the basis on which the analysis is
carried out. An uncertainty budget documents the history of the assessment
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of the measurement uncertainty of a result, and it is the outcome of the pro-
cess of identifying and quantifying uncertainty. Although the client may only
receive the fruits of this process as (value ± expanded uncertainty), accredi-
tation to ISO/IEC 17025 requires the laboratory to document how the un-
certainty is estimated.

Estimates of plutonium sources highlight the importance of uncertainty.
The International Atomic Energy Agency (IAEA) estimates there are about
700 tonnes of plutonium in the world. The uncertainty of measurement of
plutonium is of the order of 0.1%, so even if all the plutonium were in one
place, when analyzed the uncertainty would be 700 kg (1000 kg = 1 tonne).
Seven kilograms of plutonium makes a reasonable bomb.

6.2 Definitions of Measurement Uncertainty

The International Vocabulary of Basic and General Terms in Metrology
(VIM), second edition (ISO 1993a), defines uncertainty of measurement as
the “parameter, associated with the result of a measurement, that charac-
terizes the dispersion of the values that could reasonably be attributed to
the measurand” (term 3.9). In the third edition (Joint Committee for Guides
in Metrology 2007), the term “measurement uncertainty” is defined (term
2.27), and “reasonably attributed” is replaced by “attributed to a measurand
based on the information used.” This definition emphasizes that the esti-
mate of uncertainty is only as good as the information used to calculate it,
so a report of an uncertainty should also state what information was used to
calculate the uncertainty.

Measurement uncertainty characterizes the extent to which the unknown
value of the measurand is known after measurement, taking account of the
information given by the measurement. Compared with earlier, more com-
plicated definitions, the current definition of measurement uncertainty is
quite simple, although it does not give much guidance on how it is to be
estimated. What information should be used, and how should one use it?

There are several terms used in measurement uncertainty that must be
defined. An uncertainty arising from a particular source, expressed as a stan-
dard deviation, is known as the standard measurement uncertainty (u). When
several of these are combined to give an overall uncertainty for a particular
measurement result, the uncertainty is known as the combined standard
measurement uncertainty (uc), and when this figure is multiplied by a cov-
erage factor (k) to give an interval containing a specified fraction of the dis-
tribution attributable to the measurand (e.g., 95%) it is called an expanded
measurement uncertainty (U). I discuss these types of uncertainties later in
the chapter.

The approach to measurement uncertainty that is espoused by many
authorities, including the VIM, is embodied in a standard called the Guide
to the Expression of Uncertainty in Measurement, universally referred to as
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“GUM” (ISO 1993b). The GUM covers all measurement, and so for chemists
a more pertinent guide has been published by EURACHEM (2000), which
may be freely downloaded from the web (http://www.eurachem.ul.pt/). This
guide, titled “Quantifying uncertainty in analytical measurement,” is known
by the acronym QUAM.

6.3 Where Does Uncertainty Come From?

There are two basic sources of uncertainty in a measurement result: defini-
tional uncertainty and uncertainty in the measurement. Definitional uncer-
tainty means that there will always be an inherent uncertainty in the way
we describe what is being measured. For example, the measurement of “cop-
per in lake water” may engender the question of whether total copper, or
Cu2+ (aq) is meant, or whether it is some average value that is envisaged or
copper in water near the surface or in the sediment. However the definition
might be refined, the analytical method might not give a result for that par-
ticular measurand. Organic analysis opens questions of isomeric forms, and
the analysis of surface concentrations requires a definition of the surface
(geometric, accessible by a particular molecule, and so on). As more infor-
mation is given the measurement uncertainty also changes, usually for the
better. Definitional uncertainty is considered to be the lower limit of mea-
surement uncertainty: when measurements are maximally precise, defini-
tional uncertainty accounts for the uncertainty. The first step in estimating
measurement uncertainty is to define the measurand, and so it is here that
definitional uncertainty arises. Uncertainty from the measurement itself is
usually considered in terms of systematic and random elements, each of
which requires a different approach to estimation. However, in different
circumstances a random factor may become a systematic one and vice versa,
and while keeping the notions of random and systematic errors, a holistic
approach to measurement uncertainty is more satisfactory. Once the result
has been corrected for any quantified and significant systematic errors (bias),
some information used to estimate measurement uncertainty will be from
repeated measurement results and will be treated statistically (Type A), and
other information will be from different sources (Type B) that will be even-
tually combined with Type A information to give the overall estimate.

6.3.1 Error and Uncertainty

Modern measurement has tried to get away from the traditional concepts of
accuracy or trueness. These concepts are based on the false assumption that
there is a single true value that lurks in the measurement system and that in
principle can be accessed by a sufficient number of measurements done with
sufficient attention to detail. In reality, the measurement defines to a large

http://www.eurachem.ul.pt/
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extent what is measured, and the uncertainty can only describe a range in
which a there is a reasonable chance of finding a value that might be prop-
erly attributed to the measurand. A true quantity value can only be defined
as a quantity value consistent with the definition of a quantity, allowing
many true values. The estimation of measurement uncertainty is therefore not
an exercise in blame, but a process designed to increase understanding of the
measurement result by assessing the factors that influence the measurement.
It is convenient, because of the way the statistics are treated, to distinguish
between random measurement errors, the standard deviation of which can
be estimated from repeated measurements, and systematic measurement errors
that are one-way deviations, which can be measured or otherwise estimated
and then corrected for or included in the uncertainty budget. These errors arise
from random and systematic effects, which can be identified, even if the re-
sulting error cannot always be completely quantified.

There is one genuine error that can affect an analytical measurement. Ab-
solute blunders happen from time to time, from human causes, catastrophic
equipment failure, or acts of God. When the effect and cause are evident, the
experiment can usually be repeated after corrective action is taken. The inci-
dent is not totally expunged from recorded history. A good quality system will
require logging of such events, and some form of postmortem examination
should be carried out. The analytical chemist must be ever vigilant for spuri-
ous errors that are not so clear. A bubble in a flow cell might not be visible but
can cause erroneous results; transcription errors, by their nature, are probably
not noticed at the time and can lead to all sorts of problems; and cross-con-
tamination of test items can render any analysis worthless. In DNA analysis
for forensic purposes, contamination of samples by the ubiquitous DNA of the
investigating officers and analysts is a continuing specter. Such blunders are
often identified as suspect outliers when results are being scrutinized. If enough
measurements are made, statistical tests such as Grubbs’s test (see chapters 2
and 4) can help. However, a result that is outside the 95% confidence interval
of a mean is expected to occur 5 times out of 100 for measurements that are
genuinely giving results that are part of the bona fide population. Culling ex-
treme but genuine results truncates the distribution and tends to give a smaller
dispersion than actually exists. When results are made in duplicate, a differ-
ence between the results that is greater than the repeatability limit (2 √2 sr)
must be investigated and a third measurement taken. ISO 5725 (ISO 1994) gives
guidance on the procedure. This is a sensible step-by-step procedure that leads
to a major investigation if results are generated that are no longer in statistical
control. It is considered unwise simply to exclude a result on a statistical basis
alone, with some other evidence of a problem.

6.3.2 Bias and Recovery

Any result for known, quantified systematic effects must be corrected. How
this is accomplished is discussed later. If the result is to be traceable to in-



Measurement Uncertainty 165

ternational standards, and not be an empirical result defined by the method
used, systematic effects must be fully taken into account. Either they must
be measured and the subsequent analytical results corrected, or they must
be included in the measurement uncertainty. Measuring systematic effects
and correcting the results will lead to greater understanding of the system
and a lower measurement uncertainty, but there are times when it is not
practical to estimate these effects, and then the measurement uncertainty is
increased to allow for them. Some authorities, for example Codex Alimen-
tarius, have decided that certain measurements made on foods should not
be corrected, even when effects are known. The argument is that results, even
if they are not metrologically traceable to international references, are com-
parable among the community that generate and use them. In this case fit-
for-purpose overrides metrological purity.

6.3.3 Sources of Uncertainty

6.3.3.1 Type A Uncertainty: Random Error

Type A uncertainty is derived from a statistical treatment of repeated mea-
surement results. It is expressed as a standard deviation and combined with
other uncertainty estimates to give the measurement uncertainty of the
measurement result. Influence factors that impinge on the measurement will
cause changes in the result from determination to determination. Because
of its random nature, the distribution of the cumulative effect will tend to
give more small deviations from the mean than large deviations from the
mean, and it is symmetrical (i.e., a deviation will be just as likely to increase
the result as to decrease it). Taking the average of a large number of mea-
surement results is expected to reduce the effect of random factors through
cancellation of positive and negative effects. Remember from chapter 2 that
taking a large number of measurements does not reduce the standard devia-
tion, it just gives a better estimate of the population standard deviation. The
standard deviation of the mean is reduced, however, and does go to zero
as the number of measurements averaged increases to infinity (through the
1/√n term). As many analytical measurements are made only in duplicate,
it is more likely to have to estimate the standard deviation, perhaps from
validation studies or other internal quality control experiments, and then
include it in the measurement uncertainty, than to have the luxury of as-
serting that so many measurements have been done on the test samples that
the standard deviation of the mean may be taken as zero.

6.3.3.2 Type B Uncertainty:
Systematic Errors

Systematic effects are different from random ones. They are always in one
direction and always (in their purest form) of the same magnitude. Averaging
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therefore does no good at all. The mean of a systematic error of magnitude
∆x is ∆x, and so although repeated measurements may reduce the random
effects sufficiently to make the systematic effects obvious, and therefore
correctable, they cannot get rid of these effects. At best experiments can be
performed to measure systematic errors which are then used to correct the
initial measurement result. Otherwise the systematic errors are estimated,
and they become a component of the overall measurement uncertainty. In
the jargon of measurement uncertainty these components are known as Type
B components. The methodology given later in the chapter is a recipe for
identifying systematic effects, estimating their magnitude and combining
them with standard deviations of random effects to give the overall mea-
surement uncertainty.

Some examples include evaluation of uncertainty components associated
with published values (i.e., the analyst did not measure them), uncertainties
in a certificate of a certified reference material, manufacturer’s statements
about the accuracy of an instrument, or perhaps even personal experience.
The latter could be viewed as an opportunity for anyone to just make up an
uncertainty, but experience does count for something, and it is indeed usu-
ally better than nothing. Leaving out a component because of lack of exact
knowledge immediately underestimates the uncertainty.

6.4 Using Measurement Uncertainty in the Field

6.4.1 Measurement Uncertainty
Requirements for Accreditation

Section 5.4 of the ISO/IEC standard 17025 (ISO/IEC 2005) requires “Testing
laboratories shall have and shall apply a procedure to estimate the uncer-
tainty of measurement,” and in a test report “where applicable, a statement
on the estimated uncertainty of measurement; information on uncertainty
is needed in test reports when it is relevant to the validity or application of
the test results, when a client’s instruction so requires, or when the uncer-
tainty affects compliance to specification limits” (ISO/IEC 2005, section
5.10). Although the reporting clause leaves open the possibility of not in-
cluding the measurement uncertainty of a result, I believe that the added
value to the client of a proper measurement uncertainty statement far out-
weighs any temporary problems that may be caused by unfamiliarity with
the measurement uncertainty concept.

6.4.2 Clients and Measurement
Uncertainty

There are apocryphal stories of a statement of measurement uncertainty in
a test report being used court and eliciting questions from defense counsel
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such as “So you admit that you really do not know what the amount of drugs
my client was alleged to be in possession of?” followed by a rapid end of
the case, not in the favor of the prosecution. The possibility of confusion,
especially in the strange and arcane world of the legal system, is often raised,
perhaps by laboratories that do not want to bother with an estimate of mea-
surement uncertainty. There may also be a feeling that the professional sta-
tus of an analyst is compromised by admitting that the result is open to doubt.
This is a wrong view of our contribution to the world. It overestimates the
importance of the analyst, implies that analysts have a very poor opinion about
the capacity of our clients to understand rational argument, and demeans the
worth of our product. Although the courts demand that scientific evidence
be clear and unambiguous, they also have to deal with much evidence that is
highly uncertain. Did the aging, myopic witness really see the defendant run-
ning from the scene of the crime? Is the implausible defense story just possi-
bly true? In the context of a trial, often the scientific evidence is the most easy
to assimilate, even with uncertainty of measurement.

Analytical chemistry has been helped in recent years by the ubiquity of
DNA evidence. Here the measurement uncertainty is not the issue, but sim-
ply the probability that a particular electrophoretic pattern could come from
someone other than the defendant. Statements such as “It is 1,000,000 times
more likely that the DNA found at the crime scene came from Mr. X, than
came from an unrelated, white male” are put to juries, and it has been shown
that mostly, with good direction from the judge, the message has been un-
derstood. In the next section I explore the consequences of treating the quoted
measurement result with its uncertainty as an interval containing the value
of the measurand with a certain probability.

6.4.3 Measurement Uncertainty
As a Probability

The standard uncertainty of a measurement result tells about the spread of
results (dispersion) that would be expected given the basis on which it was
estimated. It has the properties of a standard deviation, and with the appro-
priate degrees of freedom, a probability of finding a particular result can be
calculated. The concept is illustrated in figure 6.1.

Suppose a very large number of measurements could be made under
conditions of measurement that allow all possible variation that could occur,
including systematic effects from calibrations of balances, glassware, and
so on. Also suppose that the material being measured was identical for all
of these measurements, which were correctly applied with any identified
systematic effects corrected for. The reality of measurement uncertainty is
that these measurements would not be identical but would scatter around
the value of the measurand. In the absence of any other information, this
dispersion is assumed to be normally distributed, which can be described
by two parameters, the mean (µ) and the standard deviation (σ). It is not
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Figure 6.1. An illustration of the concept of
dispersion of measurement results. Upper panel:
results that might be obtained by multiple bona
fide measurements. Each result is represented by a
cross. Lower panel: The spread of results ex-
pressed as a normal probability density based on a
single result and knowledge of the measurement
uncertainty.
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possible to conduct experiments like these. The analyst cannot do enough
experiments, nor allow all factors to influence the result. It is possible, under
repeatability and reproducibility conditions, to arrive at standard deviations
that encompass a large part of the total dispersion referred to in the defini-
tion of measurement uncertainty, but the analyst will need to add estimates
of systematic effects.

The EURACHEM (2000, p5) guide states that the expanded uncertainty
“provides an interval within which the value of the measurand is believed
to lie with a higher level of confidence.” Usually the coverage factor of 2
implies this confidence is 95%. The GUM (ISO 1993b) is more circumspect
and reminds us that the distributions must be normal and defines the ex-
panded uncertainty (section 2.3.5) as giving “an interval that may be ex-
pected to encompass a large fraction of the distribution of values that could
reasonably be attributed to the measurand.” Whether the expanded uncer-
tainty should be interpreted as a range in which about 95% of measurement
results would fall if they were conducted under the referenced conditions
or whether the analyst reports that the (true) value of the measurand lies in
this range with 95% probability may depend on the flexibility of definitions.
In practice the expanded uncertainty is used mostly in the latter sense, cer-
tainly when it comes to assessing results against each other or against regu-
latory or specification limits. This theme is expanded in section 6.6.4.8.

6.5 Approaches to Estimating
Measurement Uncertainty

The late William Horwitz, who is the leading exponent of “top down” mea-
surement uncertainty, offers the following four approaches to estimate mea-
surement uncertainty (Horwitz 2003):

1. Calculate a confidence interval from the standard deviation of rep-
licate measurements.

2. Use a “bottom-up” approach. Horwitz (2003) describes this approach
as “recommended by the bible on uncertainty, rubber stamped by
nine international organizations” (ISO 1993b).

3. Use a “top-down” approach using reproducibility and repeatabil-
ity standard deviations from an interlaboratory study by the Har-
monized IUPAC/AOAC protocol (Horwitz 1995) or ISO 5725 (ISO
1994).

4. Apply one of the formulas derived by Horwitz relating the relative
standard deviation to concentration expressed as a mass fraction.

The tone of Horwitz’s comments on the bottom-up approach (known as
the GUM approach) imply that he does not approve. Later in the same
paper he makes his objections clear: “This absurd and budget-busting approach
(for analytical chemistry) arose from metrological chemists taking over
in entirety the concepts developed by metrologists for physical processes
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measured with 5–9 significant figures (gravitational constant, speed of light,
etc.) and applying them to analytical chemistry measurements with 2 or 3
significant figures” (Horwitz 2003). As a chemical metrologist I might not
agree entirely with this assessment, but Horwitz does have a point that must
be considered. Why bother going through a long, complicated, theoretically-
based method when our own quality control and method validation data
give as good an answer? Below, I consider each approach in turn.

6.5.1 Repeatability and
Intralaboratory Precision

The repeatability (sr) can be used to check duplicate repeats during normal
operation of a method (see chapter 1). On its own, repeatability is not a com-
plete basis for estimation of measurement uncertainty because it omits many
effects that contribute to the bias of measurements made within a single
laboratory. However, combined with a good estimate of the run bias, the
intralaboratory precision, obtained from quality control data, can be used
to give an estimate of measurement uncertainty. See section 6.6.3.2 for de-
tails on correction for bias and recovery.

6.5.2 Bottom-up or GUM Approach

Despite Horwitz’s criticism of the bottom-up approach, it is still sanctioned
by seven international organizations (Horwitz states that it is sanctioned by
nine organizations, but I could only find seven: International Organization
for Standardization, International Bureau for Weights and Measures, Inter-
national Union of Pure and Applied Chemistry, International Union of Pure
and Applied Physics, International Electrotechnical Commission, Interna-
tional Federation of Clinical Chemistry, and International Organization for
Legal Metrology; he might have included CITAC and EURACHEM, who both
espouse the approach). I describe the bottom-up approach in great detail in
section 6.6.

6.5.3 Top-down from
Interlaboratory Studies

The top-down approach has become the antithesis to the bottom-up GUM
approach. Having results from a large number of laboratories, each using
the prescribed method, but otherwise changing the analyst, time, location,
and equipment gives the greatest possible opportunity for effects to be ran-
domized and therefore contribute to the reproducibility. Can the interlabora-
tory reproducibility simply be asserted to be the measurement uncertainty
of your result? Possibly, but not necessarily. Remember the measurement
uncertainty is of a result, not a method, and so the uncertainty contribu-
tions that have been randomized in the reproducibility should be included,
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or excluded in the uncertainty of each particular result. Additional effects
that might have to be considered are discussed below. There might also be
effects that are randomized across the laboratories that do not apply to
measurements made in a particular laboratory, and so the reproducibility
can be an overestimate of the uncertainty.

The top-down approach is often used when there are method validation
data from properly conducted interlaboratory studies, and when the labo-
ratory using reproducibility as the measurement uncertainty can demonstrate
that such data are applicable to its operations. Chapter 5 describes these types
of studies in greater detail. In assigning the reproducibility standard devia-
tion, sR, to the measurement uncertainty from method validation of a stan-
dard method, it is assumed that usual laboratory variables (mass, volume,
temperature, times, pH) are within normal limits (e.g., ± 2°C for tempera-
ture, ± 5% for timing of steps, ± 0.05 for pH). Clause 5.4.6.2 in ISO/IEC 17025
(ISO/IEC 2005) reads, “In those cases where a well-recognized test method
specifies limits to the values of the major sources of uncertainty of measure-
ment and specifies the form of presentation of the calculated results, the
laboratory is considered to have satisfied this clause by following the test
method and reporting instructions.”

Interlaboratory studies usually provide the test material in a homogeneous
form that can be subsampled without additional uncertainty. In the field, if
the result is attributed to a bulk material from which the sample was drawn,
then sampling uncertainty needs to be estimated. Again, proper definition
of the measurand is important in understanding where to start adding in
uncertainty components.

Another result of the requirements to distribute homogeneous test mate-
rial is that some pretreatment steps usually performed on routine samples
are not done on the interlaboratory sample. For example, in interlaboratory
rounds for the determination of metals by inductively coupled plasma, the
test material is often a solution of the metals in water. Often a method re-
quires extraction of the metals by acid digestion of the field sample, a pro-
cedure that will have significant uncertainty in terms of recovery of analyte.

If there is an inherent bias in the method, usually estimated and reported
in method validation studies, its uncertainty needs to be included. How-
ever, if run bias is estimated during the analysis, the method bias will be
subsumed, and the local estimate of uncertainty of any bias correction should
be used. This might have the effect of lowering the uncertainty because not
all the laboratory biases of the participants in the study are now included.

If the method reproducibility is attributed to the measurement uncer-
tainty, it has to be shown that the method was used exactly according to the
published protocol. Any variation in the method or in the sample as defined
in the scope of the method might add uncertainty and should be scrutinized.

So, although reproducibility values from method validation studies can
be useful, they should not be used without thought. You might have a smaller
uncertainty.
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6.5.4 Horwitz Formulas

In a seminal study in 1980, Horwitz and colleagues compiled interlaboratory
reproducibility values for a large number of chemical analyses (around 7500,
later expanded to more than 10,000) and observed that there was a trend to
increased reproducibility (expressed as a relative standard deviation, RSD)
with smaller concentration, expressed as a mass fraction (x) (i.e., 1 mg kg-1

= 1 ppm and x = 10-6). An empirical fit of the compiled data gave the Horwitz
relationship

R = 2(1-0.5log10x) (6.1)

where R is the relative reproducibility standard deviation expressed as a
percentage. Horwitz has since expressed this as

R = 0.02 x-0.1505 (6.2)

or as R = σH/x, where σH is the “Horwitz reproducibility”:

σH = 0.02x0.85 (6.3)

Subsequent studies have largely confirmed the general trend, although at
the extremes the equation has been amended (see figure 6.2). For mass frac-
tions > 0.13, the reproducibility follows

σH = 0.01x0.5 (6.4)

or R = x-0.5 (6.5)

and for concentrations < 10 ppb, a constant RSD of between 1/5 and 1/3
expresses published results better. It is argued that an RSD >> 30 or 40% is
unlikely to give fit for purpose results.

Some use the term “Horrat” for the ratio sR/σH and argue that a Horrat
much greater than unity implies that something is wrong with the collabo-
rative trial that produced sR. Horwitz and colleagues (2001) surveyed a da-
tabase of recoveries of pesticide in agricultural samples and showed that
the average Horrat was 0.8.

6.6 Steps in Estimating Bottom-up
Measurement Uncertainty

Performing an estimate of measurement uncertainty is a structured process.
It need not take all day, but the effort can be considerable. One of my PhD



Measurement Uncertainty 173

students spent three years validating quantitative nuclear magnetic reso-
nance and providing an uncertainty budget. As with all aspects of quality
assurance, the expenditure of time and money must be weighed against the
expected benefit. For a routine method, for which there good validation data
are available, measurement uncertainty sufficient to satisfy the requirements
of accreditation to ISO/IEC 17025 can be estimated within a reasonable time.
Even in the case of a quick (but not necessarily dirty) estimate, I recommend
going through the five steps to uncertainty enlightenment:

1. Specify the measurand.
2. Identify major high-level sources of uncertainty.
3. Quantify uncertainty components.
4. Combine significant uncertainty components.
5. Review estimates and report measurement uncertainty.

Each step can be done in a short time, but I strongly recommend that they
are all done. In doing so, a lot will be learned about the analysis, even if the
analyst has been using the same method for years. The above steps are simi-
lar to those recommended by EURACHEM and in the GUM, except I have
qualified the sources in step 2. Choose the most obvious source (possibly
the reproducibility) and then add other factors as necessary. The academics
and national measurement institutes will still delight in providing a full
GUM-blessed approach, and this is entirely appropriate for some measure-
ments, but for the majority of readers of this book, I hope my method will
lead to sensible estimates that will satisfy clients, accreditation bodies, and
the consciences of laboratory managers. This method recognizes Horwitz’s

Figure 6.2. Horwitz horn curve of relative standard
deviation as a function of mass fraction of analyte
(x). The solid curve is log2(R) = 1 – 0.5 log10(x)
(Horwitz et al. 1980). Dotted lines at the extremes
are modifications suggested after the original
paper (Thompson 2004).
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problems with GUM, while keeping the approach of understanding the
method and identifying sources of uncertainty, which, I believe, has merit.

6.6.1 Specify the Measurand

Stating exactly what will be measured helps define the scope of the uncer-
tainty budget and flags any definitional uncertainty that may need to be
accounted for. For example, there is a huge difference between “copper in
a sample of water from Lake Eyre” and “copper in Lake Eyre.” The latter
has to take account of the enormous uncertainties in obtaining a represen-
tative sample, or even defining what is meant by “in Lake Eyre.” Measure-
ment uncertainty is often denigrated by environmental chemists because
invariably the uncertainty of sampling, which is carefully taken into account
before any conclusions are made, is considerably greater than the uncertainty
of measurement. So why bother about measurement uncertainty? The an-
swer is that if, after due consideration, the conclusion is that measurement
uncertainty is insignificant compared with sampling, then for this particu-
lar problem measurement uncertainty may be ignored in the overall esti-
mate of the uncertainty of the result after duly recording and justifying this
action. Reporting a pH measurement of a given sample as 6.7 ± 0.0 is pos-
sible. This does not mean there is no measurement uncertainty, but at the
quoted level of precision the measurement uncertainty is zero. In the con-
text of a sampling program of some effluent water, for example, the pH might
eventually be reported as 6 ± 2. Knowledge of the measurement uncertainty
might also lead the analyst to choose a cheaper analytical method with
greater, but still fit-for-purpose measurement uncertainty.

6.6.2 Identify Sources of Uncertainty

Specifying the measurand implies that the measurement method and rele-
vant equations are specified. This provides a template for examining sources
of Type B uncertainties. For example, a simple titration from which the
concentration of an acid is to be measured by the formula

M
M V
V2

1 1

2

= (6.6)

where M2 is the desired concentration, M1 is the concentration of the stan-
dard alkali, V1 is the end point volume of the titration, and V2 is the volume
of the acid solution pipetted into the reaction flask, gives three indepen-
dent sources of errors. If the measurand was, for example, the percent purity
expressed as a mass fraction of a sample of potassium hydrogen phthalate,
then equations representing this quantity could be combined with the sub-
sequent operations that determined the other quantities involved.
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In the grand equation for the purity (P), Vanalyzed is the volume of solution in
which the mass, mweighed, of the sample of potassium hydrogen phthalate was
dissolved, WPHP is the molar mass of potassium hydrogen phthalate, and the
other terms are as defined for equation 6.6. Now there are six quantities that
can be assessed for uncertainty, and perhaps this could be expanded fur-
ther—for example, if the standard alkali were made up from solid of known
purity. One way to visualize the relationships between these factors is a
cause-and-effect diagram, also known as an Ishikawa diagram, after the
person who popularized its use. The Ishikawa diagram was introduced in a
general way for describing processes in chapter 4, and here it is applied
specifically to uncertainty components.

6.6.2.1 Cause-and-Effect Diagrams
in Measurement Uncertainty

To construct a cause-and-effect diagram of uncertainty sources from the
information contained in the procedures and equations of an analytical
method, follow these steps. First, draw a horizontal right-facing arrow in
the middle of a sheet of paper. Label the arrow end with the symbol for the
measurand. Starting from the sources identified by the equation for the value
of the measurand, draw arrows to this line at about 45°, one for each of the
quantities in your equation plus any other sources identified that are not
already counted, plus one for repeatability. Label the start of each arrow with
a symbol for the quantity. Figure 6.3 shows a draft cause-and-effect diagram
for the purity of the acid.

These diagrams are very helpful because each side arrow may be treated
as a problem in its own right, and so can be embellished with arrows to stand
for components of its uncertainty, and so on. Some possible candidates are
added to the basic diagram in figure 6.4. Even at this stage I advocate leav-
ing out obvious components that you judge to be insignificant. Molar masses
are known to better than 0.1% (a couple of orders of magnitude better in
many cases), so they will rarely impinge on deliberations of measurement
uncertainty of an analytical measurement. The mass of the test portion of
potassium hydrogen phthalate taken for analysis has also been considered
to have negligible uncertainty. This decision requires more careful justifi-
cation, but in this case about 1.0 g was weighed on a balance to ± 0.1 mg, so
its uncertainty was deemed small compared to other effects.
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It is important not to assume that this or that effect always has negligible
uncertainty; each factor must be assessed for a particular result. For example,
in the quantitative NMR work in my laboratory, we could just see the effect
of the uncertainty of molar masses. As a rule of thumb, if the uncertainty
component is less than one-fifth of the total, then that component can be
omitted. This works for two reasons. First, there are usually clear major
components, and so the dangers of ignoring peripheral effects is not great,
and second, components are combined as squares, so one that is about 20%
of the total actually contributes only 4% of the overall uncertainty. There is
a sort of chicken-and-egg dilemma here. How do you know that a compo-
nent is one-fifth of the total without estimating it and without estimating
the total? And if you estimate the contribution of a factor to uncertainty,

Figure 6.3. First draft of a cause-and-effect diagram
for the measurement of the purity of a sample of
potassium hydrogen phthalate. See text for
description of symbols.

Figure 6.4. Second round of a cause-and-effect
diagram for the measurement of the purity of a
sample of potassium hydrogen phthalate. T is
temperature, and Cal is the calibration of the
volume. The molar mass of potassium hydrogen
phthalate and the mass of potassium hydrogen
phthalate dissolved for analysis are excluded
from the diagram because they have negligible
uncertainties.
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then there is no point in leaving it out, the hard work having been done.
The answer is that the five-step process is iterative, and an experienced
analyst will have a feel for the orders of magnitude of uncertainties of com-
mon contributors. There must always be a final sanity check of an uncer-
tainty budget, and depending on how important it is that the estimate be as
complete as possible, some components might be thoroughly evaluated
before, in hindsight, you decide they could have been dispensed with.

6.6.2.2 Typical Uncertainty Components

Weighing on an appropriate balance is usually a very accurate procedure, and
therefore is often a candidate for the insignificance test. Uncertainty compo-
nents of weighing on a modern electronic balance are given in table 6.1.

Volume measurements include the use of pipettes, volumetric flasks,
measuring cylinders, and burettes. Each has different calibration uncertain-
ties that are detailed in the manufacturer’s information supplied with the

Table 6.1. Uncertainty components of weighing

Typical values for
a  4-decimal place

Component Calculation tared balance

Repeatability Obtain as standard deviation of u = 0.2 mg
repeated weighings or assume
part of repeatability of measure-
ment; u = s.

Linearity of Main source of uncertainty arising u = 0.15 mg
calibration from the balance itself; take

manufacturers figure (± a mg)
and treat as rectangular dis-
tribution, u = a/√3

Systematic error For tared balances, or weighing by 0 mg
of balance (also difference, as long as the masses
known as are not too different any sys-
sensitivity) tematic effects cancel

Readability of scale Value of smallest digit 0.1 mg
Buoyancy correction Conventional masses are based Usually ignore

on weighing at sea level with air with error in
density 1.2 kg m-3 and sample true mass of
density 8000 kg m-3 Rarely needed. less than 0.01 %

Moisture uptake Try to avoid, but be aware hygro- Change conditions
by sample scopic material could absorb (weigh in dry

water in a humid atmosphere atmosphere) to
leading to significant changes cause uncer-
in mass tainty to be

negligible
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glassware. Most countries have minimum standards for tolerances of cali-
brated glassware. Temperature changes during a series of measurements will
lead to uncertainty in the result, as will the analyst’s ability to fill to the
mark and correctly deliver the desired volume (see figure 6.5). These differ-
ent components are brought together in table 6.2.

In addition to the above sources that should be assessed, for burettes used
in titration there is the end point error. There is the repeatability of the end
point determination, which is in addition to the repeatability of reading the
burette scale, but is part of the repeatability calculated from a number of
replicate, independent analyses. There is also uncertainty about the coinci-
dence of the end point, when the color of the solution changes, and the
equivalence point of the titration, when a stoichiometric amount of titrant
has been added.

Although changes in temperature, whether of the laboratory or the oven,
the injection port of a gas chromatography instrument, or any other con-

Figure 6.5. Uncertainties in delivering 10 mL by a
pipette. (Based on figure 1.1 in Hibbert and
Gooding 2005.)



Measurement Uncertainty 179

trolled space, are sources of uncertainty, temperature rarely enters the mea-
surement function directly. Temperature usually is found as an arrow-on-
an-arrow in the cause-and-effect diagram, and its effect is calculated as a
part of the uncertainty for the quantity being studied. Volumes of liquids
and gases are sensitive to temperature, and variations in temperature should
be accounted for in all volume calculations.

A certified reference material (CRM) used for calibration and to estab-
lish metrological traceability comes with a certificate that includes the un-
certainty of the quantity value that is being certified. If this is quoted as a
confidence interval, the coverage factor, k (see below), will also be stated.
In most cases k is 2, giving a confidence interval covering about 95% of the
distribution that can be attributed to the measurand. The standard uncer-
tainty that must be used in the uncertainty calculations is determined by
dividing the quoted half range (value ± half range) by k. In general, for a
CRM value quoted as x ± U with coverage factor k, then

u = U/k (6.8)

If the CRM is used directly, then u is all that is required. If, for example, the
material is a pure reference material with certified purity that is to be dis-
solved in a buffer to provide a calibration solution, then the uncertainties
of the dissolution step and the volume presented to the measuring instru-
ment must also be included.

If a calibration function is used with coefficients obtained by fitting the
response of an instrument to the model in known concentrations of calibra-
tion standards, then the uncertainty of this procedure must be taken into
account. A classical least squares linear regression, the default regression

Table 6.2. Uncertainty components of volume measurements

Typical values for a
Component Calculation 100-mL volumetric flask

Repeatability Obtain as standard deviation of u = 0.02 mL
repeated weighings or assume
part of repeatability of measure-
ment (this may be subsumed in
the overall repeatability)

Calibration Take from manufacturers u = 0.04 mL
specification (± a mg) and treat as
triangular distribution, u = a/√6

Temperature The volume expansion of water is u = 0.04 mL for a range
0.00021°C-1; therefore if the of temperature of
uncertainty of temperature is uT, ± 4 °C with a rectan-
then u = 0.00021 × V × uT gular distribution

uT = 4/ √3
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in most spreadsheets and calculators, has three main assumptions: the lin-
ear model is valid, the response of the instrument is a random variable with
constant variance (homoscedacity), and the independent variable (the con-
centration or amount of calibrant) is known without uncertainty. The model
in terms of an equation is

Y = a + bx + ε (6.9)

where a is the intercept, b is the slope of the linear relation, and ε is a nor-
mally distributed random variable with mean zero and variance the repeat-
ability variance of the measurement. You must be sure that these assumptions
hold. In particular, the constancy of variance is rarely held over wide
concentration ranges. More often the RSD is approximately constant,
which leads to an increasing standard deviation with Y, in which case
weighted regression should be used. When the calibration relation (equa-
tion 6.9) is inverted to give the concentration of an unknown (30) from
an observed response (y0) the standard deviation of the estimate (s30) is
given by

s
s

b m n

y y

b x x
x

y x

i
i

ˆ
/

0

1 1 0
2

2 2= + +
−( )

−( )∑ (6.10)

where m is the number of replicate observations of the response (mean y0),
n is the number of points in the calibration line, b is the slope of the calibra-
tion line, y and x are the means of the calibration data, and xi is the ith x
value from the calibration set. In equation 6.10, the term sy/x/(b√m) repre-
sents the repeatability of the instrumental response to the sample. If an
independent estimate of the repeatability is known, it can be used instead
of sy/x.

If there is any doubt about whether 100% of the analyte is presented to
the measuring system or that the response of the calibrated system leads to
no bias , then the assumptions must be tested during method validation and
appropriate actions taken. If a series of measurements of a CRM (not used
for calibration) leads to the conclusion that there is significant bias in the
observed measurement result, the result should be corrected, and the mea-
surement uncertainty should include the uncertainty of the measurement
of the bias. If the bias is considered insignificant, no correction need be made,
but measuring the bias and concluding that it is zero adds uncertainty (per-
haps the bias was not really zero but is less than the uncertainty of its mea-
surement). One approach to measurement uncertainty is therefore to include
CRMs in the batch to be used to correct for bias, and then the uncertainty of
estimation of bias, which includes the uncertainty of the quantity value of
the CRM, is combined with the within-laboratory reproducibility. In some
fields of analysis it is held that routine measurement and correction for bias
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is not possible, but it is recommended that an estimate of the bias be included
in the measurement uncertainty. Although this is does not comply with
international guidelines (ISO GUM, EURACHEM QUAM), which all recom-
mend correction for bias, some strategies for including estimate of bias are
given in the next section.

Recovery can also be a problem if the test portion of a sample must be
prepared by derivatization, extraction and other chemical or physical steps.
Even if the recovery can be shown to be 100%, there may still be effects that
have uncertainty components arising from the preparation. An example is
leaching a product for heavy metal analysis of the leachate. The amount that
is extracted from the product depends on the leaching solution (kind of
chemical, concentration), the temperature of leaching, and how long the
product is leached. Uncertainties in each of these influence quantities can
lead to variation in the measurement result. The effects should be quanti-
fied in the method validation studies, and their effects can be added as fac-
tors in the cause-and-effect diagram. For example, a simplified diagram for
the determination of mercury in fish might look like that of figure 6.6.

A mass, mfish, is weighed, digested in hot acid for 30 minutes, and then
the solution is made up to a volume, V. This solution is analyzed by hy-
dride generation atomic absorption (AA). The equation describing the con-
centration of mercury in a fish can be written

c
c V

m

c V

m
f f ffish

extract

fish

digest

fish
time temp conc= = (6.11)

where the concentration of the digested solution as measured by AA might
not be the same as the extractable concentration that will give the appropri-
ate concentration, cfish. The effects that could lead to this inequality (cextract

≠cdigest) might arise from the time and temperature of the digestion and the
concentration of acid. Even if the factors ftemp, ftime, and fconc are all unity,

Figure 6.6. Cause-and-effect diagram for the
analysis of mercury in fish showing the
introduction of factors associated with the
digestion process.
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there still might be an uncertainty associated with the variability in these
effects that needs to be accounted for.

If the measurand is an amount of a particular species in a bulk material
that must be sampled before analysis, the heterogeneity of the sample must
be considered. Examples are found in the environment, particularly solid
sampling, in biological sampling where natural variation must be accounted
for, and in process control of items that tend to have a large variability. The
variance caused by sampling is estimated by measuring multiple samples
analyzed independently. Again, sampling is rarely included in interlabora-
tory method validation studies and so this component will need to be com-
bined with a reproducibility, if used.

6.6.3 Quantify Uncertainty Components

I have already suggested that the analyst might have some idea about the
magnitude of the uncertainties as the cause-and-effect diagram evolves.
Obviously, minor components such as the uncertainties of molar masses can
usually be assessed and omitted at this early stage. The analyst should have
a feel for typical uncertainties of masses, volumes, and temperatures, some
of which are discussed below.

6.6.3.1 Example of Volume Measurement

It is worthwhile to discuss the components of the standard uncertainty of a
volume measurement here. The repeatability may be independently assessed
by a series of fill-and-weigh experiments with water at a controlled tempera-
ture (and therefore density) using a balance so that the uncertainty of weigh-
ing is small compared with the variation in volume. Although this may be
instructive, if the whole analysis is repeated, say, ten times, then the repeat-
ability of the use of the pipette, or any other volume measurement is part of
the repeatability of the overall measurement. This shows the benefit, in terms
of reaching the final estimate of measurement uncertainty more quickly, of
lumping together uncertainty components.

The manufacturer’s calibration information must now be accounted for.
You might be lucky and have a 10-mL pipette that is indeed 10.00 mL, but
the manufacturer is only guarantees the pipette to be not less than 9.98 mL
and not more than 10.02 mL. As the pipette is used throughout many experi-
ments, then this possible systematic effect will not dissipate with repeated
measurements and must be accounted for. There are two alternatives. The first
is to calibrate the pipette in the laboratory. The fill-and-weigh experiments
that would give the standard deviation of the measurement will also, from
the mean, give an estimate of the volume of the pipette (see spreadsheet 6.1).

Suppose with 10 fill-and-weigh experiments, the mean volume of a pi-
pette is 10.0131 mL with a standard deviation of s = 0.0019 mL. The stan-
dard deviation of the mean is 0.0019/√10 = 0.0006 mL. In future use of this
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pipette, the volume used in the calculations is 10.013 mL and the uncer-
tainty component is u = 0.0006 mL. Note that had this not been done, 10.0000
mL would be taken as the volume, and the uncertainty component would
have been 0.02/√6 = 0.0082 mL (assuming a triangular distribution with a
= 0.02 mL). Therefore the calibration has given a better estimate of the vol-
ume of the pipette with a smaller standard uncertainty. (Note: for these cal-
culations it is better to perform them in a spreadsheet, which will maintain
full precision until the last rounding to an appropriate number of signifi-
cant figures. It is dangerous to keep truncating and rounding during the
calculations.) A second way to account for the calibration of the pipette is
to use a different pipette, chosen at random from a suitably large pool, every
time the experiment is repeated. Now the standard deviation of the overall
measurement, which already includes the variation from the use of a pipette,
will be augmented by the pipette-to-pipette variation. There is no longer any
need to include a specific component for the calibration. This discussion
shows why the line between systematic and random effects can be moved
by choice of the experiments.

The temperature effect can also be manipulated. If the temperature is mea-
sured at the time the experiment is performed, then the volume of the glass-
ware used can be corrected for the difference between the nominal temperature

=AVERAGE(B7:B16)

=STDEV(B7:B16)

=B19/SQRT(10)

=AVERAGE(B7:B16)

=STDEV(B7:B16)

=B19/SQRT(10)

Spreadsheet 6.1. Data from 10 fill-and-weigh experiments of a
10-mL pipette. The masses have been converted to volumes, and
the uncertainty calculation assumes the components of weigh-
ing and the volume calculation are negligible.
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of calibration of the glassware (usually 20°C). For example, suppose the mean
temperature of the laboratory during an experiment is measured as 22.3°C, with
a standard uncertainty of 0.5°C. The liquid in the pipette will expand (the glass
expansion can be ignored), and so the delivery will be less than it is when
performed at 20ºC. The uncertainty of the temperature (u = 0.5°C) will include
the uncertainties of the temperature measurement (reading thermometer, cali-
bration of the thermometer) and the standard deviation of the mean of the tem-
perature. The volume correction of a 10.013 mL pipette because of the
temperature is – 0.00021 × 2.3 × 10.013 = – 0.0048 mL, with a standard uncer-
tainty of 0.00021 × 0.5 × 10.013 = 0.0011 mL. So now the volume is corrected
again to 10.013 – 0.0048 = 10.0082 mL, and the uncertainty component of tem-
perature is 0.0011 mL, replacing 0.0042 mL, which would have been calcu-
lated from the estimated temperature variation in the laboratory of ± 4°C (95%
confidence interval). Again, an estimated systematic effect that is treated as a
standard uncertainty has been turned into a genuine systematic effect that is
measured and accounted for, with the uncertainty of that measurement result
now being combined into the standard uncertainty of the overall measurement
result. Spreadsheet 6.2 and figure 6.7 show the results of these measurements.
As the estimate of the volume is improved, the uncertainty is also reduced. (It
would not be sensible to make a measurement of a correction factor that had a
greater uncertainty of the result than the Type B uncertainty.)

Is it all worth it? Calibration of glassware and careful temperature measure-
ments during an experiment cause significant reduction in the uncertainty
of the volumes of glassware. However, if the uncertainty in the glassware is
only a minor contributor to the whole, you must judge each case on its merits
and act accordingly.

6.6.3.2 Estimating Bias and Recovery

Systematic effects are estimated by repeated measurements of a CRM, suit-
ably matrix matched. Any difference between the CRM and a routine sample
for which the measurement uncertainty is being estimated should be con-
sidered and an appropriate uncertainty component added. Suppose a con-
centration measurement is routinely made in a laboratory that includes
measurement of a CRM in the same run as calibration standards and un-
knowns. The bias (δ) is given by

δ = ^CRM (measured) – CCRM (certified) (6.12)

where CCRM(certified) is the certified concentration of the CRM, and
^CRM(measured) is the mean measurement result for the CRM of p replicates.
The uncertainty of the measurement of the bias (ubias) is

u
s
p

ur
CRMbias = +

2
2

(6.13)
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=0.02/SQRT(6)

=SQRT(SUMSQ(B28:B30))

=4*0.00021*10/2

=TINV(0.05,9)*B32

=0.02/SQRT(6)

=SQRT(SUMSQ(B28:B30))

=4*0.00021*10/2

=TINV(0.05,9)*B32

Spreadsheet 6.2. Calculation of the volume and measurement uncertainty
of the delivery of a nominal 10-mL pipette under the scenarios given.
These are graphed in figure 6.7.

Figure 6.7. Value and 95% confidence interval on
the volume delivered by a nominal 10.0000-mL
pipette, with different corrections applied. Cal.:
volume calibrated by 10 fill-and-weigh
experiments. Temp: volume corrected for
temperature measured in the laboratory.
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where sr is the repeatability of the bias measurement, and uCRM is the uncer-
tainty of the concentration of the CRM. The significance of the bias is tested
by a one-tailed t test at 95% confidence.

δ > t0.05’,p-1 × ubias (6.14)

The test result for a sample (Csample) measured n times with mean ^ is then

Csample = ^ + δrun (6.15)

with uncertainty

u
s
n

ur
biassample = +

2
2 (6.16)

The term ubias must be included even if the bias is considered insignificant.
The expanded uncertainty is obtained by multiplying usample by an appro-
priate coverage factor. Note that sr should be obtained from a suitably large
(at least 10) number of repeats taken over a few days and batches of samples.
A similar approach is taken for recovery, defined as

R
C
C

=
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CRM
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6.6.4 Combine Significant
Uncertainty Components

Once the uncertainty components have been identified and quantified as
standard uncertainties, the remainder of the procedure to estimate uncer-
tainty is a somewhat complicated but mostly straightforward. Most software
products on the market will perform this task. Otherwise, some spreadsheet
manipulation or mathematics must be done to reach the uncertainty. The
combined standard uncertainty of a result is obtained by mathematical
manipulation of the standard uncertainties as part of the uncertainty bud-
get. These standard uncertainties may also be combinations of other uncer-
tainties, and so on, as the branches and sub-branches of the cause-and-effect
diagram are worked through. A combined standard uncertainty of a quan-
tity y is written uc(y).
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6.6.4.1 The Mathematical Basis of
Combining Standard Uncertainties

The GUM approach described here has the advantage that each uncertainty
component is designed to have the properties of a standard deviation, and
so the rules for combining standard deviations of the normal distribution
can be followed. The complete equation will be given, but it may be simpli-
fied to useable equations for the majority of applications.

For a general relation between the measurement result (y) and a series of
input quantities (x = x1, x2, … xn)

y = f (x) (6.19)

the variance in y, σ2(y), is given by
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where cov(xk, xj) is the covariance between xk, and xj . If the square of the
combined uncertainty is equated to the variance, then
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Equation 6.21 may be written in terms of the correlation coefficient between
xk, and xj, rk,j.
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The differentials are partial, so when the differentiation is done with respect
to one quantity, all the others are considered constant. The variable ∂y/∂xi

is known as the sensitivity coefficient (sometimes written ci) with respect to
xi, and it tells how y changes as xi changes. For the most simple case where
y = constant × x, the sensitivity coefficient is just the constant.

If all the input quantities are independent of each other (e.g., any varia-
tion in the mass of a test item has nothing to do with variations in the vol-
ume of solution that is introduced into the gas chromatograph), then r is zero
and equation 6.22 simplifies to
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and if y depends on only a single quantity [i.e., y = f (x)], the equation be-
comes simpler still

u y
y
x

u xc ( ) =
∂
∂

( ) (6.24)

6.6.4.2 Added Components

For independent quantities of the same kind, expressed in the same units,
the variances (the squares of the standard deviations) are multiplied by the
sensitivity coefficient and summed to give the combined variance. Weigh-
ing by difference or calculating a titration volume by subtracting an initial
reading from a final reading are examples. In these kinds of difference mea-
surements, in which the measurements are made using the same instrument
(balance, burette), constant systematic errors cancel, leaving only random
errors or proportional systematic errors. Consider a delivered volume by
difference expressed in liters where the starting and ending volumes are read
in milliliters:

∆V = 0.001 × (Vend – Vstart) (6.25)

where
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The mathematics are even simpler when contributions to the uncertainty
of a single quantity are combined. Here the sensitivity coefficient is 1, and
the individual uncertainties are just squared and summed. For exam-
ple, for the combination of the standard uncertainties of the effects on
the volume delivered by a pipette discussed above, which are repeata-
bility, calibration uncertainty, and the effect of temperature, the square
of the combined uncertainty is simply the sum of the squares of each
effect:

u2
c (V) = u2

r (V) + u2
cal (V) + u2

temp (V) (6.27)

therefore the combined uncertainty is

u V u V u V u Vc
( ) = ( )+ ( )+ ( )

r cal temp
2 2 2 (6.28)
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Remember that equation 6.28 does not mean that a bunch of standard uncer-
tainties can simply be averaged. The squaring and adding and square rooting
are common to all these manipulations. Do not forget the old adage that you
cannot add apples and oranges (except as pieces of fruit), so the uncertainty
from variations in temperature, for example, must have been worked through
to its effect on the volume before it can be used in equation 6.28. The tem-
perature effect is turned into an uncertainty in volume by the relation between
them [utemp(V) = 0.00021 × V × utemp]. The coefficient of expansion of water is
0.00021°C-1, and this multiplied by a volume in liters and uncertainty in the
temperature in degrees Celsius leads to an uncertainty in volume in liters.

Uncertainties always combine according to equations like 6.28 even if the
quantities are subtracted (i.e., the squares of the uncertainties are always added).
This is why a calculation that eventuates in the subtraction of two large num-
bers of nearly equal magnitude (e.g., weighing the captain of the ship by weigh-
ing the ship with the captain on board and subtracting the mass of the ship
when the captain is not on board), is notoriously beset by large uncertainty.

6.6.4.3 Quantities Multiplied or Divided

Measurement is the comparison of a known quantity with an unknown
quantity. This comparison is often one of taking the ratio of indications of a
measuring instrument. For the most simple case, if y = x2/x1 application of
equation 6.23 gives
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and therefore
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Equation 6.31 gives a simple rule for combining quantities that are multi-
plied or divided: the relative uncertainty squared is the sum of the relative
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uncertainties squared of the components. The values of the quantities are
required to calculate the relative uncertainty (the uncertainty divided by the
value), and this underlines the fact that measurement uncertainty is a prop-
erty of a particular result, not a property of a method. Many texts just give
equation 6.31 as the multiplication rule, but I thought it might be informa-
tive to show that it comes from the underlying equation, as does the equa-
tion for added quantities. Equation 6.31 also holds for the uncertainty of y
= x1x2, but I shall leave the reader to do the more simple mathematics.

6.6.4.4 Logarithmic and
Exponential Functions

Most analytical measurements conform to simple arithmetic rules that have
been covered above. When confronted by other mathematical functions, then
equation 6.21 or one of its simplifications can be used. For example, if the
change in intensity of a light source (from I0 to I) is observed and converted
to an absorbance (A)

A
I
I

= log10
0 (6.32)

the uncertainty of the absorbance u(A) is given by the following mathematics.
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Application of equation 6.23 gives
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Equation 6.34 shows that the absolute uncertainty in absorbance is propor-
tional to the combination of relative uncertainties in the intensities I0 and I.

6.6.4.5 Spreadsheet Method

If the algebraic manipulations required by equation 6.21 are becoming too
complicated, there is a spreadsheet method that gives the answer directly
from the uncertainty components and the function for y. It relies on the fact
that uncertainties are usually only a small fraction of the quantities (a few
percent at most), and so the simplifying assumption may be made that, for
y = f (x):
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and so

u y
dy
dx

u x f x u x f x( ) = ( ) ≈ + ( )( )− ( ) (6.36)

For more than one contributing uncertainty component, the u(y) calcu-
lated one x at a time can be squared and summed to give the square of the
combined uncertainty.

As an example, consider the measurement of the purity of a chemical by
quantitative NMR, using the peak of an added CRM as an internal standard.
The purity of the test material (Ptest) is given by

P
P m I

m Itest
CRM CRM test

test CRM

= (6.37)

where m are masses and I are peak areas. Suppose the standard uncertain-
ties for each term in equation 6.37 have already been estimated, by algebra
or by the spreadsheet method, and they are independent and can be com-
bined by equation 6.23. Spreadsheet 6.3 shows values and standard uncer-
tainties that will be used in the calculation.

In the spreadsheet method (see spreadsheet 6.4) the table is set out with
each column having all the parameters for the calculation and one column
for each parameter. The table is therefore square with, in the example above,
five by five variables (PCRM, mCRM, Itest, mtest, ICRM). In each column each of
the variables in turn is changed by adding the uncertainty. (These are the
shaded cells on the diagonal in spreadsheet 6.4). At the bottom of each col-
umn a row is created with the formula (equation 6.37), using the values
(including the one value augmented by the uncertainty) in that column.
Another column is created at the left of the table with the unchanged values
of each variable; the equation cell thus leads to the result of the measure-
ment. At the bottom of each column, the column calculation of the measur-
and is subtracted from the measurement result in the first (left-hand) column,
then the square root of the sum of the squares of these differences is taken
(using =SQRT(SUMSQ(range)).

Note that repeatability precision (r) is included in the equation for the
measurand with a nominal value of 1 and standard uncertainty the Type A
standard deviation from repeated measurements.

P
P m I

m I
rtest

CRM CRM test

test CRM

= × (6.38)



=C3/B3

=B3*B4*B7/B5/B6

=D9*B9

=SQRT(SUMSQ(D3:D8))

=C3/B3

=B3*B4*B7/B5/B6

=D9*B9

=SQRT(SUMSQ(D3:D8))

Spreadsheet 6.3. Values and uncertainties for quantities used in the calculation of the purity of
a sample by quantitative NMR using equation 6.37.
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Spreadsheet 6.4. Spreadsheet method for the measurement uncertainty of the purity of a sample by
quantitative NMR.

=K$12+K$13

=$E15

=I15*I16*I19*I20/I17/I18

=I22 - $E$22

=SQRT(SUMSQ(F23:K23))

=K$12+K$13

=$E15

=I15*I16*I19*I20/I17/I18

=I22 - $E$22

=SQRT(SUMSQ(F23:K23))
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The result [uc(Ptest) = 0.0224] may be compared with that calculated from
equation 6.31, which is calculated in spreadsheet 6.3, cell C9, from the rela-
tive combined standard uncertainty in cell D9.
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In fact, there is only a difference in the sixth decimal place.
For straightforward ratio calculations, it is as easy to sum and square

relative uncertainty terms as it is to lay out the spreadsheet calculation, but
when there are mixed sums and products and nonlinear terms, the spread-
sheet method is much easier.

6.6.4.6 Correlation

The simple equations used to combine uncertainty rely on the independence
of the values of the components. Consider a titration volume calculated from
the difference between initial and final readings of a burette and the three
uncertainty components identified for volume in table 6.2. Repeatability
should be genuinely random, and so the combined uncertainty of a differ-
ence measurement with repeatability u(r) is

u r u r u r u rc
( ) = ( ) + ( ) = ( )2 2 2 (6.40)

Similarly, if the temperature randomly fluctuates during the experiment,
the effect can be applied to the initial and final volumes. However, for
a constant effect, any calibration error cancels completely, and cancels
to some extent for a proportional effect. Thus if a reading of volume vobs

is in reality vtrue + ∆v, the difference between two readings, v obs,1 and
v obs,2, is

(vobs,2 – vobs,1) = (vtrue,2 + ∆v) – (vtrue,1 + ∆v) = (vtrue,2 – vtrue,1) (6.41)

There are often correlations in analytical measurements because ratio or
difference calculations are made from data obtained using the same instru-
ment or equipment, with systematic effects that are likely to be unchanged
during the two measurements. I develop the theory for a simple ratio with
perfect correlation below.

Consider a ratio R = a/b, for which the uncertainties of each of a and b
are the same and equal to u. The uncertainty in R is given by equation 6.21,
and if the correlation coefficient r is 1, then
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Working through the algebra gives
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or
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If complete independence of a and b is assumed, having the same mag-
nitude of uncertainty (u), then equation 6.23 holds and
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Equation 6.44 shows that for a ratio of unity (R = 1), the correlated uncer-
tainties cancel completely, while the uncorrelated ones give the familiar
factor of √2.

There is still some debate about what is and what is not correlated. The
assumption there is no correlation leads at worst to an overestimate of the
uncertainty. Also, because the repeatability, which is always uncorrelated
(or should be), is often the greatest component of the combined uncertainty,
the contributions of correlated effects are small.

6.6.4.7 Repeated Measurements

The uncertainty is a property of a particular measurement result and takes
into account whatever information is available. So if a result is the mean
of a number of independent determinations, the repeatability contribu-
tion to the combined uncertainty is the standard deviation of the mean
(i.e., the standard deviation divided by the square root of the number of
determinations):

u x
s
n
r( ) = (6.46)

If an estimate of the measurement uncertainty has been made and quoted
for a single determination, it is possible to infer the measurement uncertainty
for repeated determinations by going through the uncertainty budget and



196 Quality Assurance for the Analytical Chemistry Laboratory

dividing appropriate, but not all, terms by √n. The systematic effects that
have been estimated by the type B procedures usually will not be divided
by √n. This is an example of the need to properly document an uncertainty
budget so that future users of the information can understand what has been
done and rework the information if necessary.

6.6.4.8 Expanded Uncertainty

The expanded uncertainty is a range about the result in which the value of
the measurand is believed to lie with a high level of confidence. It is calcu-
lated from the combined standard uncertainty by multiplying by a cover-
age factor (k), and is given the symbol U. Although the documented combined
standard uncertainty tells everything about the measurement uncertainty,
for many purposes, not the least testing against regulatory or contractual
limits, the idea of error bars around a result are rather compelling. If the
combined standard uncertainty has the properties of a standard deviation
of a normally distributed variable, then about 68.3% of the distribution will
fall within ± 1 standard deviation of the mean, 95.4% will fall within ± 2
standard deviations and 99.7% will fall within ± 3 standard deviations. So
by multiplying the combined standard uncertainty by k = 2, we can say that
the value of the measurand (equated to the mean of the population) will lie
within the range result ± U with 95% confidence.

There is a problem when some components of the combined standard
uncertainty are assessed from measurements or estimates with finite degrees
of freedom. A type A estimate from a standard deviation of n repeated mea-
surements has n – 1 degrees of freedom. Usually Type B estimates will be
based on data that have essentially infinite degrees of freedom, but if the
standard uncertainty is open to doubt, the effective degrees of freedom can
be determined from

v
u

ueff = ×
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

0 5
2

.
∆

(6.47)

where ∆u is the uncertainty of the uncertainty. Equation 6.47 is graphed in
figure 6.8.

Thus, if it is believed that the estimate of an uncertainty component is
within 10% of the appropriate value (i.e., ∆u/u = 0.1) then there are 50
degrees of freedom. Degrees of freedom are exhausted when the uncertainty
in the estimate reaches about 50%. For many Type B estimates there is
no uncertainty in the estimate and veff is infinite. Having determined the
degrees of freedom of each uncertainty component, the effective degrees
of freedom for the combined uncertainty is calculated from the Welch-
Satterthwaite formula (Satterthwaite 1941), taking the integer value rounded
down from
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where uc(y) is the combined standard uncertainty of the result, y, and ui is a
component of that uncertainty with degrees of freedom vi . Equation 6.48
weights greater components of the uncertainty and ones with smaller de-
grees of freedom. Having obtained veff for the combined standard uncertainty,
the coverage factor k is the point on the two-tailed Student t distribution
with a probability α [see table 6.3, or use the Excel formula =TINV(α, veff)].
For a 95% confidence interval α = 0.05, and in general the percentage of
results included in the range is 100 × (1 – α).

When assessing measurement uncertainty as part of a method validation,
enough experiments are done to have degrees of freedom that do not ad-
versely affect the coverage factor, and usually k is taken as 2. As long as
subsequent field measurements followed the validated method, a measure-
ment uncertainty can be then quoted with k = 2. For the most part, there-
fore, the expanded uncertainty should be calculated from the combined
standard uncertainty by

U = kuc (6.49)

where k = 2.

6.6.5 Review Estimates and Report
Measurement Uncertainty

The process of review is continual. I have encouraged the rejection (suit-
ably documented and justified) of insignificant components at any stage. In
the spreadsheet example of quantitative nuclear magnetic resonance above,

Figure 6.8. Effective degrees of freedom from a
Type B estimate which has an uncertainty given
by equation 6.47.
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the integrated peak areas with uncertainty of the order of 0.3% clearly could
have been omitted earlier. But now we are at the end of our endeavors. What
is in, is in, and what has been left out is out. A combined standard uncer-
tainty of a measurement result will be communicated to the client. Does it
make sense? A small uncertainty might be a source of pride in a careful
analysis, but if it is clearly less than the range of results found in practice,
something has not been considered or has been underestimated. The repeat-
ability of the measurement is the main intralaboratory component, and the
final combined uncertainty has to be greater than the repeatability. For
simple operations, there may not be a great deal to add, but for analyses of
a usual level of complexity, involving perhaps sampling, sample prepara-
tion, recovery corrections, and calibration with a CRM, the combined un-
certainty will be two to three times the within laboratory repeatability.

As reproducibility standard deviation from interlaboratory method vali-
dation studies has been suggested as a basis for the estimation of measure-
ment uncertainty if it is known sR can be compared with a GUM estimate. It
may be that with good bias correction, the estimate may be less than the
reproducibility, which tends to average out all systematic effects including
ones not relevant to the present measurement. Another touchstone is the
Horwitz relation discussed in section 6.5.4. A rule of thumb is that the re-
producibility of a method (and therefore the estimated measurement uncer-
tainty) should fall well within a factor of two of the Horwitz value.

Table 6.3. Values of the two-tailed Student’s t distribution for 90%,
95%, and 99% confidence calculated using the Excel function
=TINV(α, degrees of freedom)

Percentage of the distribution within ± tσ

Degrees of 90% 95% 99%
freedom (α = 0.1) (α = 0.05) (α = 0.01)

1 6.31 12.71 63.66
2 2.92 4.30 9.92
3 2.35 3.18 5.84
4 2.13 2.78 4.60
5 2.02 2.57 4.03
6 1.94 2.45 3.71
7 1.89 2.36 3.50
8 1.86 2.31 3.36
9 1.83 2.26 3.25
10 1.81 2.23 3.17
20 1.72 2.09 2.85
50 1.68 2.01 2.68
100 1.66 1.98 2.63
Infinity 1.64 1.96 2.58
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6.6.5.1 Displaying Uncertainty
Components

It might be useful to have a picture of the contributions of effects, and this
can be done by a Pareto or other form of bar graph. Although a client is
unlikely to need these graphs, they are a useful tool when assessing the
uncertainty budget and can be used in summaries for quality managers and
accreditation bodies.

Consider the example of quantitative NMR. Spreadsheet 6.3 gives the
standard uncertainties and relative standard uncertainties of the components
of the combined uncertainty. It is usual to graph the relative standard un-
certainties, the standard uncertainties multiplied by the sensitivity coeffi-
cient [∂y/∂x uc(x)], or the squares of the latter expressed as a percentage
contribution to the combined uncertainty (see equation 6.23). A horizontal
bar chart for each component in decreasing order is one way of displaying
these values (figure 6.9).

Figure 6.9. Bar charts of the uncertainty
components in the quantitative NMR example.

(a) The value of c u x
P
x

u xtest( ) =
∂
∂

( )  for each

component with the total uncertainty Ptest (hatched
bar). (b) The percent contribution of each uncer-
tainty component.

(b)
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A Pareto chart is used to display effects that sum to 100%. Bars represent
individual effects, and a line is the cumulative effect (figure 6.10). The ef-
fects are ordered from the greatest to the least, and often show the Pareto
principle that 20% of the effects contribute 80% of the uncertainty.

6.6.5.2 Reporting Measurement
Uncertainty

The final combined standard uncertainty, whether obtained using algebra
or a spreadsheet or other software, is the answer, and can be quoted as such.
I recommend using the wording: “Result: x units [with a] standard uncer-
tainty [of] uc units [where standard uncertainty is as defined in the Interna-
tional Vocabulary of Basic and General Terms in Metrology, 3rd edition,
2007, ISO, Geneva, and corresponds to one standard deviation].”

The words in brackets can be omitted or abbreviated as appropriate. I do
not recommend that you use plus or minus (±)with a combined uncertainty.
If an expanded uncertainty is to be quoted, then ± can be used because it
does define a probability range. The result should be recorded as: “Result:
(x ± U) units [where] the reported uncertainty is [an expanded uncertainty
as defined in the International Vocabulary of Basic and General Terms in
Metrology, 3rd edition, 2007, ISO, Geneva] calculated with a coverage fac-
tor of 2 [which gives a level of confidence of approximately 95%].” Although
explanations of expanded uncertainty and the meaning of the probability
level may be omitted, the coverage factor must be included. It should not be
automatically assumed that k = 2.

Figure 6.10. Pareto chart of the contributions to the
uncertainty in the quantitative NMR example.
Bars: individual contributions; line: cumulative
uncertainty.
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6.7 Conclusions

I close this chapter with a discussion of what measurement uncertainty
means and how it relates to repeatability and other precision measures. What
is the difference between 30 ± 1 nmol L-1 where 30 nmol L-1 is the mean and
± 1 µg g-1 is the 95% confidence interval calculated from the standard de-
viation (s) of five repeats of the experiment (= t0.05”,4 × s/√5), and 30 ± 1 nmol
L-1 where 30 nmol L-1 is a single result and ± 1 nmol L-1 is the expanded
uncertainty with infinite degrees of freedom from a full uncertainty bud-
get? To help with the example, assume that the measurement is of cadmium
in water, for which the World Health Organization (WHO) upper limit is 27
nmol L-1. In the first case a correct statement would be “The level of cad-
mium in the test sample of water was 30 ± 1 nmol L-1 (95% confidence in-
terval, n = 5). Given the result of the chemical analysis and its associated
repeatability, the odds that other measurements of the test sample, conducted
under identical conditions, would determine that the concentration of cad-
mium did not exceed the WHO guideline of 27 nmol L-1 is 1:880 against.”
Note that there is nothing that can be said about the value of the concentra-
tion of cadmium in the sample, just what might happen if the sample were
reanalyzed. In contrast, if the figure quoted is the measurement uncertainty,
correctly estimated, the statement might be, “The level of cadmium in the
test sample of water discharged by the defendant’s factory was 30 ± 1 nmol
L-1 (1 nmol L-1 is the expanded uncertainty of the result with coverage fac-
tor 2, which gives an interval covering approximately 95% of values attrib-
utable to the measurand). Given the result of the chemical analysis and its
associated uncertainty, the odds that the concentration of cadmium in the
sample tested was below the WHO guideline of 27 nmol L-1 was 1: 500 mil-
lion against.” The great difference in the odds comes from the degrees of
freedom of the uncertainty.
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7.1 Introduction

The ability to trace a measurement result to a reference value lies at the heart
of any measurement. Traceability is part of standards governing laboratory
practice, such as ISO/IEC 17025 and Good Laboratory Practice (see chapter
9), as a mandatory property of a measurement result, yet as a concept, trace-
ability of a chemical measurement result is poorly understood. It is either
taken for granted, often without much foundation, or ignored altogether. Why
is traceability so important? How have we been able to ignore it for so long?
The International Union of Pure and Applied Chemistry (IUPAC) has ap-
plied itself to this problem and a definitive discussion on metrological trace-
ability in chemistry will be published.1

7.1.1 A Note about Terminology

In this chapter I use the term “metrological traceability” to refer to the prop-
erty of a measurement result that relates the result to a metrological refer-
ence. The word “metrological” is used to distinguish the concept from other
kinds of traceability, such as the paper trail of documentation, or the physi-
cal trail of the chain of custody of a forensic sample. When the term “trace-
able standard” is used to refer to a calibration material, for example, the
provenance of the material is not at issue, but the quantity value embodied
in the standard.
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7.1.2 The Importance of
Metrological Traceability

In explaining the importance of metrological traceability, I return to the
discussions about chemical measurement (chapter 1). The concentration of
a chemical is never measured for its own sake, but for a purpose, which often
involves trade, health, environmental, or legal matters. The ultimate goal is
achieved by comparing the measurement result with another measurement
result, with a prescribed value, a legal or regulatory limit, or with values
amassed from the experience of the analyst or client (figure 7.1).

In trading grain, for example, if exported wheat is analyzed by both buyer
and seller for protein content, they should be confident that they will ob-
tain comparable measurement results; in other words, results for the same
sample of wheat should agree within the stated measurement uncertainties.
If the results do not agree, then one party or the other will be disadvantaged,
the samples will have to be remeasured, perhaps by a third-party referee, at
cost of time and money. Different results could arise from genuine differ-
ences in the value of the quantity; for example, the wheat could have taken
up moisture or been infected with fungus, so it is important that the analy-
sis does not lead to incorrect inferences.

The need for comparability also extends in time. To understand tempo-
ral changes of a system being monitored, such as the global atmosphere,
results obtained at one time must be comparable with those obtained at

Figure 7.1. Comparisons among measurement
results: (a) with other results, (b) with limits, (c)
with an expected value, and (d) with experience.
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another time, in the same or in another laboratory. Carbon dioxide levels in
the atmosphere have been measured since the 1960s at Mauna Loa, Hawaii,
and it is these results that provide evidence of global warming (Emanuele
et al. 2002). Before political decisions are made, there must be confidence
that the difference between results in 1970 and in 2000 arises from genuine
changes in atmospheric carbon dioxide and not the inevitable changes in
instruments, personnel, and even methods of analysis. This is assured, even
when calibrators or measurement systems are different, when the results are
traceable to the same stated metrological reference maintained through time.

7.1.3 Metrological Traceability Defined

The International Vocabulary of Basic and General Terms in Metrology
(VIM), second edition (ISO 1993, term 6.10), defines traceability as the “prop-
erty of the result of a measurement or the value of a standard whereby it can
be related to stated references, usually national or international standards,
through an unbroken chain of comparisons all having stated uncertainties.”
The third edition (Joint Committee for Guides in Metrology 2007) uses “cali-
brations” instead of “comparisons” and makes the point that these contribute
to the measurement uncertainty. The third edition of VIM also distinguishes
metrological traceability from other kinds of traceability.

• Metrological traceability is a property of a measurement result, not
a method or measurement procedure, but the result itself.

• A metrological reference is a document defining (usually) a unit. A
rational quantity scale, of quantities that can be compared by ratio
and have a zero (e.g., length, mass, amount of substance, but not
temperature in degrees Celsius), must have a unit, even if it is 1.

• An unbroken chain of comparisons/calibrations means that there
must be an identified path of assignments of value to calibrators from
the calibrator used in the final measurement back to the primary
calibrator that is the embodiment (also known as the realization) of
the unit.

• Measurement uncertainty of the value of the calibrators increases
down the chain, and although, if properly chosen, the measurement
uncertainty of the value of the calibrator might be small compared
with other uncertainties of the measurement, the measurement un-
certainty of the value of the calibrator is an essential ingredient of
the metrological traceability of the result.

Perhaps this sounds unnecessarily complicated, but an understanding of
basic concepts and terms in metrology help us appreciate the importance of
metrological traceability, measurement uncertainty, and the like.

A direct consequence of metrological traceability is that if two measure-
ment results are metrologically traceable to the same metrological reference,
then they must be comparable (i.e., can be compared) within their measure-
ment uncertainties. This is sometimes explained in terms of the futility of
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trying to compare apples and oranges, or in its positive sense, comparing
“like with like.”

7.2 Comparability of Measurement Results

The foregoing discussion identifies the need for comparability and its achieve-
ment by metrological traceability. Comparability of measurement results is
conveniently defined in terms of metrological traceability. If two results are
traceable to the same stated metrological reference, then they must be com-
parable. Please note that in common speech “comparable” often means “about
the same magnitude,” but this is not the case here. In the laboratory “compa-
rability of measurement results” means simply that the results can be com-
pared. The outcome of the comparison, whether the results are considered
near enough to be equivalent, is not a factor in comparability here.

To show how comparability and traceability work in practice, take the
example of a mass measurement. If I weigh myself on a bathroom scale, the
result is around 77 kg. These scales have been calibrated in the factory as
part of the manufacturing process using standard masses, which are peri-
odically calibrated against an Australian standard mass provided by a cali-
brating authority. This mass in turn is calibrated against a standard mass
held at the National Measurement Institute in Sydney. Metrological trace-
ability to the international standard is assured when this mass is compared
with a secondary standard kilogram at the International Bureau of Weights
and Measures (BIPM) in Sèvres near Paris. Occasionally this secondary stan-
dard is, with great ceremony and following procedures outlined in an inter-
national treaty, compared to the international prototype of the kilogram. This
artifact is a piece of platinum iridium alloy that serves as the mass standard
in the international system of units (SI). Under defined conditions of prepa-
ration and use, this lump of metal has a mass of 1 kg with no uncertainty
and the authority of international treaty. The bathroom scale is not very
accurate. I can obtain different readings on different floor surfaces and at
different times. My guess is that the 95% confidence interval on my mass is
at least ± 2 kg. At my doctor’s office the scales give my mass as 76.3 kg, with
an uncertainty of 0.3 kg. These scales have been calibrated with masses that
can also be traced to the mass of the SI kilogram, but not necessarily by the
same route. Nonetheless, being traceable to the same stated reference ren-
ders the bathroom scales and the doctor’s scales, within measurement un-
certainty, comparable.

As both measurements are made in Australia and the weighing instru-
ments (bathroom and doctor’s scales) are calibrated to the mass of the Aus-
tralian standard kilogram, the traceability chain could have stopped there,
along with any comparability. Although the definitions do not mention the
SI, and of course for some measurements there are no SI units anyway, the
more universal the stated reference is, the more measurements will come
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under its aegis. Below I discuss some of the scenarios for comparison shown
in figure 7.1 in more detail, stressing the importance of measurement un-
certainty. I will also explore the nature of the arrows that define the metro-
logical traceability in figure 7.2.

7.2.1 Comparing One Result
against Another

Measurement results that are traceable to the same reference (often but not
necessarily an SI unit), can only be compared in relation to their uncertain-
ties. Figure 7.3 shows the comparison of two measurement results. Because
it is unlikely that two measurements made of the same material will give
identical results, it is only by evaluating the measurement uncertainties that
the client can decide whether he or she will accept that the two materials
are equivalent, in terms of the quantity measured.

The first criterion is that the measurements must be made in the same
units—that is, traceable to the same metrological reference. This sounds ob-
vious, but without attention to metrological traceability of a measurement

Figure 7.2. Traceability of mass measurements to
the Australian standard kilogram and to the
international prototype of the kilogram.
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result, it is possible to quote the same units (mol L-1, for example) but actu-
ally not to obtain a measurement result that is metrologically traceable to the
same definition of the unit in question. Having made the measurements and
estimated the measurement uncertainties the results (x1 and x2) can be com-
pared by computing the probability of the hypothesis H0: µ1 = µ2 (i.e., equality
of the [true] values of the measurand in each experiment). If the measurement
uncertainty of each of two independent measurements is expressed as a com-
bined standard uncertainty (uc = u1, u2), then H0 is tested by computing the
probability that the test statistic T is exceeded Pr(T>t), where

t
x x

u u
=

−

+
1 2

1
2

2
2 (7.1)

at an appropriate number of degrees of freedom (see chapter 6). In the
case of infinite degrees of freedom, the Student’s t statistic is replaced by
the normal distribution z score, calculated by the same equation. In Excel,
the probability associated with the t value of equation (7.1) is given by
=TDIST(t, f, 2) where f is the degrees of freedom and the 2 indicates
a two-tailed probability (i.e., there is no particular reason to assume µ1 is
greater or lesser than µ2). For infinite degrees of freedom Excel requires
=NORMSDIST(-t)*2. The negative value of t ensures the cumulative distri-
bution is taken from –∞ to –t (i.e., the left-hand tail of the distribution, and
multiplying by two gives the two-tailed probability). If the measurement

Figure 7.3. Comparison of test results given a
result and 95% confidence interval. (a) There is a
high probability that the value of each measurand
is the same. (b) There is only a low probability
that the value of each measurand is the same.
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uncertainty is given as an expanded uncertainty giving a coverage with prob-
ability 95%, U, then U is divided by the coverage factor (usually 2) to give
uc, and the procedure is continued as above with infinite degrees of free-
dom. As with all probabilities, it is up to the user to decide which probabili-
ties warrant concern, and this in turn is assessed by considering the risks of
making an error, either by accepting H0 when it is actually false, or reject-
ing H0 when it is true.

7.2.2 Comparing a Result against a Limit

Similar arguments apply when considering a result against a limit. The limit
may be a legal requirement that must be achieved or not exceeded, or it may
be an internal specification. The risks of noncompliance might require evi-
dence that the probability the test item does not comply is very small and
insignificant (“positive compliance,” line a in figure 7.4) or, alternatively,

Figure 7.4. Comparison of a test result, including
uncertainty, against a limit. (a) The result indicates
that the material tested complies with a low
probability that it does not comply. (b) The result
indicates compliance, but the uncertainty leads
to a significant probability that the tested material
does not comply. (c) The result indicates
noncompliance, but the uncertainty leads to a
significant probability that the tested material
does, in fact, comply. (d) The result indicates that
the material tested does not comply with a low
probability that, in reality, it does comply.
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unless the item clearly does not comply (“positive noncompliance,” line d
in figure 7.4), then action will not result. In the former case, line a is accept-
able and lines b, c, and d are not. In the latter case of positive noncompli-
ance lines a, b, and c are all acceptable, and only line d would lead to action
as a result of the analysis. Much of the time, no specific direction is given,
so although line a would pass and line d would fail, the two cases in the
middle lead to quandary. The example in section 6.7 shows that the nature
of the uncertainty quoted determines the statement that can be made,
whether about the value of the measurand or about the likely results of re-
peated experiments.

7.3 How Metrological Traceability Is Established

From the definitions and examples above, it should be clear that metrologi-
cal traceability is established by a series of comparisons back to a reference
value of a quantity. In the mass example it is easy to picture a number of
scientists with ever more sophisticated balances comparing one mass with
another down the chain of masses from the international prototype of the
kilogram to bathroom scales. This is known as a calibration hierarchy. A
mass farther up the chain is used to calibrate the next mass down the chain,
which in turn can be used to calibrate another mass, and so on, until the
final measurement of the mass is made.

Demonstrating traceability back to the SI requires identification of the
traceability chain. A formal description of the chain might look like figure
7.5. In this figure, the middle set of arrows represents the alternate actions
of calibration and assignment. They connect square boxes containing mea-
suring systems on the right and test items on the left. The measuring systems
(instruments, balances, glassware) are informed by measurement procedures
on the extreme right. The actions result in a measurement result (i.e., the
value of the measurand), including appropriate units and uncertainty. The
down arrow shows the extent of the calibration hierarchy, and the up arrow
between measurement result and metrological reference is the metrological
traceability chain. This is a metrologist’s view of the matter, and practical
approaches will be discussed later.

At each level in the hierarchy, the uncertainty about the quantity value
must be stated. What about a chemical measurement, such as the amount of
protein in a grain sample or the pH of a liquid sample? The principle is the
same. The measuring instrument (e.g., Dumas nitrogen analyzer, glass pH
electrode) must be calibrated with a traceable reference material. In many
cases in chemistry this is a certified reference material (CRM) or standard
calibrated from a CRM. By definition, a CRM has one or more quantity val-
ues that have been established with stated uncertainty and metrological
traceability. Using a CRM to calibrate a working standard or using a CRM
directly for a measurement allows one to claim that the final result is met-
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rologically traceable. One reason that CRMs are expensive is that they must
unequivocally demonstrate metrological traceability. This can be time con-
suming and costly.

7.3.1 The Top of the Chain:
The Metrological Reference

At the top of the traceability chain is the stated metrological reference, which
for our purposes is the definition of a unit. It might not be obvious how a
piece of paper from Paris giving the interesting, but rather esoteric, defini-
tions of the SI base units can be used as a reference. The metrological refer-
ence allows the creation of a primary calibrator that embodies the value of
the unit (or some multiple or submultiple of it). The international prototype

Figure 7.5. Metrological traceability of mass measured by
bathroom scales.

mass of international 
prototype of the 
kilogram m1 = 1 kg

primary calibrator 1: 
international prototype 
of the kilogram at 
BIPM

u(m1)
= 0

secondary measurement 
procedure 1 governing 
mass comparator 1

mass comparator 1c

at BIPM

secondary calibrator 2: 
secondary calibrator 
kilogram at BIPM

mass of secondary 
calibrator 2
m2 = 1.000 000 03 kg

calibrate

ass
ign

metrological reference:
CGPM 1899/1901: definition for the SI base unit of mass  kg

reference measurement 
procedure 2 governing 
mass comparator 2

mass comparator 2 
at NMI

national 
calibrator 3: 
kilogram at NMI

mass of calibrator 3
m3= 0.999 998 9 kg

u(m3) = 
1.0•10-8 kg

measurement 
procedure 3 governing 
mass comparator 3

mass comparator 3 
at NMI

reference calibrator 4: 
stainless steel
kilogram at NMI

mass of calibrator 4
m4 = 1.000 000 05 kg

u(m4) = 
3•10-8 kg

measurement 
procedure 4 governing 
mass comparator 4

mass comparator 4 
at accredited 
reference 
laboratory

manufacturer's
working calibrator 5: 
stainless steel kilogram

mass of calibrator 5
m5 = 1,000 000 3 kg

calibrate

calibrate

calibrate

ass
ign

ass
ign

assig
n

1994 
preparation  
procedureprepare

measurement 
procedure 5
governing balance 5

balance 5 at 
accredited 
reference 
laboratory 

manufacturer's
product calibrator 6: 
stainless steel kilogram

mass of calibrator 6
m6 = 1.000 005 kg measurement 

procedure governing 
use of end-user’s  
balance

end-user’s 
balance

samplemass of sample
msample = 0.234 3 kg

calibrate

as
sig

n

assig
n

ca
lib

ra
ti

on
 h

ie
ra

rc
hy

m
et

ro
lo

gi
ca

l t
ra

ce
ab

ili
ty

 c
ha

in

u(m5) = 
1.0•10-7 kg

u(m2) = 
5•10-9 kg

calibrate

u(m6) = 
1.0•10-6 kg

uc(msample) = 
1.0•10-4 kg

preparing 
system

CALIBRATOR
MEASURING 

SYSTEM
MEASUREMENT 

PROCEDURE

QUANTITY
QUANTITY VALUE

MEASUREMENT 
UNCERTAINTY

ACTION

measurement function for end-user’s quantity value of the measurand :
msample= f(mcalibrator 6, p, )

mass of international 
prototype of the 
kilogram m1 = 1 kg

primary calibrator 1: 
international prototype 
of the kilogram at 
BIPM

u(m1)
= 0

secondary measurement 
procedure 1 governing 
mass comparator 1

mass comparator 1c

at BIPM

secondary calibrator 2: 
secondary calibrator 
kilogram at BIPM

mass of secondary 
calibrator 2
m2 = 1.000 000 03 kg

calibrate

ass
ign

metrological reference:
CGPM 1899/1901: definition for the SI base unit of mass  kg

reference measurement 
procedure 2 governing 
mass comparator 2

mass comparator 2 
at NMI

national 
calibrator 3: 
kilogram at NMI

mass of calibrator 3
m3= 0.999 998 9 kg

u(m3) = 
1.0•10-8 kg

measurement 
procedure 3 governing 
mass comparator 3

mass comparator 3 
at NMI

reference calibrator 4: 
stainless steel
kilogram at NMI

mass of calibrator 4
m4 = 1.000 000 05 kg

u(m4) = 
3•10-8 kg

measurement 
procedure 4 governing 
mass comparator 4

mass comparator 4 
at accredited 
reference 
laboratory

manufacturer's
working calibrator 5: 
stainless steel kilogram

mass of calibrator 5
m5 = 1,000 000 3 kg

calibrate

calibrate

calibrate

ass
ign

ass
ign

assig
n

1994 
preparation  
procedureprepare

measurement 
procedure 5
governing balance 5

balance 5 at 
accredited 
reference 
laboratory 

manufacturer's
product calibrator 6: 
stainless steel kilogram

mass of calibrator 6
m6 = 1.000 005 kg measurement 

procedure governing 
use of end-user’s  
balance

end-user’s 
balance

samplemass of sample
msample = 0.234 3 kg

calibrate

as
sig

n

assig
n

ca
lib

ra
ti

on
 h

ie
ra

rc
hy

m
et

ro
lo

gi
ca

l t
ra

ce
ab

ili
ty

 c
ha

in

u(m5) = 
1.0•10-7 kg

u(m2) = 
5•10-9 kg

calibrate

u(m6) = 
1.0•10-6 kg

uc(msample) = 
1.0•10-4 kg

preparing 
system

CALIBRATOR
MEASURING 

SYSTEM
MEASUREMENT 

PROCEDURE

QUANTITY
QUANTITY VALUE

MEASUREMENT 
UNCERTAINTY

ACTION

measurement function for end-user’s quantity value of the measurand :
msample= f(mcalibrator 6, p, q )



212 Quality Assurance for the Analytical Chemistry Laboratory

of the kilogram is an example of such an embodiment, as is a Josephson
junction that embodies the volt. These are artifacts that can be used as cali-
brators to pass on the embodiment to another artifact (secondary calibra-
tor), and so on down the chain.

Confusion about metrological traceability results from the idea that it is
possible to trace a measurement result to an object per se, or even to an in-
stitution. You may read that a measurement was “traceable to NIST” (the
National Institute of Standards and Technology). Leaving aside that the
measurement result might or might not be traceable, presumably this state-
ment means that a calibration has been performed using a material that has
been standardized and sold by NIST, the certificate of which will detail the
nature of the metrological traceability. The important bit is the certificate
describing traceability. All that comes from NIST is not traceable, and all
that is traceable is not solely from NIST.

The international prototype of the kilogram is a simple example of the
top of the chain. The object that has a mass of exactly 1 kg when used in
accordance with the 1994 definition of the measurement procedure is what
everyone thinks of as a standard. It may be accepted that the weights and
measures inspector who puts a standard 1 kg on the scales in the local su-
permarket is using an object whose mass value has been established by a
series of comparisons of the kind shown in figure 7.5, but this is not a typi-
cal chain because the SI unit of mass is the only remaining base unit estab-
lished by reference to an artifact (i.e., the piece of Pt/Ir alloy in Sèvres). All
the other units are realized by a reference procedure. For example, the unit
of time, the second, is defined as the “duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the cesium 133 atom,” and the unit of length,
the meter, is “the distance traveled by light in a vacuum during a time in-
terval of 1/299,792,458 of a second.” (BIPM 2006) Why has the length of a
bar of platinum, been superseded by this complex definition? The problem
with an artifact standard is that there can only be one, and so the world must
beat a path to its door, so to speak, in order to compare their national stan-
dards with the global standard. This is precisely what happens at present
with the kilogram. In contrast, anybody with an atomic clock can realize
the second, and therefore the meter. As long as the proper procedure is fol-
lowed to create embodiments of these units, metrological traceability can
be guaranteed without any physical interaction with an international stan-
dard object. This is such a powerful argument that the days of the prototype
kilogram are decidedly numbered. Remember the definition of the mole you
learned in high school? The mole is “the amount of substance of a system
which contains as many elementary entities as there are atoms in 0.012 kg
of carbon-12.” There is an international effort, known as the Avogadro pro-
ject, to measure the Avogadro constant, involving very precise measurements
on a number of silicon spheres in laboratories around the world (Becker 2003;
NPL 2005). When the Avogadro constant is known to a suitable degree of
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precision (about 2 parts in 108), the kilogram can be redefined as the mass
of (6.022 . . . × 1023/0.012) atoms of carbon-12, and the prototype kilogram
will be consigned to a museum. (Physicists have hit back with a definition
based on the Planck constant, but that is another story.)

The top of the metrological traceability chain is given in figure 7.6. The
procedure and system referred to in the figure may be either for the produc-
tion of the calibrator, such as the international prototype of the kilogram, or
for a primary measurement procedure governing a measuring system, as in
the use of a coulometric titration.

7.3.2 Primary Measurement Standards
and Primary Measurement Methods

The top of the metrological traceability chain resides with artifacts or pro-
cedures that realize a unit. These are described in more detail below.

7.3.2.1 Primary Measurement Standards and
Calibrators

The international prototype kilogram is an example of a primary measure-
ment standard: its value and uncertainty have been established without
relation to another standard of the same kind. When the primary measure-
ment standard is used for calibration, it becomes a primary calibrator.

Primary standards in chemistry are often pure materials that are made
and then certified as to identity and purity, sometimes by measuring all
possible impurities (organic, inorganic and often specifically water or other
solvents) and subtracting from 100%. The unit of the measurement of pu-
rity is usually kg/kg = 1 (i.e., the mass of the designated compound or ele-
ment per kilogram of CRM).

An example of a primary procedure to establish the mass fraction of a
pure reference material is the use of coulometry to prepare an amount of an

Figure 7.6. The top of a metrological traceability
chain.
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element. If a current I A is passed for t seconds through a solution of silver
nitrate, and the only reaction at the cathode is the electrodeposition of
silver by

Ag+ (aq) + e → Ag (s) (7.2)

then the amount of silver deposited is I(t)/F, where F is the Faraday con-
stant (96485.3383 C mol-1 with u = 0.0083 C mol-1). If the current source and
measurement and the time measurement are traceable, then the amount of
silver is traceable.

Primary calibrators, indeed all calibrators, must be commutable; that is,
they must behave during measurement in an identical manner to the native
analyte material being measured. Matrix reference materials made by mix-
ing a pure reference material with the components of the matrix are unlikely
to be entirely commutable, and for this reason some authorities (EURACHEM
for one [EURACHEM and CITAC 2002]) advise against using matrix-matched
CRMs for calibration, recommending instead their use to establish recover-
ies, after calibration by a pure reference standard.

A primary measurement standard is expected to have a known quantity
value with minimum uncertainty, although this is not specified as such in
the definitions. Because the measurement uncertainty is propagated down
the calibration hierarchy, you should start with as small an uncertainty as
possible and choose methods to establish purity of primary reference mate-
rials with this in mind.

7.3.2.2 Primary Measurement Procedures

Primary measurement procedures can be at the top of the calibration hier-
archy, as they entail how the definition of the unit is realized. I have dis-
cussed primary measurement procedures in relation to time and length. The
purpose of a primary measurement procedure is to obtain the quantity value
and measurement uncertainty of a primary measurement standard. For non–
SI units, and sometimes for systems of measurements for which consistency
among a group of laboratories is important, adopting a common measurement
procedure is a way to provide comparability. The wider the group, the greater
the extent of comparability. The procedure needs to be well validated and
proven to be sufficiently robust in diverse laboratories. This is usually accom-
plished by periodic interlaboratory trials (chapter 5). Such a procedure is
known as a reference measurement procedure, and it can furnish the stated
metrological reference in the definition of metrological traceability.

7.3.3 Multiple Chains

The metrological traceability of a measurement result is rarely as straight-
forward as the chain of comparisons shown in the example of mass in fig-
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ure 7.2. This example hides the control of influence factors such as tempera-
ture and the effect of buoyancy (which requires a knowledge of the density
of the mass being weighed). A chemical measurement involving amount-
of-substance concentration invariably leads to mass and volume measure-
ments and the attendant effect of temperature. As soon as a measurement is
made that gives an input quantity to the measurement result (for an example,
see the preparation of a calibration solution of cadmium ions in section
7.3.4.1), the result of this measurement must be traceable. In the case of
independent mass and volume measurements leading to a mass concentra-
tion, the two traceability chains could be diagrammed with equal impor-
tance to their respective metrological references. Where the input quantity
is either an influence quantity (i.e., one not directly in the measurement
function) or a conversion factor such as molar mass, its chains might be
drawn as side chains. There is no difference in the requirement for metro-
logical traceability, but it is likely that the traceability of these quantities
will have been established earlier, and a brief statement to this effect is all
that is required when documenting the metrological traceability. For ex-
ample, reference to the laboratory standard operating procedures that specify
the calibration regime of balances, the use of calibrated glassware and ther-
mometers, and the use of the latest IUPAC atomic weights and published
fundamental constants, with their measurement uncertainties, is sufficient.
An attempt to convey the multiplication of chains in the example of a titra-
tion is shown in figure 7.7.

7.3.4 Establishing Metrological
Traceability of Amount-of-Substance
Measurements

The definition of the mole requires statement of the system (see section 7.3.1).
As a result there is the potential for a nearly infinite number of amount stan-
dards. Regarding length, producing something that is 1 m suffices as a real-
ization of the unit of length. In contrast, a piece of pure silver with mass of
107.8682 g is the embodiment of a mole of silver atoms, but it is not a mole
of anything else. Chemists usually interact with amount-of-substance via
mass. The mass of a compound of known (or assumed) identity and purity
is used to calculate the amount of substance by dividing by the molar mass.
Under the auspices of the International Union of Pure and Applied Chemis-
try, atomic weights of elements and therefore molar masses of compounds
have been measured with metrological traceability to the SI kilogram and
mole. A pure reference material comes with a certificate of metrological trace-
ability of its identity and purity. When a certain mass of the standard is
dissolved in a volume of solvent, the resulting concentration is traceable if
the mass measurement and the volume of the flask were themselves trace-
able. The volume of standardized glassware is only certified at a particular
temperature, and so temperature measurements must be made to ensure the
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defined (traceable) temperature, to make corrections based on traceable tem-
perature measurements, or to expand the uncertainty to allow for possible
temperature fluctuations over a given temperature range. Below I give an
example of how a calibration solution is prepared.

To prepare a calibration solution of 1 µmol L-1 of Cd+2 from a CRM of pure
Cd metal, a mass of Cd is weighed into a flask, dissolved, and made up to
the mark. The atomic weight of cadmium is 112.411 g mol-1 with uc = 0.008
g mol-1. Thus, 1.12411 g of pure cadmium metal dissolved in hydrochloric
acid and made up to 1.00 L will have an amount concentration of 1.00 × 10-2

mol L-1. An aliquot of 0.100 mL of this solution made up to 1.00 L should
create the desired solution of amount concentration 1.00 µmol L-1. Until a
proper estimate of the measurement uncertainty is made the significant fig-

Figure 7.7. Multistranded traceability chains, showing the need to
establish traceability to a number of references in a chemical measure-
ment (here titration).
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ures quoted are not substantiated. The EURACHEM guide to measurement
uncertainty (EURACHEM 2000) addresses the uncertainty of the prepara-
tion of a 1 g L-1 cadmium solution. The components of uncertainty are the
purity of the metal used and the weighings and volumes of glassware. The
combined standard uncertainty is about 0.9 mg L-1. In the preparation of a
standard solution, the uncertainty in the atomic weight of cadmium and the
extra dilution step (which includes two volumes, the volume pipetted and
the volume of the second 1-L volumetric flask) must also be considered. The
measurand, the amount concentration (cCd), is related to the input quanti-
ties by

c
P m
M V

V
VCd =

×
×

×
1

2

3
(7.3)

where P is the purity, m is the mass of cadmium, M is the atomic weight of
cadmium, V1 and V3 are the 1-L dilution volumes, and V2 is the 0.1-mL
aliquot of the first solution that is further diluted. Using the methods of chap-
ter 6, the relative standard uncertainty of the calibration solution is cal-
culated as 0.0013, which leads to the amount concentration and its 95%
confidence interval, 1.0000 ± 0.0026 µmol L-1 (or 1.000 ± 0.003 µmol L-1). In
using equation 7.3 it is assumed that the temperature of the laboratory has
been monitored sufficiently during the procedure to use the calibrated vol-
umes of the glassware in equation 7.3; that is, the uncertainty in the vol-
umes due to uncertainty in the temperature properly reflects the range of
temperatures experienced during the preparation.

Is the concentration of this solution metrologically traceable? To be trace-
able, each of the input quantities in equation 7.3 must be metrologically
traceable. These input quantities are listed in table 7.1.

Temperature is only used here in estimating uncertainty, so it does not
have the same impact as direct input quantities. As long as the estimate of
the range of temperatures used in calculating uncertainty is reasonable, the
exact traceability of the temperature should not be a major concern. Even if
correction factors were introduced into equation 7.3,

c
P m

M V f T

V f T

V f TCd =
×

× × ( )
×

× ( )
× ( )1 1

2 2

3 3
(7.4)

f (T) = 1 – 0.00021×(T /°C – 20) (7.5)

when temperature is now an explicit input quantity, imprecise knowledge
of the temperature still does not lead to great uncertainty in the value of the
measurand, and the scrutiny of the metrological traceability of the tempera-
ture might not be as great as it is for the purity of the cadmium metal, for
instance.
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7.3.5 Propagation of Measurement
Uncertainty Through a Metrological
Traceability Chain

For a measurement result to be metrologically traceable, the measurement
uncertainty at each level of the calibration hierarchy must be known. There-
fore, a calibration standard must have a known uncertainty concerning the
quantity value. For a CRM this is included in the certificate. The uncertainty
is usually in the form of a confidence interval (expanded uncertainty; see
chapter 6), which is a range about the certified value that contains the value
of the measurand witha particular degree of confidence (usually 95%). There
should be sufficient information to convert this confidence interval to a stan-
dard uncertainty. Usually the coverage factor (k; see chapter 6) is 2, corre-
sponding to infinite degrees of freedom in the calculation of measurement
uncertainty, and so the confidence interval can be divided by 2 to obtain uc,
the combined standard uncertainty. Suppose this CRM is used to calibrate

Table 7.1. Metrological traceability of the input quantities to a cadmium calibration
solution containing 1.000 ± 0.003 µmol L-1 Cd2+

Units Relative
(metrological standard

Input quantity reference) uncertainty Traceability statement

Purity of Cd g/g (SI unit)a 6 × 10–5 CRM certificate with Cd
metal, P metal; material used

as described
Atomic weight g mol-1 (SI units)a 7 × 10–5 Statement by IUPAC

of Cd, AW describing measure-
ment of the atomic
weight and assignment
of uncertainty

Mass of Cd, m g (SI unit)a 5 × 10–4 Certificate of calibration
of balance giving period
of validity of calibra-
tion and uncertainty

Volumes, V1, L (SI unit)a 7 × 10–4 Manufacturers certificate
V3, V3, of volume of glassware

giving temperature at
which the volume is
valid and assignment
of uncertainty

Temperature °C (SI unit)a Used in the Certificate of calibration
standard of thermometer used
uncertainty to monitor laboratory
of V temperature

a g, L, and °C are derived units in the SI, mol is a base unit.



Metrological Traceability 219

a method, and the uncertainty budget for a measurement, not including the
contribution of the CRM, gives a value of umeas for a single measurement,
then the combined uncertainty of the result is

u u uc meas CRMresult( ) = +2 2 (7.6)

A good CRM will have uCRM << umeas, so its use should not add greatly to the
measurement uncertainty. If a CRM is used to create working standards in
house, the cost savings is balanced against increasing the measurement
uncertainty of the final measurements. If the measurement result for which
the measurement uncertainty is given by the uc in equation 7.6 were the
standardization of the working in-house reference material (call it uworkingRM),
then its use in an analysis increases the uncertainty of that measurement by
about a factor of √2:

u u u u u u u uc meas workingRM meas meas CRM meas CRM= + = + + = +2 2 2 2 2 2 22 (7.7)

where uc in equation 7.7 is approximately √2 umeas if umean >> uCRM. The propa-
gation of uncertainties can be ameliorated by making multiple measurements
of the working standard. If the value of the quantity of the working standard
is measured n times and averaged, the uncertainty of the average is now

u u u u
u

u u
nnc meas workingRM meas

meas
CRM meas= + = + + = +

⎛
⎝
⎜⎜⎜

⎞2 2 2
2

2 2 1
1

⎠⎠
⎟⎟⎟+uCRM

2 (7.8)

which, as n becomes large, tends to the uncertainty of equation 7.6.
The moral of this story is that the more you are willing to work at estab-

lishing the quantity value of your working standard, the less the penalty in
measurement uncertainty you will have to pay.

7.4 Examples of Metrological Traceability Chains

7.4.1 Breathalyzer

In Australia there have been discussions as to how to make evidential
breathalyzer measurements traceable to national or international standards.
The amount of ethanol in a motorist is required by law to be less than a
prescribed concentration, for many countries between 0.0 and 0.08 g per 100
mL blood. Recently there has been a move to change legislation to a limit of
a given mass per 210 L of breath to avoid arguments about the blood/breath
partition coefficient. As with any forensic measurement, metrological trace-
ability is a key component of a successful prosecution. At present police
buy standard solutions of ethanol in water from certifying authorities, with
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which they calibrate the evidential breathalyzers before use. These breatha-
lyzers might be based on infrared measurements or electrochemical oxida-
tion of the ethanol. The companies that sell ethanol standards establish the
concentration of the ethanol by gas chromatography or by titration with
potassium dichromate solution. In Australia it has been proposed that the
National Measurement Institute certify a standard ethanol solution by a
primary method (isotope dilution mass spectrometry, IDMS) and use this to
certify, in turn, pure potassium dichromate, which can be sold to the certi-
fying authorities, or other ethanol standards for GC measurements. A full
traceability chain for a measurement made with calibration of standards by
GC is given in figure 7.8.

The top of the chain is the SI unit of amount-of-substance concentration
mol dm-3 (mol L-1). A certificate from the National Measurement Institute
gives confidence to the certifying authority that the amount-of-substance

Figure 7.8. A possible metrological traceability chain for the result
of a breathalyzer measurement of a motorist’s breath alcohol.
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concentration has been established with proper metrological traceability to
the appropriate metrological reference. Down the chain, the calibration of
ethanol standards passes on the traceability with an increased measurement
uncertainty.

7.4.2 Protein in Grain

The protein content of grain is used to establish the price the commodity
will fetch. This is an example of an industry-accepted reference method that
still needs appropriate standards. The nitrogen content of a sample of grain
is measured by near infrared (NIR) spectroscopy, and this is multiplied by a
conventional factor of 6.25 to give the protein content. This is a conventional
procedure, but standard samples of grain are still required to calibrate the
measuring system (the NIR apparatus and attendant equipment). The nitro-
gen content of a standard grain is established by calibration using a pure
organic reference material, examples are 2-amino-2-hydroxymethyl-1,3-
propanediol (tris) and ethylene diamine tetraacetic acid (EDTA) . A possible
chain in which tris, obtained as a certified reference material from the Na-
tional Institute of Standards and Technology (NIST) is the primary calibra-
tor is shown in figure 7.9.

This chain is a good example of a prescribed measurement procedure (the
use of NIR for nitrogen and a specified conversion factor) giving the value
of measurand. Although the protein content of the standard grain sample is
in SI units through calibration using the organic compound with SI-trace-
able nitrogen content, the measurand must be described as “the mass frac-
tion of protein in grain measured by NIR as 6.25 × [N],” with [N] clearly
defined. If another laboratory analyzed the grain by a method that measured
the protein content directly, the result would be different from the one ob-
tained by the nitrogen content method. It is therefore important to clearly
state the measurand for measurements that rely on defined procedures.

7.5 Checklists for Metrological Traceability

Before embarking on a chemical measurement, some thought must be given
to the measurand (exactly what quantity is intended to be measured), the
requirements for measurement uncertainty, metrological traceability, and
the measurement method. Often the choice of method is prescribed or obvi-
ous, but it is important not to complete a complex measurement only to
realize that the measurement uncertainty is too large for the results to be
useable or that a suitable calibrator was not available and so metrological
traceability cannot be claimed. The process can be iterative, as occasion-
ally the dictates of metrological traceability or measurement uncertainty lead
to changes in the method.
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7.5.1 A Metrologically Sound Checklist

This checklist for metrological traceability is a subset of a possible check-
list for measurement, perhaps without concerns about method validation:

• Define the measurand and choose the measurement method.
• Identify requirements for metrological traceability. In a very simple

system, a single metrological traceability chain may lead to a single

Figure 7.9. A possible metrological traceability chain for the result of
a measurement of protein in a sample of grain. aTris = 2-amino-2-
hydroxymethyl-1,3-propanediol; b Dumas apparatus is calibrated using
tris CRM and grain samples are certified in an interlaboratory study;
cthe master instruments measure grain samples to act as the grower’s
calibrator for field measurements.
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reference. However, when defining the scope of the analysis, pro-
cedures for corrections of recovery or bias quantity values carried
by reference materials also need to be traceable. Decide to what
extent influence factors such as temperature, need to be traceable.

• Select metrological reference(s). Metrological traceability can only
be established to an existing and documented metrological reference.
In most cases the reference will be the definition of the measure-
ment unit of the measurement result.

• Select calibration hierarchy. By selecting a working calibrator, its
calibration hierarchy is determined by the available documentation.
Attention should also be paid to the calibration and metrological
traceability of measurement results for input quantities to a mea-
surement function measured by accessory equipment such as bal-
ances, thermometers, and volumetric ware.

• Acquire and verify a certified calibrator (CRM) from which a work-
ing calibrator is to be prepared. A working calibrator should be veri-
fied for integrity, validated for commutability, and have documented
metrological traceability.

• Perform measurement.
• Document metrological traceability. This requires identification of

all CRMs used as calibrators, calibration certificates for equipment,
and a statement of the measurement uncertainty of the measurement
result. The metrological traceability chain is thus established.

• Report metrological traceability. Measurement reports may require
details of the metrological traceability chain or at least a statement
of the metrological reference.

7.5.2 A Practical Checklist

If the analyst in a field laboratory can identify a CRM for calibration of
working calibration solutions, and its certificate gives sufficient evidence
that the CRM embodies a metrologically traceable quantity value, then his
or her work is just about done (figure 7.10). The intricacies of what national
measurement institutes and calibration laboratories did to ensure that the
CRM has metrologically traceable quantity values are all paid for in the
certificate.

Having understood the complete requirements for metrological traceabil-
ity, a practical checklist can be written:

• Define measurand and choose measurement method.
• Choose and acquire calibrator that has documented metrological

traceability. Assess metrological traceability requirements of mass,
volume and temperature results.

• Prepare any working calibrators and estimate measurement uncer-
tainty of the quantity value of the calibrator.

• Perform measurement.
• Estimate measurement uncertainty of measurement result.
• Report measurement result and document metrological traceability.
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7.5.3 Reality Traceability

Laboratory personnel commonly give one of three common responses to
someone who points out the traceability requirements of ISO/IEC 17025: “Its
ok; we have our balances calibrated every year,” and when it is further
pointed out that calibration extends to the chemical aspects of the measure-
ment, “I am sure it is ok to use this analytical-reagent-grade material to make
a calibration solution,” or “we make measurements in such complex matri-
ces, a suitable CRM just does not exist.” The first comment stems from the
rather physical or engineering flavor of the section in ISO/IEC 17025 (sec-
tion 5.6) (ISO/IEC 2005), although traceability of calibration materials is
mentioned.

The second response about the source of the calibration material is more
difficult to deal with, because the truth is that the measurements being made
are almost certainly not metrologically traceable. Faith in a percentage pu-

Figure 7.10. A metrological traceability chain from the point of view of
an end user.
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rity on the label of a bottle might please the manufacturer, but it does noth-
ing for genuine confidence in the results of a measurement performed using
this material as a calibrator. The answer is to bite the financial bullet and
buy a CRM, prepare working calibration standards, and make sure the mea-
surement uncertainty is properly taken into account.

Regarding the last common response, there are two approaches to deal
with the metrological traceability of a result from a complex matrix, such
as is found in environmental and biological samples. If the measurement
procedure involves separation of the analyte from the matrix, with the cali-
brated instrumental measurement being a pure material, (e.g., where chro-
matography has been used to separate and identify the analyte), then the
assignment of a quantity value in this step can be performed after calibra-
tion by a pure reference material. This leaves the metrological traceability
of any sampling and sample preparation steps to be established, which is
usually accomplished when measuring the recovery. If a CRM is used in a
spiking experiment, then metrological traceability of this part of the over-
all analysis is to the metrological reference of the CRM. Of course, consid-
erations such as commutability of the CRM spike and its measurement
uncertainty must also be addressed. If a measurement is made directly on
the sample, modern biosensors are being developed for use with whole
blood, for example, then metrological traceability will still be through
whatever calibration material is used. So if a pure CRM is added as a spike
in a standard addition experiment, then the metrological traceability is
to the metrological reference of the quantity value of this material. The
argument advanced by EURACHEM (EURACHEM and CITAC 2002) is
that it might not be best practice to calibrate with a matrix CRM, but to
use it instead to estimate recovery and calibrate with a pure material.
EURACHEM states that is generally not possible to completely match the
properties of the matrix CRM with those of the sample,—the cost could
be prohibitive and that the measurement uncertainty might become too
great. (If a correction for recovery is made, then this is likely to be the case
anyway.)

Perhaps if you have a resourceful and supportive national measurement
institute, you might be able to persuade it to organize an interlaboratory
certification to provide appropriate calibration materials, as has been done
in Australia by the grain industry for protein measurements.

Notes

1. The author is a task group member of an ongoing IUPAC project 2001-
010-3-500 titled “Metrological traceability of measurement results in chemis-
try,” http://www.iupac.org/projects/2001/2001-010-3-500.html. The author
has drawn heavily on the work of the project, but takes full responsibility
for the contents of this chapter.

http://www.iupac.org/projects/2001/2001-010-3-500.html
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8.1 Introduction

Many aspects of a chemical analysis must be scrutinized to ensure that the
product, a report containing the results of the analysis, fulfills the expecta-
tions of the client. One of the more fundamental factors is the analytical
method itself. How was it chosen? Where does it come from? When a labo-
ratory is faced with a problem requiring chemical analysis, there may be set
methods described in a standard operating procedure, but often the analyst
might have to make a choice among methods. For the majority of analytical
methods used in field laboratories, there is neither the expertise nor the
inclination to start from scratch and reinvent the wheel. The analyst wants
a method that can be implemented in his or her laboratory. Compilations of
methods that have been evaluated do exist and have the imprimatur of in-
ternational organizations such as the International Organization for Stan-
dardization (ISO) or the American Society for Testing and Materials (ASTM).
Failing this, the scientific literature abounds in potential methods that have
the recommendation of the authors, but may not always be as suitable as
claimed.

This chapter has two aims: to demonstrate the necessity of using prop-
erly validated and verified methods and to explain what constitutes a vali-
dated method, and to provide an introduction to method validation for
in-house methods. There is an abundance of published material that defines,
describes, and generally assists with method validation, some of which is
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referenced here (Burgess 2000; Christensen et al. 1995; EURACHEM 1998;
Fajgelj and Ambrus 2000; Green 1996; Hibbert 2005; ICH 1995, 1996; LGC
2003; Thompson et al. 2002; USP 1999; Wood 1999).

8.2 Method Validation—Some Definitions

“Method validation” is a term used for the suite of procedures to which an
analytical method is subjected to provide objective evidence that the method,
if used in the manner specified, will produce results that conform to the
statement of the method validation parameters. Like many aspects quality
assurance, method validation is of a relative nature. As with the concept of
fitness for purpose, a method is validated for a particular use under particular
circumstances. If those circumstances vary, then the method would need to
be re-validated at least for the differences. Common sense should be used,
and the analysts should use his or her skill and experience to decide what
aspects of a method require validation and to what extent. The goal of satis-
fying client requirements is prominent in most published definitions of
method validation, some of which are listed below:

• Method validation involves the evaluation of the fitness of analyti-
cal methods for their purpose

• The process of proving that an analytical method is acceptable for
its intended purpose (Green 1996).

The ISO defined method validation as (ISO 1994a):

1. The process of establishing the performance characteristics and
limitations of a method and the identification of the influences
which may change these characteristics and to what extent. Which
analytes can it determine in which matrices in the presence of which
interferences? Within these conditions what levels of precision and
accuracy can be achieved?

2. The process of verifying that a method is fit for purpose, i.e. for use
for solving a particular analytical problem.

In a later revision (ISO 2005, term 3.8.5) the definition became: Confir-
mation, through the provision of objective evidence, that the requirements
for a specific intended use or application have been fulfilled.

ISO/IEC 17025 (ISO/IEC 2005, section 5.4) states that method validation
is “confirmation by examination and provision of objective evidence that
the particular requirements for a specified intended use are fulfilled,” and
it stipulates protocols for validating in-house methods. Proper documenta-
tion is proof of validity. It is unlikely that many interested parties were
present during the experiments and subsequent data analysis that demon-
strated validity. Therefore, in many ways method validation is only as good
as its documentation, which describes the method, the parameters investi-
gated during the method validation study, the results of the study, and the
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conclusions concerning the validation. The documentation of the validity
of a method provided by a laboratory seeking accreditation to an interna-
tional standard must pass the scrutiny of an assessor.

In some sectors, particularly food and health, the requirement for fully
validated methods is prescribed in legislation, and the starting point for any
method validation should be the standards and protocols emanating from the
controlling organization. For example, the Codex Alimentarius contains such
directives, and the United Kingdom drinking water inspectorate guidelines
state: “A laboratory using an analytical method which is not referenced to a
fully validated authoritative method will be expected to demonstrate that the
method has been fully documented and tested to the standard currently ex-
pected of an authoritative reference method” (DWI 1993, paragraph 13).

8.3 When Should Methods Be Validated?

No method should be used without validation. The major part of the work
of validation might have been done elsewhere at an earlier time, but even
then, the analyst should be satisfied that the method as used in his or her
laboratory is within the validation specifications. This will be discussed
below. ISO/IEC 17025 encourages the use of methods published in interna-
tional, regional, or national standards and implies that if these methods are
used without deviation, then the validation requirements have been satis-
fied. What does need to be validated are nonstandard methods, methods
designed and developed by individual laboratories, standard methods used
outside their scope, and amplifications and modifications of standard methods.

8.3.1 The Development and
Validation Cycle

If a method must be developed from scratch, or if an established method is
changed radically from its original published form, then before the method
is validated, the main task is simply to get the method to work. This means
that the analyst is sure that the method can be used to yield results with
acceptable trueness and measurement uncertainty (accuracy). When the
analyst is satisfied that the method does work, then the essentials of method
validation will also have been done, and now just need to be documented.
If there is an aspect of the method that does not meet requirements, then
further development will needed. Discovering and documenting that the
method now does satisfy all requirements is the culmination of method
validation.

The foregoing discussion is encapsulated in figure 8.1, which shows that
method validation can be seen as checking and signing off on a method de-
velopment cycle, with the important caveat that initial development is often
done in a single laboratory and so will not usually establish interlaboratory
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reproducibility. There has to be a final assessment of measurement uncertainty
to make sure all appropriate aspects of the method have been accounted for.

8.3.2 Interlaboratory Studies

An important aspect of a full method validation is estimating bias compo-
nents attributable to the method itself and to the laboratory carrying out the
analysis. This step is required to estimate measurement uncertainty with a
reasonable range that covers results that would be obtained in another labo-
ratory of similar experience and standing. In chapter 5 I discussed these
approaches at length. ISO (1994b) has a procedure for such interlaboratory

Figure 8.1. The relationship between validation, development, and
customer requirements. (Adapted from Hibbert 2005.)
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studies, and Horwitz (1995) has published International Harmonized Pro-
tocols. If the validation is only done in house, reproducibility standard de-
viation must be accounted for by using, for example, the Horwitz formula,
σH = 0.02 f 0.8495, where f is the value of the measurand expressed as a mass
fraction, and σH is the reproducibility standard deviation also expressed as
a mass fraction. For concentrations > 120 ppb, this value is usually within
a factor of 2 of results obtained from interlaboratory studies.

8.3.3 Verification

Much of the work of method validation is done by international organiza-
tions that publish standard methods. The reason such methods appear to be
written in a kind of legalese is that there must be no doubt as to what the
method is and how it should be implemented. When accuracy and preci-
sion data are published from interlaboratory trials, there is some confidence
that the method has undergone extreme scrutiny and testing. A laboratory
that uses a method for the first time should spend some time in going through
the analysis with standard materials so that when used with field samples,
the method will yield satisfactory results. This is verification and must be done
to an appropriate level before any method is used. By its nature, verification
comes under the heading of Single Laboratory Validation (Thompson et al.
2002). A minimum set of verification experiments is given in table 8.1.

Another circumstance in which verification checks must be performed
is when a particular aspect of the method or its implementation is changed.
Common changes are new analyst, new equipment or equipment part (e.g.,

Table 8.1. Minimum experiments that should be performed to verify the use of a
standard method before first use in a laboratory

Parameter Verification experiments

Bias/recovery Analysis of a matrix-matched reference material, or
typical matrix spiked with reference material, or
typical test material with quantity value with known
measurement uncertainty established by another
method

Precision Standard deviation of ten independent determinations of
typical test materials

Measurement Consideration of factors that could contribute to
uncertainty measurement uncertainty from the use in the analysts

laboratory; revision of the uncertainty budget accordingly
Calibration model When calibrating the method for the first time attention

(linearity) must be given to whether the calibration equation is
properly followed

Limit of detection If necessary; analysis of test material near the LOD to
(LOD) demonstrate capability of detection at that level
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new column, new detector), new batch of reagent that is subject to batch
variation (e.g., enzymes, antibodies) or changes in the laboratory premises.
A minimum verification is to analyze a material before and after the change
and check for consistency of the results, both in terms of mean and stan-
dard deviation. (Following such changes using a CuSum control chart is
discussed in chapter 4.)

8.4 Parameters Studied in Method Validation

A tradition has grown up in method validation in which a sequence of tests
taken together result in a suitably validated method. Because of the age of the
approach, the relationship of measurement uncertainty and metrological trace-
ability of a result to method validation has not always been clear. Establishing
an acceptable measurement uncertainty of a result is one of the major planks
of method validation, and discussions of precision and accuracy are found under
this heading. Because some analytical systems these days have multivariate or
nonlinear calibration, the traditional terminology of “linearity” and “linear
range” have been changed to reflect the wider meaning of suitability of the
calibration model. Table 8.2 gives the performance parameters described be-
low, together with their more traditional names and groupings.

8.4.1 Horses for Courses

Not all methods require each parameter detailed in table 8.2 to be established.
For example, a method that only measures the active ingredient in a 100-
mg cold cure as part of a quality control protocol is not concerned with limit
of detection, the matrix is fixed, and the calibration range might only need
to be established between 80 and 120 mg. An analysis that determines the
presence or absence of the target analyte needs only to establish its selectiv-
ity, limit of detection, and ruggedness. Table 8.3 details some common ana-
lytical systems with their critical method validation parameters.

Measurement uncertainty is a critical parameter for nearly every kind of
analytical system. Parameters in the second column of table 8.3 are not
unimportant and must be established, but they are not likely to become limit-
ing factors in the development of the method. In table 8.3, where selectivity
is in parentheses, this is not to say that the method should not be demon-
strably capable of analyzing the target analyte, but that it should be clear
very quickly whether or not the method is doing its job.

8.4.2 How Much Validation?

The fit-for-purpose nature of chemical analysis tells us that there is an ap-
propriate level of method validation. Too much and resources are squan-
dered for no benefit; too little and the product could be worthless. Modern
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Table 8.2. Method performance parameters assessed in a method validation study

Parametera Description and comments

Identity Measurement correctly applies to the stated
measurand

Selectivity Determination of the extent of the effects of
Specificity interfering substances and the ability of

the method to measure the measurand;
analysis in different matrices covered by
the scope of the validation

Limits
Limit of detection Minimum value of the measurand at which

the presence of the analyte can be deter-
mined with a given probability of a false
negative, and in the absence of the analyte,
at a given probability of a false positive

[Limit of determination] Minimum value that can be obtained with a
specified measurement uncertainty

Calibration [linearity]
Model parameters [sensitivity] Adequacy of the calibration model;

parameters with uncertainties.
Calibration range [linear range] Range of values of the measurand in which

the validation holds
Bias and recovery [accuracy] Demonstration of the absence of significant

systematic error after corrections have
been made for bias and/or recovery

Measurement uncertainty
Type A effects [repeatability Uncertainty estimated from statistical treat-

and reproducibility precision] ment of the results of repeated analyses
Type B effects Estimates based on nonstatistical methods

including published data and experience
of the analyst

Robustness or ruggedness Ability of method to remain unaffected by
small variations in method parameters
(some authors make the distinction be-
between the property robustness and a
ruggedness test in which deliberate
changes are made in a method to assess
the robustness)

aParameters in square brackets are headings used in a classical approach to method
validation.

practice puts great emphasis on the dialogue with the client and working
through to fulfill the needs of the client. But the majority of clients do not
know what they really want in terms of method validation, or any other
quality parameter, for that matter. The professional analyst is charging as
much for his or her accumulated expertise as they are for the time and
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analyses being performed. So the onus can well fall back on the analyst to
make an informed decision in the interests of the client. Accreditation or-
ganizations and other legal watchdogs are there to make sure in general terms
that the laboratory is doing the right thing. Here is a continuum ranging from
a new method to be specified as a standard method in a highly regulated
industry, in which an international body conducts lengthy interlaboratory
studies followed by further validation or verification in the laboratory in
which the method will be used, to an ad hoc method that will only be used
once and for which the results are not of such importance. In the latter case
there is still no point in using a method in which there is no confidence that
the results are suitable, but the analyst may decide that the experiment is
still worth doing. In fact, an analyst should assess whether a measurement
will give useful results before any measurement actually takes place.

In the majority of cases in professional analytical laboratories, a standard
method is the starting point for a routine laboratory method, and many of
the validation parameters are taken from the published description of the
method. The laboratory then must spend some time verifying and validat-

Table 8.3. Different analytical systems with their method validation requirements

Critical method
validation Other validation

Analytical system parameters parametersa

Qualitative analysis only Selectivity, LOD Ruggedness
Identification and analysis of a Selectivity Calibration, MU,

particular form of a substance ruggedness, (LOD)
(e.g., oxidation state, isomer,
conformer)

Measurement of an analyte in Selectivity, MU Calibration, ruggedness,
a matrix (LOD)

Trace analysis Selectivity, MU, Calibration, ruggedness,
LOD

Results that will be compared MU Calibration, ruggedness,
with those from other (LOD)
laboratories

Results that will be compared MU Ruggedness, (LOD,
with limits or specifications selectivity)

Method that is implemented by MU, ruggedness Calibration, (LOD,
different analysts on different selectivity)
instruments

Require to analyze to target MU Calibration, ruggedness,
measurement uncertainty (LOD)

A number of samples having a Calibration, MU Ruggedness, (LOD)
range of concentrations

aLOD = limit of detection, MU = measurement uncertainty. Parameters in parenthe-
ses need only be studied if required.
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ing necessary amendments to the method. When the client is involved in
the decision of what aspects to validate and to what depth to validate, it is
a good idea to include the agreed-upon protocols in the contract, so there
can be no argument later if it turns out that a vital aspect was omitted.

The level of validation to be undertaken must be chosen considering
scientific and economic constraints. All data have some value, and results
from the development phase can all be pressed into service for validation.
Separate planned experiments might lead to better and more statistically
defensible results, but when this cannot be done, then whatever data are at
hand must be used. The best use can be made of experiments to be done by
understanding what is required. For example, in a precision study, if the
goal is to know the day-to-day variability of an analysis, then duplicate
measurements over 5 days would give more useful information than 5 rep-
licates on day 1, and another 5 on day 5. The strategy would be reversed if
variations within a day were expected to be greater than between days.

8.5 Specifying the Method and Target
Validation Parameters

Before an experiment is done, there is an important phase in which the road
map to validation is made. First the method itself is clearly specified in terms
of a measurement procedure based on a principle of measurement, includ-
ing equations for any calculations necessary to obtain a result. Then the
parameters that need to be validated are determined. In the light of the ex-
pected use of the method, and possibly with the input of the client, critical
parameters are determined that will show whether the validated method is
fit for its purpose. A target measurement uncertainty will usually be speci-
fied, particularly if the measurement result will be used to compare with a
legal limit or product specification. Although the world is moving toward
reporting the measurement uncertainty associated with a measurement re-
sult, the concept may be expressed in terms of a maximum bias (tolerance)
and repeatability or reproducibility precision (as a relative standard devia-
tion or coefficient of variation). In addition, a target limit of detection can
be stated. Particular influence factors may be identified and their effects
prescribed. For example, the temperature range in which the target measure-
ment uncertainty must hold may be specified, or potential interferences that
should not affect the method may be specified. The report of the validation
will then address each of the parameters and conditions and demonstrate
that the method successfully complies with the values and ranges. If it does
not, then the options shown in figure 8.1 are followed. Either the method is
further developed and revalidated, or the conditions for validation are re-
laxed, or the project is abandoned.

It may be that the method as developed has no particular client in mind.
Now the method validation process is to discover and report the values of
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the parameters for the method as specified. In the future a prospective user
of the method can judge whether it will be suitable for his or her purpose,
and perhaps cause a further round of the development and validation cycle.
The description of a standard method with information about repeatability,
reproducibility, and so on, is a kind of validation report, although it would
be useful if standardization bodies actually issued a method validation docu-
ment together with the description of the method.

8.6 Obtaining Method Validation Parameters

8.6.1 Identity

Confirming that the analytical method does indeed result in the value of the
measurand, on one hand, might be as trivial as an assertion to that effect,
because the nature of the method cannot fail to deliver it, or, on the other hand,
identifying a given form of a molecule in a complex matrix could be the most
time consuming and costly part of method validation. Having heard defense
attorneys asking whether the signal allegedly attributed to an illegal substance
could possibly have arisen from something more benign, I know that ultimately
there could be a substance in the test portion that “walks like a duck and quacks
like a duck” but is not a duck. There has been some work on the uncertainty
of qualitative analysis based on a Bayesian approach (Ellison et al 1998), but
analysts eventually use their judgment to assert that a method is specific. When
in doubt, the best solution is to conduct the analysis using methods based on
different physical or chemical principles to confirm identity. For example,
infra-red or NMR spectroscopies could be used to confirm GCMS data, or li-
braries of spectra can be used to add confidence to the assignment of struc-
ture. When there is concern about a particular source of misidentification,
then specific experiments should be performed to check that the correct iso-
mer or species is being analyzed. If there is the possibility of cis-trans isom-
erism about a double bond, for example, it is often possible to predict the 1H
NMR coupling from each isomer. This discussion highlights the need to specify
the measurand carefully in the method protocol. There may be a great differ-
ence in the concentration of copper, inorganic copper, and bioavailable cop-
per and in the ability of a method to correctly identify the particular species
of interest (see discussions in chapter 10).

8.6.1.1 Selectivity and Specificity

Selectivity is a measure of the extent to which the result gives the value of
the measurand and only of the measurand. If a method is 100% selective, it
is said to be specific to the measurand. There are many ways of ensuring
selectivity, and it is a basic characteristic of the analytical method. Chro-
matography, in general “separation science,” is a powerful analytical tool
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because of its ability to present individual species to the detector. Chiral
separations are the ultimate in discriminating among species, in this case
optical isomers. When it is impossible to effect a separation, the analysis
must take account of interferences in some other way. It may be that an in-
terfering species of similar concentration to the analyte does not produce as
great a signal from the instrument. Interference studies can quantify the ef-
fects of nominated interfering substances, and either they can be deemed
insignificant or the presence of the interferent may be treated as a system-
atic error and corrected for or allowed for in the measurement uncertainty.
(A clever way of accounting for electroactive interferents in a channel bio-
sensor is described by Zhao et al. [2003, 2004].) These procedures then limit
the method to a particular matrix containing a particular set of interfering
species or require a series of experiments to quantify the effect of the inter-
ferents in all possible test samples. This should be treated as an extension
of the method and must also be validated, but it could be a useful solution
to the problem of interferences. Modern chemometric techniques that rely
on multivariate data are often used to make a method specific.

With chromatography it must still be demonstrated that apparently single
peaks do truly arise from the single compound of interest. The advent of
methods and detectors that add a second dimension provide this surety. Two-
dimensional GC, also known as comprehensive GC or GC × GC, is such a
technique in which, by modulation of the temperature of the output of a first
column, species separated on this column can be further processed on a
shorter, second column operating on a different principle of separation
(Ong and Marriott 2002). This allows complex mixtures, such as petroleum
samples, to be better separated. Chromatography with mass spectrometry
can also demonstrate purity of a peak, if the mass spectrum of the compound
eluting is known. Diode array detectors operating at a number of wavelengths
as detectors in liquid chromatography may also reveal multiple components.

8.6.1.2 Interference Studies

How analytical methods deal with interferences is one of the more ad hoc
aspects of method validation. There is a variety of approaches to studying
interference, from adding arbitrary amounts of a single interferent in the
absence of the analyte to establish the response of the instrument to that
species, to multivariate methods in which several interferents are added in
a statistical protocol to reveal both main and interaction effects. The first
question that needs to be answered is to what extent interferences are ex-
pected and how likely they are to affect the measurement. In testing blood
for glucose by an enzyme electrode, other electroactive species that may be
present are ascorbic acid (vitamin C), uric acid, and paracetamol (if this drug
has been taken). However, electroactive metals (e.g., copper and silver) are
unlikely to be present in blood in great quantities. Potentiometric membrane
electrode sensors (ion selective electrodes), of which the pH electrode is the
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most famous, have problems with similar ions interfering. For example,
hydroxyl ions interfere with a fluoride-ion-selective electrode. In a valida-
tion this effect must be quantified and included in the measurement uncer-
tainty, together with a statement of the pH range in which results will be
obtained that conform to the stated uncertainty. There are standard and rec-
ommended methods for quantifying interferences; for ion-selective elec-
trodes, see Buck and Lindner (1994).

8.6.2 Limit of Detection

Limit of detection (LOD) sounds like a term that is easily defined and measured.
It presumably is the smallest concentration of analyte that can be determined
to be actually present, even if the quantification has large uncertainty. The
problem is the need to balance false positives (concluding the analyte is present,
when it is not) and false negatives (concluding the analyte is absent, when it is
really present). The International Union of Pure and Applied Chemistry (IUPAC)
and ISO both shy away from the words “limit of detection,” arguing that this
term implies a clearly defined cutoff above which the analyte is measured and
below which it is not. The IUPAC and ISO prefer “minimum detectable (true)
value” and “minimum detectable value of the net state variable,” which in
analytical chemistry would become “minimum detectable net concentration.”
Note that the LOD will depend on the matrix and therefore must be validated
for any matrices likely to be encountered in the use of the method. These will,
of course, be described in the method validation document.

Consider a measurement made of a blank—a sample that is identical to a
routine sample for measurement but without any analyte. A large number
of measurements will lead to a distribution of (nonzero) results, which might
or might not be normally distributed. A normal distribution is shown in
figure 8.2, although this begs the question of what to do about apparently
negative results that might be obtained when making measurements of con-
centrations near zero.

A critical limit may be defined at which the probability of making the
error of rejecting the hypothesis that the measurement comes from a sample
having zero analyte (a Type I error) is, say, 0.05. This cannot be taken as the
LOD because, although the probability of a false positive is 0.05, and quite
acceptable, the probability of finding a false negative is exactly 0.5; that is,
half of all measurements made of an analyte having a concentration Lcrit will
be less than Lcrit and rejected (figure 8.3). A sensible approach is therefore
to shift the decision limit, the LOD, up in concentration until the probabili-
ties of making Type I and Type II errors at Lcrit are equal (see figure 8.4).

It has been suggested that the LOD should be the concentration for which
the lower limit of the confidence interval just reaches zero, and while this
has a logic to it, as the value is not known until measurements are made,
the analyst could be in for a number of speculative experiments before find-
ing the magic concentration that satisfies the condition.
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8.6.2.1 The Three-Sigma Approach

A straightforward and widely accepted approach is to deem that an instru-
ment response greater than the blank signal plus three times the standard
deviation of the blank signal indicates the presence of the analyte. This is
consistent with the approach shown in figure 8.4 if it is assumed that the
standard deviation of a measurement result at the LOD is the same as that of
a blank measurement. Suppose there is a linear calibration relation

yi = a + bxi + ε (8.1)

Figure 8.2. The distribution of blank measurements
about zero. Lcrit is a concentration at which the
probability of making a Type I error (deciding
analyte is present when it is not, α) is 0.05.

Figure 8.3. Distributions of measurements of
analyte of concentration, Lcrit, showing that half
the results at this concentration will be rejected
using Lcrit as the decision point.
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where yi is the indication of the measuring instrument for a particular value
of the concentration of the analyte (xi), a is the intercept, b is the slope of
the calibration line, and ε is the random component of the measurement with
expectation zero and standard deviation σ. A blank reading ∆yb + 3σb corre-
sponds to a concentration of

x
y a

bDL
b b=

+ −∆ 3σ
(8.2)

The measurements that should be made are 10 independent determinations
of a blank solution. The sample standard deviation of these 10 measurements
is taken as an acceptable estimate of σb. For methods that do not give a re-
sponse in the absence of analyte (for example, many ion-selective electrodes
do not give a stable signal in the absence of the target ion or a known inter-
fering ion), a blank is spiked at the lowest acceptable concentration. Again,
10 measurements of independently prepared test solutions are made, and
the sample standard deviation is taken as the estimate of σb. It can be shown
that the “blank plus three sigma” gives a probability of both false positives
and false negatives of about 7%. If the limit is to be 5% errors (a 95% con-
fidence), then sigma is multiplied by 3.29. This is recommended by IUPAC
(Currie 1995).

Figure 8.4. Choice of a limit of detection (LOD) at
which the probabilities of Type I and Type II
errors are equal at Lcrit. The distributions are, from
left to right, measurements of a blank with analyte
concentration zero, measurements of a sample of
concentration Lcrit, and measurements of a sample
of concentration LOD.
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8.6.2.2 LOD Estimation in the Absence
of Blank Measurements

If the measurement of LOD is not critical, an estimate can be made from the
calibration parameters taking the intercept as the blank measurement and
the standard error of the regression as the standard deviation of the blank.
Equation (8.1) becomes

x
s

bDL
y x=

3 /
(8.3)

Equation 8.3 relies on the assumption that the calibration parameters hold
to the limit of detection, which is not necessarily correct. If the calibration
is taken over a very wide range, for example in some element analyses by
inductively coupled plasma, the uncertainty is not constant but is propor-
tional to the concentration. In this case it is not possible to estimate the
detection limit by equation (8.3).

8.6.2.3 A More Sophisticated Approach Based on
Calibration

IUPAC recommends the following formula for calculating the limit of
detection:
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where t0.05',n-2 is the one-tailed Student’s t value for α = 0.05 and n – 2 de-
grees of freedom, m is the number of replicates of the measurement at the
LOD, n is the number of points in the calibration line, x is the mean value of
the calibration concentrations (xi), and b is the slope of the calibration equa-
tion (see also Long and Winefordner 1983).

8.6.2.4 LOD for a Qualitative Method

If the analytical method is required only to detect the presence of the analyte
but not report a measurement result, then there will be no calibration rela-
tion to go from an indication of the measuring instrument to a concentra-
tion. In this case a number of independent measurements (at least 10) must
be made at concentrations in a range that brackets the expected LOD. The
fraction of positive and negative findings is reported for each concentration,
and a concentration is then chosen as the LOD that gives an acceptable pro-
portion of positive results.
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8.6.3 Calibration Parameters

A discussion about calibration must also include consideration of single-
point calibration and direct comparison of responses to samples of known
and unknown quantities. In each case the linearity of the calibration (i.e.,
the correctness of taking a ratio of instrument responses) is accepted in rou-
tine work. In method validation this assumption must be verified by mak-
ing a series of measurements in a concentration range near to the range used,
and the linear model must be demonstrated to be correct.

In traditional method validation, assessment of the calibration has been
discussed in terms of linear calibration models for univariate systems, with
an emphasis on the range of concentrations that conform to a linear model
(linearity and the linear range). With modern methods of analysis that may
use nonlinear models or may be multivariate, it is better to look at the wider
picture of calibration and decide what needs to be validated. Of course, if
the analysis uses a method that does conform to a linear calibration model
and is univariate, then describing the linearity and linear range is entirely
appropriate. Below I describe the linear case, as this is still the most preva-
lent mode of calibration, but where different approaches are required this
is indicated.

Remember that for calibrated methods the working range is in terms of
the concentration presented to the measuring instrument that is being cali-
brated, which might not be that of the original sample after dilution or other
preparative steps. In documenting the method validation, it is acceptable,
having quoted the working range of the calibration of the instrument, to
indicate what range of concentrations of the sample this range would come
from, as long as the sample pretreatment steps are explained fully in the
description of the method.

The validation also will give information about the extent and frequency
of calibration that will be necessary during use. Having established the lin-
earity of the calibration by the methods given below, the analyst may decide
that a single-point calibration is sufficient for routine use in the laboratory.

8.6.3.1 Adequacy of the Calibration
Model (Linearity)

Method validation must demonstrate that the calibration model (i.e., the
equation by which the instrument response is related to a known value of a
standard) holds for the system under investigation, and over what range of
concentrations.

What makes a good calibration? This must be specified, and there is no
accepted single path, but after collecting response data at a number of points
(see below), the following steps can be followed:

First test the data for outliers. This is not as straightforward as performing
a Grubbs’s test for replicates of a measurement on a single analyte. Because
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the linear model correlates data, tests such as Grubbs’s or Dixon’s Q are not
statistically valid. The effects of an outlier on the calibration line are differ-
ent depending on whether it is near the mean of the data or at the extremes.
This is illustrated in figure 8.5. An outlier at the extreme of the working range
may be a reflection that the model no longer holds, or it may be a genuine
outlier caused by some unforeseen error. Such an outlier is said to have great
leverage. Because least squares calibration minimizes the sum of the squares
of the residuals, a point lying far from the line contributes relatively more
to that sum (residuals of 1 and 10 add 1 and 102 = 100 respectively to the
sum). Outliers should be viewed with great suspicion and should not be
discarded lightly, unless the reason for the aberration is obvious. If possible,
the measurement should be repeated, and if the result does not change much,

Figure 8.5. Outliers in calibration: (a) near the
center of the data causing a shift in intercept and
(b) at the extreme of the data (a point with high
leverage), causing change in slope. The solid lines
are fits to the data without outliers (solid points).
The dashed lines are fits to the data with outliers
(all points).
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other measurements should be made in the vicinity of the outlier to eluci-
date what is causing the apparent deviation from linearity.

Then plot the calibration curve and residual plot. If the residuals are scat-
tered nicely about zero with no particular trend or obvious outliers, then
the line is acceptable. A potential outlier is one that is more than twice the
standard error of the regression (sy/x). (figure 8.6). Next assess the line for
curvature. If the real relation between instrument response and concentra-
tion is a curve, then this will be revealed in a residual plot, much more so
than might be apparent in the calibration curve. Curvature across the whole
range of concentrations invalidates the notion of a linear range, and at this
point a decision must be made about the calibration model. If the linear
model is inadequate for calibration, an equation that captures the relation
between instrument response and concentration should be used. This rela-
tion should be justified from knowledge of the chemical system. Merely
adding polynomial terms to the linear model until a better fit is discovered
or adding more principal components to a multivariate regression will always

Figure 8.6. Residual plots of the calibration fits of
figure 8.5. (a) Outlier near center of data, (b)
outlier at extreme of data.
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improve the calibration, but these practices run the risk of overfitting. Any
such augmentation should be well studied and validated. A second fix is to
reduce the linear range. Over a short enough span, a linear model can always
be made to have an acceptably small error, but the question is, how short?

8.6.3.2 Working Range (Linear Range)

During the development of the method, a reasonable idea of the working
range will be established, or there will be a target range set by the use of the
method (in process control, for example). Many instrumental methods have
a calibration curve that looks like the one depicted in figure 8.7. The con-
centration defining the limit of detection will be the absolute lower end,
although the decision about where the working range starts must include
some acceptable precision, and at the detection limit the uncertainty on any
measurement may be considered too great. The concentration defining the
start of the working range is sometimes known as the limit of determina-
tion. At the higher end of the concentration range, the instrumental response
often saturates, leading to a flattening off of the calibration curve.

To establish linearity and the linear range, a blank solution, plus at least
6, but preferably 10, independent solutions should be prepared from a trace-
able reference material and presented to the instrument at least as dupli-
cates and in random order. The range of these solutions then defines the
linear range, assuming, of course, statistical analysis of the calibration data
supports this contention. How is the range known without doing experi-
ments? As stated above, there may be enough prior information to have a

Figure 8.7. A response curve of an electrochemical
measurement of copper with concentration of
analyte. The line is a fit to the equation y = y0Kx/
(1 + Kx), y is the measured current, x is the
concentration of copper, and y0 and K are
constants of the model.
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good idea of the range, and the use of the method may not be so stringent as
to probe the real limits of the working range. However, it may be necessary
to perform single measurements across the expected range, to make sure that
the range is likely to be acceptable, before adding replicates.

If it is necessary to quantify adherence to the calibration equation, a
method based on ANOVA can be used where replicate determinations at
each point are made. Measurements are made on k independently prepared
solutions of different concentrations, where the ith concentration is mea-
sured ni times. These data are fitted to the calibration equation (this approach
works for nonlinear calibrations as well). There are two reasons the y val-
ues estimated from the calibration equation might not exactly agree with
the measured y values. First, there is the ubiquitous random measurement
error, and second. discrepancies may result from the fact that the calibra-
tion equation does not actually fit (e.g., nonlinearity in a linear model).
Replicate determinations of each calibration solution can only tell us about
measurement error; the calibration has nothing to do with the variance of
these measurements. How well the estimates from the calibration equation
agree with the measured values depend on both measurement error and
problems with the calibration equation. By comparing estimates of these
variances (bad model + measurement error compared with measurement
error), it should be possible to decide whether the model fits well enough.
Using the nomenclature of ANOVA, the total sum of squares is given by
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where y  is the mean of all the responses of the instrument. SST can be de-
composed into three sums of squares, SSME, SSLOF, and SSREG, which are due
to measurement error, lack of fit, and the regression, respectively:
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where yi is the mean of the replicate measurements on the ith calibration
solution, and 4i is the value of y of the ith calibration solution estimated by
the regression equation. The better the data fit the calibration equation, the
smaller SSLOF, although this can never go to zero because the estimated value
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will always have a contribution from measurement error. As in ANOVA, the
mean squares are the sum of squares divided by the degrees of freedom, MS
= SS/df. MSLOF = SSLOF / (k – 2) and MSME = SSME / (N – k) (N is the total
number of data, and k is the number of concentrations). MSLOF may be tested
against MSME using a one-sided F test:

F
MS
MS

= LOF

ME
(8.9)

The probability of F is the probability of finding the observed ratio of mean
squares given the null hypothesis that the data do indeed fit the calibration
model. If this probability falls below an acceptable level (say, α = 0.05), then
H0 can be rejected at the (1 – α) level. If H0 is not rejected, then both MSLOF

and MSME are estimates of the measurement error and can be pooled to give
a better estimate σ2 = (SSLOF + SSME)/(N – 2) with N – 2 degrees of freedom.
The steps are given in table 8.4.

Table 8.4. How to validate the linearity of a calibration given k calibration solutions
each measured ni times

Task Equation

For each concentration (i), measured ni times:
Calculate the mean response yi

Subtract mean response from each response at
that concentration yij – yi

Square and sum for that concentration y yij i
j
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−( )
=

∑ 2

1
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For each concentration (i) , measured ni times:
Subtract the mean response from the y value

estimated from the calibration 4i – yi

Square and multiply by the number of
replicates ni(4i – yi)2

Sum over all k concentrations = MSLOF
n y yi i i

i

k
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Calculate the F statistic F =
MS
MS

LOF

ME

Calculate the probability (P) associated with =TDIST(F, k – 2, N – k)
F for a one-sided distribution with k – 2
(MSLOF) and N – k (MSME) degrees of freedom.

Reject the hypothesis of a linear relationship if
P < 0.05
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I work through the example presented in figure 8.7 here. Spreadsheet 8.1
shows the data with four measurements made at each of eight concentra-
tions. The likely linear range is shown in the figure, and to illustrate the
method, the range with one more point is tested first (to show it is not suf-
ficiently linear) and then the more likely range is tested. Spreadsheet 8.2
shows the calculations for the points up to 50 nM.

Note some of the Excel shortcuts used. The command =SUMSQ(range)
calculates the sum of the squares of the numbers in cells of the range. The
command =SUMXMY2(range 1, range 2) calculates the sum of the squares
of the differences between numbers in cells in the ranges specified, and
=TREND(y-range, x-range, x-value, intercept) returns the calcu-
lated y-value from a linear fit of the y,x ranges given at the point x-value
(which does not have to be one of the values in the range, or even in the
range for that matter). The parameter intercept is 1 or TRUE if there is an
intercept in the model, and 0 or FALSE if the line is forced through zero.
The command =FDIST(f, df1, df2) returns the probability Pr(F>f ) for
the F distribution with df1 degrees of freedom in the numerator and df2 de-
grees of freedom in the denominator. The result is that the probability that
the measurement error exceeds the lack of fit by chance is 0.014, so the hy-
pothesis that the linear model holds can be rejected at the 98.6% level. The
fit is graphed in figure 8.8, and it is clearly not a straight line.

All this is repeated in spreadsheet 8.3 and figure 8.9 for data up to 26.8 nM.
Now the probability given by the F test is 0.55, well within acceptable limits.

8.6.3.3 Calibration Parameters (Sensitivity)

The sensitivity of a method (not to be confused with selectivity or limit of
detection) is how much the indication of the measuring instrument increases

=AVERAGE(
B39:E39)
=AVERAGE(
B39:E39)

Spreadsheet 8.1. Data for the analysis of copper by an electrochemical
method. Each solution was measured four times. The data are plotted in
figure 8.7.
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=TREND($F$59:$F$64,$A$59:$A$64,A59,1)

=SUMSQ(
H59:K59)

=SUM(L59:L64)

=4*SUMXMY2(F59:F64,G59:G64)

=G70/(6 – 2)

=G69/(24 – 6)

=H70/H69

=FDIST(G72,4,18)

=TREND($F$59:$F$64,$A$59:$A$64,A59,1)

=SUMSQ(
H59:K59)

=SUM(L59:L64)

=4*SUMXMY2(F59:F64,G59:G64)

=G70/(6 – 2)

=G69/(24 – 6)

=H70/H69

=FDIST(G72,4,18)

Spreadsheet 8.2. Calculations for test of linear range of data shown in
spreadsheet 8.1. Range tested, 3.1–50.0 nM; N = 24 data points; number
of concentrations, k, = 6. ME = measurement error, LOF = lack of fit, SS =
sum of squares, MS = mean square.

with a given change in concentration. For a linear calibration, this is the
slope of the calibration plot (b in equation 8.1). In a more general calibra-
tion equation, for each term that includes a parameter times a function of x,
the parameter is part of the sensitivity of the model. Only in linear calibra-
tion is the sensitivity constant across the range of the calibration. In other
cases the sensitivity changes and must be judged accordingly. Figure 8.7 is
an example of this situation. The fit to the nonlinear model is very good,
but the slope of the line continually decreases and with it, the sensitivity.
There comes a point when the calibration, although passing the tests de-
scribed above, may be no longer be sufficiently sensitive to yield suitable
results.

In linear calibrations (I use the term in its mathematical sense—linear in
the parameters of x, allowing a quadratic calibration model y = a + b1x + b2 x2
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Spreadsheet 8.3. Calculations for test of linear range of data shown in
spreadsheet 8.1. Range tested, 3.1–26.8 nM; N = 20 data points; number
of concentrations, k, = 5. ME = measurement error, LOF = lack of fit, SS =
sum of squares, MS = mean square.

Figure 8.8. Linear fit of the of the data of
spreadsheet 8.1 and figure 8.7 up to x = 50.0 nM.

=TREND($F$91:$F$95,$A$91:$A$95,A91,1)

=SUMSQ(
H91:K91)

=SUM(L91:L95)

=4*SUMXMY2(F91:F95,G91:G95)

=G102/(5 – 2)

=G101/(20 – 5)

=H101/H102

=FDIST(G72,3,15)

=TREND($F$91:$F$95,$A$91:$A$95,A91,1)

=SUMSQ(
H91:K91)

=SUM(L91:L95)

=4*SUMXMY2(F91:F95,G91:G95)

=G102/(5 – 2)

=G101/(20 – 5)

=H101/H102

=FDIST(G72,3,15)
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to be classed as linear), it is possible to calculate the standard error on each
parameter. In Excel this is easily done in LINEST (see chapter 2), or in the
regression analysis section of the Data Analysis tools (Menu: Tools, Data
Analysis, Regression).

8.6.3.4 Demonstration of
Metrological Traceability

“Calibration” referred to here is the calibration, usually performed in the
laboratory on a reasonably frequent basis, of the indication of the measur-
ing instrument against concentrations of standards of the material to be
measured. Use of certified reference materials (CRMs) to make up working
calibration standards gives metrological traceability to the measurements
that will be subsequently made by the calibrated system (assuming that the
uncertainty of the values of the standards is properly incorporated into the
measurement uncertainty). However, it must be remembered that other as-
pects of the system might also require calibration (e.g., glassware, balances,
thermometers). Some of these are calibrated once in the factory, whereas
others need yearly calibration. The performance of these calibrations and
maintenance of proper records is part of the quality assurance system of the
laboratory. See chapters 7 and 9 for further details.

8.6.4 Systematic Effects (Accuracy
and Trueness)

The analyst conducting a method validation must assess any systematic
effects that need to be corrected for or included in the measurement uncer-
tainty of the results. The interplay between random and systematic error is
complex and something of a moveable feast. The unique contribution of each
analyst to the result of a chemical measurement is systematic, but in a large

Figure 8.9. Linear fit of the of the data of
spreadsheet 8.1 and figure 8.7 up to x = 26.8 nM.
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interlaboratory study with many analysts, all measuring aliquots of the same
material, their individual biases will now be part of the reproducibility pre-
cision of the method (assuming there has been a genuinely random selec-
tion of analysts, whose biases are distributed normally). Figure 8.10 shows
this interplay going from repeatability and run bias in a single measurement
to reproducibility (inevitably greater) and method bias (usually lesser) in
an interlaboratory study.

How these different effects are treated depends on the nature of the method
validation. For the validation of a new method by an international body,
including an extensive interlaboratory study, the method bias and repro-
ducibility will be reported. For a single laboratory, laboratory bias and in-
termediate reproducibility will be determined.

Both within a single laboratory or in an interlaboratory study, the ap-
proach to assessing bias and recovery is similar. The method is assessed using
either reference materials with known quantity values, or the analysis of a
test material is compared with the results of analysis of the same material

Figure 8.10. Bias and precision in chemical analysis. Contributions to bias
when averaged by many repeated measurements become part of the
variance of the measurement at the level (run, laboratory, method) being
studied. (Adapted from O’Donnell and Hibbert 2005.)
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by a reference method. Analysis of a single material yields a single estimate
of bias, that, if significant, is usually subtracted from subsequent measure-
ment results. This assumes linearity of the response, and in a complete study
should be checked by analyzing a range of reference materials, which could
lead to a bias correction with a constant and a proportional part.

When a CRM is used, at least 10 independently prepared portions of the
material should be analyzed. Suppose the concentration of the standard
solution made from the CRM is cCRM and the mean of the determinations is
cobs. If the uncertainty of the concentration of the CRM is uCRM (the uncer-
tainty of the purity of the CRM combined with the uncertainty of making a
solution to present to the instrument), then the uncertainty of the measure-
ment of the standard solution is

u
s

ubias
r

CRM= +
2

2

10
(8.10)

where sr is the repeatability of the measurement. The difference δ = |cCRM –
cobs| is tested against zero by a t test:

t
c c

u
CRM obs

bias

=
−

(8.11)

at 9 degrees of freedom. If the null hypothesis is rejected and the analyst
concludes that the bias is significant, then the bias (δ) is reported and re-
sults are expected to be corrected for this value when the method is used in
circumstances under which the bias estimate holds. For a reference mate-
rial for which there is some confidence in the quantity value of interest, but
that does not have a certificate and so does not qualify as a CRM, uCRM in
equation 8.10 is unknown. Or a CRM might exist, but the matrix in which it
will be used has not been studied, and there is concern about the recovery.
In these cases it is still better to use whatever data are available to estimate
bias. The uncertainty of the reference material uRM should not be written as
zero, but a reasonable estimate should be inserted in equation 8.10 and the
procedure documented and justified in the method validation documenta-
tion. There is a certain irony in testing for significant bias, for the greater
the uncertainty in the measurement of bias, the less likely it is to find sig-
nificant bias.

When a reference method is used to perform the bias estimate, a similar
calculation is done, this time on the difference between the results of the
method under validation and the reference method (cref). Now the uncer-
tainty of the difference is that of two independent measurements, and as-
suming each was done 10 times with the repeatability of the reference
method being sr(ref),
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u
s s ref

bias
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10 10
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t
c c

u
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s s ref

ref obs

bias

ref obs

r r

=
−

=
− ×

+ ( )

10
2 2 (8.13)

with, again, 9 degrees of freedom for the 10 differences.
The term “recovery” is used to describe the fraction of a test material that

can be extracted from a matrix. In analytical chemistry it also means the
fraction of a test material in a matrix that can be quantified, even if it is not
physically separated from the matrix. In a typical experiment, pure refer-
ence material is added to a matrix, mixing as completely as possible. The
analysis of the material then gives the recovery (also known as surrogate
recovery or marginal recovery). The procedure rests on the assumption that
a spiked matrix has the same analytical properties as a matrix with native
analyte. This might not always be true, and although observation of a re-
covery that is not unity strongly implies the presence of bias, a recovery of
unity could hide bias in the analysis of native analyte (Thompson et al. 1999).
The EURACHEM (1998) guide to validation recommends measurements of
a matrix blank or an unfortified sample (i.e., one without any added analyte),
followed by spiking with a known amount of analyte and reanalysis. This
should be done six times starting from independent blanks or samples. If
the measured concentration of analyte initially is cblank and after spiking
cfortified, and the concentration of the spike in the sample is known to be cspike,
then the recovery is calculated as

R
c c

c
% %= ×

−
100 fortified blank

spike
(8.14)

The usefulness of such a recovery rests on how well the spike is mixed
with the matrix and how closely its properties in the matrix resemble those
of the native analyte. Most guides recommend correction for recovery if it
has been estimated in an appropriate way with known uncertainty (that can
be included in estimation of measurement uncertainty). However, as recov-
ery is different for different matrices, some international bodies (e.g., Codex
Alimentarius for some food analyses) require results to be quoted as obtained
without modification for recovery.

8.6.5 Measurement Uncertainty

Measurement uncertainty is the key to understanding modern approaches
to quality assurance in analytical chemistry. A proper measurement uncer-
tainty gives a range in which the value of the measurand is considered to
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exist with a high degree of probability (e.g., 95%), and this range includes
contributions from all sources, including incomplete specification of the
measurand, uncorrected systematic measurement effects and random mea-
surement effects. Remember that measurement uncertainty is a property of
a measurement result, not a method. Therefore, when a particular measure-
ment uncertainty is revealed in a method validation study, before a labora-
tory decides to quote the value on test reports, it must ensure that the results
it produces are consistent with this uncertainty. At the minimum, repeat-
ability precision should be shown to conform to those values quoted and
used in the uncertainty budget, and any aspect of the budget that differs
should be highlighted and amended accordingly. The construction of an
uncertainty budget and the nature of measurement uncertainty was described
and discussed in chapter 6.

8.6.5.1 Type A Uncertainty
Components (Precision)

Depending on the extent of the method validation, it may be possible to esti-
mate repeatability standard deviation (at the very least); intermediate preci-
sion (done in the same laboratory, but over several days and possibly by different
analysts and instruments); and/or reproducibility (full interlaboratory study).
The most simple way to estimate repeatability and intermediate reproducibil-
ity is to analyze a test sample 10 times over a period of days, allowing varia-
tion in, for example, the analyst carrying out the measurement; the instrument
used; the reagents used for calibration; and glassware, balances, and any other
relevant influence factor. Of course, in a small laboratory with a single analyst
and one GC, the scope for varying conditions may be limited, and so the preci-
sion obtained, although encouragingly small, will have a restricted scope and
will need to be revisited if anything changes. Laboratories are encouraged to
use all valid data to contribute to the estimation of measurement uncertainty.
This should decrease the time needed to produce the uncertainty budget, and
the uncertainty will have more relevance for measurements taken in a particu-
lar laboratory than estimated (Type B) components.

8.6.5.2 Type B Uncertainty Components

All sources of uncertainty that are not quantified by the standard deviation
of repeated measurements fall in the category of Type B components. These
were fully dealt with in chapter 6. For method validation, it is important to
document the reasoning behind the use of Type B components because
Type B components have the most subjective and arbitrary aspects. Which
components are chosen and the rationale behind the inclusion or exclusion
of components should documented. The value of the standard uncertainty
and the distribution chosen (e.g., uniform, triangular, or normal) should be
made available, as should the final method used to combine all sources.
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8.6.5.3 Combined and
Expanded Uncertainty

The major components of uncertainty are combined according to the rules of
propagation of uncertainty, often with the assumption of independence of ef-
fects, to give the combined uncertainty. If the measurement uncertainty is to
be quoted as a confidence interval, for example, a 95% confidence interval, an
appropriate coverage factor is chosen by which to multiply the combined un-
certainty and thus yield the expanded uncertainty. The coverage factor should
be justified, and any assumptions about degrees of freedom stated.

Measurement uncertainty is a property of a measurement result, and so
an estimate made during method validation is only valid if, when real mea-
surements are made, the analyst can assert that the conditions of his or her
test exactly follow those under which the validation was performed.

8.6.6 Ruggedness and Robustness

Method validation covers a number of aspects of an analytical method that
have already been evaluated in the course of development and use. The
values of the calibration parameters must be known to use the method to
analyze a particular sample, and any serious deviations from the measure-
ment model should have been discovered. In addition, however, every
method should undergo a robustness study as the practicality of the method
may ultimately depend on how rugged it is.

A method is classed as rugged if its results remain sufficiently unaffected
as designated environmental and operational conditions change. Exactly
which conditions are singled out for attention in a robustness study is a
matter for the analyst’s judgment, perhaps in consultation with the client.
Also, what constitutes “sufficiently unaffected” must be defined before the
method validation experiments are done. A robustness study addresses two
areas of concern: the need for a method to be able to yield acceptable re-
sults under the normal variation of conditions expected during routine op-
eration, and the portability of the method between laboratories with changes
in instrumentation, people, and chemical reagents. A method being devel-
oped in house in a pharmaceutical company for process control might focus
on the first area, whereas a method to be published as an international stan-
dard will need to address both areas.

In a robustness study the parameters to be investigated are systematically
changed and the effects on the result of the analysis are measured. The steps
in such a study are shown in table 8.5.

8.6.6.1 Parameters to Be Studied

Table 8.5 gives some typical parameters that might be studied for rugged-
ness. Judgment is required because, as the number of parameters studies
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increases, the number of experiments that must be performed also rises, and
with some statistical models this may be expressed as a power law (e.g., 2k

for a full two-level factorial design; see chapter 3). There is no point in inves-
tigating a factor that is well known to have no effect, nor one that is important
but is well controlled as part of the experiment. During method development
the adequacy of, for example, temperature control in a GC oven, should have
been thoroughly checked. However, if during the course of a measurement
the laboratory temperature varies between 15° and 28°C, then it might be
prudent to investigate whether this variation has any effect on the results of
the experiment. The robustness of the method with regard to the precision of
weighing or the volume of an added reagent can be investigated by relaxing
the requirements of the method. For example, if 5 g of a reagent must be added,
does this mean 5.0000 g or somewhere between 4.5 g and 5.5 g?

Choice of the levels of the parameters is important, and making poor
choices can render a study useless. Most statistical models used for robust-
ness studies use only two levels (usually written in designs as contrast co-
efficients + and –; see chapter 3). These can be chosen as the smallest and
greatest values of the parameter expected during normal use of the method,
or the nominal value specified in the method (conventionally ascribed to –)
and a changed value (+). It is important not to designate values that are
outside any sensible range. The results will not be interpretable, and a real
effect can be masked. In the example in figure 8.11 (which is a hypothetical
pH response from chapter 3), by choosing pH values outside a valid range
(a,b), the result of the analysis for each level is unnaturally low, and the
difference between the results is not statistically different from zero. An
analyst who is not alert to the problem (and if this analyst chose the levels
in the first place, he or she would no doubt remain in blissful ignorance)

Table 8.5. Steps in a robustness study

Action Examples

Identify parameters to be studied Temperature, reagent source, instrument,
column age, column type, pH, mobile
phase, detector type

Decide on statistical model Plackett-Burman design; fractional
factorial design

Decide on range of each parameter T = 10–30 °C, pH = 5–8; new column–
column used 1 month; methanol–
water ratio in mobile phase varied
by ±2 %

Perform randomized experiments Run 1: T = 25 °C, pH = 7, new column,
according to statistical model MeOH/water = 30% . . .

Calculate effects of each factor and Effect (T) = +2.3%, effect (pH) = -1.0%
test for statistical significance
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would accept the result of the statistics that the effect was near zero. A more
realistic pair of pH values (a′,b′), where the first is the nominal value at which
the experiment is usually performed, leads to a useful answer.

8.6.6.2 Statistical Model

In a desire to minimize the work required to establish the ruggedness of the
method, statistical corners will be cut in establishing the effect of changing
the parameters of interest. The Plackett-Burman experimental design (chap-
ter 3) is a commonly used method that shares many of the basic assump-
tions of highly fractionated designs. It has the advantage that only one more
experiment must be done than the number of factors being investigated,
which makes it very efficient. The outcome of the experimental design is
estimates of the main effects of the factors; that is, by how much does the
response variable change as the factor is changed from its low (normal) value
to its high value? If this is shown by statistics to be insignificant (i.e., not
different from zero within the variability of the measurements), then it can
be concluded that the method is robust to that factor. Full details of how to
do a Plackett-Burman design were given in chapter 3.

8.7 Documentation

Method validation is documented for two reasons. The first is to allow a user
of the method to understand the scope of validation and how to perform
experiments within the scope of the validation. As soon as the method is
used outside the scope of its validation, the onus is on the analyst to com-

Figure 8.11. A hypothetical effect of changing pH
on the result of an analysis, as the subject of a
robustness study. (a) Inappropriate choice of
levels leading to an apparent lack of effect. (b) A
more sensible choice with a significant main
effect being calculated.
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plete and document any necessary additional validation. Again, experience
is what allows an analyst to know that the scope has been widened but not
widened enough to invalidate a previous method validation. As long as this
decision has been documented, requirements have been satisfied.

The second reason for documenting method validation is that the method
is not validated until it it is documented. No number of experiments is of
any use if they are not documented for future users and clients to consult.
The definitions of method validation, with which this chapter started, mostly
refer to documentary evidence. The extent of the documentation, both in
describing the method and its scope, and the method validation experiments,
is a matter of judgment, but a general rule is to include more, rather than
less, information. What the analyst who has painstakingly developed and
validated the method may take for granted could be a crucial piece of infor-
mation for a subsequent user. The ISO 78-2 guide for documenting chemi-
cal analysis standards may be of use, even if the method is being developed
for more humble and restricted uses (ISO 1999). As the documentation will
become part of the laboratory’s quality assurance system, proper documen-
tary traceability (as opposed to metrological traceability of a result) must be
maintained, with revision versions and appropriate authorizations for updates.

The Laboratory of the Government Chemist has published software to
guide a would-be validator through the required steps (LGC 2003). The pro-
gram then can produce a report with all relevant information, formatted in
a style approved by the LGC.
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9
Accreditation

262

9.1 Introduction

Accreditation is the procedure by which the competence of a laboratory to
perform a specified range of tests or measurements is assessed against a
national or international standard. The accreditation covers the kinds of
materials tested or measured, the procedures or methods used, the equip-
ment and personnel used in those procedures, and all relevant systems that
the laboratory has in place. Once accredited, the laboratory is entitled to
endorse test results with their accreditation status which, if it has any va-
lidity, is an imprimatur of some degree of quality and gives the client added
confidence in the results. Accreditation therefore benefits the laboratory,
by allowing the laboratory to demonstrate competence in particular tests,
and the client, by providing a choice of accredited laboratories that are
deemed competent.

9.1.2 The Worldwide
Accreditation System

Accreditation is part of conformity assessment in international trade. Con-
formity assessment leads to the acceptance of the goods of one country by
another, with confidence borne of mutual recognition of manufacturing and
testing procedures. Figure 9.1 shows the relation between accreditation and
the goal of conformity in trade. For accreditation to be a cornerstones of
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conformity in trade, each laboratory that is assessed, in whatever country,
must be judged against the same standard (e.g., ISO/IEC 17025), and the
assessment process must be essentially the same from one country to an-
other. The standards are indeed international, through the International
Organization for Standardization (ISO), and the accreditation bodies them-
selves are scrutinized under the auspices of the International Laboratory
Accreditation Co-operation (ILAC), being accredited to the ISO/IEC Stan-
dard 17011 (ISO/IEC 2004a).

Full membership in ILAC is open to recognized bodies that operate ac-
creditation schemes for testing laboratories, calibration laboratories, and
inspection bodies that have been accepted as signatories to the ILAC Mu-
tual Recognition Arrangement. They must maintain conformance with ap-
propriate international standards such as ISO/IEC 17011 and ILAC guidance
documents, and the must ensure that all their accredited laboratories com-
ply with ISO/IEC 17025 and related ILAC guidance documents. Table 9.1
lists the full members and signatories of the ILAC Mutual Recognition Ar-
rangement. The National Association of Testing Authorities (NATA) of Aus-
tralia has the distinction of being the first accreditation body in the world
(founded in 1947), and has long been in the vanguard of the approach to
quality through accreditation.

There are also regional groups covering Europe and the Middle East (Eu-
ropean Accreditation for Cooperation – EA), the Americas (Interamerican
Accreditation Cooperation – IAAC), the Asia Pacific region including India

Figure 9.1. Relationships between the
international conformity in trade system and
quality systems including accreditation. (Adapted
from a document of European Accreditation,
accessed from www.european-accreditation.org,
October 2004.)

www.european-accreditation.org


Table 9.1. Accreditation bodies who are full members of International Laboratory
Accreditation Co-operation (ILAC) and signatories to the MLA

Country/ region Accreditation body Acronym and web address

Argentina Organismo Argentino de OAA
Acreditacion http://www.oaa.org.ar

Australia National Association of NATA
Testing Authorities http://www.nata.asn.au/

Austria Bundesministerium fur BMWA
Wirtschaft und Arbeit http://www.bmwa.gv.at

Belgium Belgian Accreditation BELAC (BELTEST/ BKO)
Structure http://BELAC.fgov.be

Brazil General Coordination CGCRE/INMETRO
for Accreditation http://www.inmetro.gov

.br
Canada Canadian Association for CAEAL

Environmental http://www.caeal.ca
Analytical Laboratories

Canada Standards Council of SCC
Canada http://www.scc.ca

Peoples Republic China National Accredi- CNAL
of China tation Board for http://www.cnal.org.cn

Laboratories
Cuba National Accreditation ONARC

Body of Republica http://www.onarc
de Cuba .cubaindustria.cu

Czech Republic Czech Accreditation CAI
Institute http://www.cai.cz

Denmark Danish Accreditation DANAK
http://www.danak.org

Egypt National Laboratories NLAB
Accreditation Bureau http://www.nlab.org

Finland Finnish Accreditation FINAS
Service http://www.finas.fi

France Comité Francais COFRAC
d’Accreditation http://www.cofrac.fr/

Germany German Accreditation DACH
Body Chemistry http://dach-gmbh.de/

Germany German Accreditation DAP
System for Testing http://www.dap.de

Germany German Accreditation DATech
Body Technology http://www.datech.de

Germany Deutscher Kalibrierdienst DKD
http://www.dkd.info

Greece Hellenic Accreditation ESYD
System S.A. http://www.esyd.gr

Hong Kong Hong Kong Accreditation HKAS
Service http://www.itc.gov.hk/

hkas
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Table 9.1. (continued )

Country/ region Accreditation body Acronym and web address

India National Accreditation NABL
Board for Testing & http://www.nabl-india
Calibration Laboratories .org

NAB
Ireland Irish National Accredita- http://www.inab.ie

tion Board
Israel Israel Laboratory Accredi- ISRAC

tation Authority http://www.israc.gov.il
Italy Sistema Nazionale per SINAL

l’Accreditamento di http://www.sinal.it
Laboratori

Italy Servizio di Taratura in SIT
Italia http:// www.sit-italia.it/

Japan International Accredita- IA Japan
tion Japan http://www.nite.go.jp/

asse/iajapan/en/
Japan The Japan Accreditation JAB

Board for Conformity http://www.jab.or.jp
Assessment

Korea, Republic of Korea Laboratory Accredi- KOLAS
tation Scheme http://kolas.ats.go.kr

Mexico Entidad Mexicana de EMA
Acreditación http://www.ema.org.mx

Netherlands, The Raad voor Accreditatie RvA
http://www.rva.nl

New Zealand International Accredita- IANZ
tion New Zealand http://www.ianz.govt.nz

Norway Norsk Akkreditering NA
http://www.akkreditert.no

Phillipines Bureau of Product BPSLAS
Standards Laboratory http://www.dti.gov.ph
Accreditation Scheme

Poland Polish Centre for PCA
Accreditation http://www.pca.gov.pl

Romania Romanian Accreditation RENAR
Association http://www.renar.ro

Singapore Singapore Accreditation SAC
Council http://www.

sac-accreditation.org.sg
Slovakia Slovak National Accredi- SNAS

tation Service http://www.snas.sk
Slovenia Slovenian Accreditation SA

http://www.gov.si/sa
South Africa South African National SANAS

Accreditation System http://www.sanas.co.za
(continued)
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Table 9.1. (continued )

Country/ region Accreditation body Acronym and web address

Spain Entidad Nacional de ENAC
Acreditacion http://www.enac.es

Sweden Swedish Board for SWEDAC
Accreditation and http://www.swedac.se
Conformity Assessment

Switzerland Swiss Accreditation SAS
Service http://www.sas.ch

Taipei, Taiwan Taiwan Accreditation TAF
Foundation http://www.taftw.org.tw

Thailand The Bureau of Laboratory BLQS-DMSc
Quality Standards http://www.dmsc.moph

.go.th
Thailand Thai Laboratory Accredi- TLAS/TISI

tation Scheme/Thai http://www.tisi.go.th
Industrial Standards
Institute

United Kingdom UK Accreditation Service UKAS
http://www.ukas.com/

United States American Association for A2LA
Laboratory Accreditation http://www.a2la.org/

United States International Accredita- IAS
tion Service, Inc http://www.iasonline.org

United States National Voluntary NVLAP
Laboratory Accreditation http://www.nist.gov/
Program nvlap

Vietnam Vietnam Laboratory VILAS
Accreditation Scheme http://www.boa.gov.vn

Taken from http://www.ilac.org/ (January 2006).

(Asia Pacific Laboratory Accreditation Cooperation—APLAC) and Africa
(Southern African Development Community in Accreditation—SADAC).
Through these cooperations the importance of harmonization and conformity
has been recognized. If countries adopt similar approaches to accreditation,
and their accreditation organizations issue certificates with a harmonized
information, it is much easier for clients to assess the validity of test results
relating to cross-border trade, forensics, and health.

9.1.3 Peer-led Accreditation

Peer assessment is the cornerstone of many accreditation systems. The ac-
creditation body maintains a staff of administrators and experts, but the
majority of the work of assessments, including visits to the laboratories seek-
ing accreditation, is performed by laboratory scientists, often volunteers, who

http://www.enac.es
http://www.swedac.se
http://www.sas.ch
http://www.taftw.org.tw
http://www.dmsc.moph.go.th
http://www.dmsc.moph.go.th
http://www.tisi.go.th
http://www.ukas.com/
http://www.a2la.org/
http://www.iasonline.org
http://www.nist.gov/nvlap
http://www.nist.gov/nvlap
http://www.boa.gov.vn
http://www.ilac.org/
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have undergone assessment training and who have a high level of technical
competence. An assessment team is usually led by a permanent member of
the accreditation organization staff to provide appropriate guidance and to
help maintain equality of treatment across the activities of the organization.
The remaining members are peers, chosen to include the desired spread of
expertise. The team spends a couple of days at the laboratory, observing the
work of the laboratory, scrutinizing documentation and procedures, and
interviewing staff. The outcome of the visit is a report detailing the confor-
mity of the laboratory’s practices to the standard and indicating where im-
provements need to be made before the laboratory is recommended for
accreditation. The recommendation, documented with the results of the visit,
is assessed by a committee of the organization. The laboratory is then al-
lowed to display the logo of the accreditation body on its certificates of
analysis and is entered in a register of accredited laboratories for the tests
or measurements that fall within the scope of the accreditation.

9.1.4 What a Standard Looks Like

Standards tend to have a common look and feel that can be confusing when
first encountered. In fact, there is a standard on how to write standards, with
which good standards comply (ISO 1999). Most start with three sections (called
clauses), scope, normative references, and terms and definitions. The scope
of a standard details what is covered by the standard, and just as important,
what is outside the standard. Normative references are to other standards that
are referenced by the present standard and which therefore must be adhered
to as part of compliance with the present standard. Guidance is usually given
to the parts of, or extent to which, these normative references must be fol-
lowed. “Terms and definitions” are what they imply, but because much of
the terminology of metrology is already well standardized, this clause is often
just a reference to the international vocabulary (VIM; ISO 1993) or to ISO/IEC
Guide 2 (ISO/IEC 2004b), with one or two additional specialist terms.

9.2 Accreditation to ISO/IEC 17025:2005

The ISO/IEC 17025 standard (ISO/IEC 2005) has the title “General require-
ments for the competence of testing and calibration laboratories” and is the
main standard to which analytical chemical laboratories are accredited. The
word “calibration” in the title arises from the use of the standard to accredit
bodies that calibrate instruments such as balances, electrical equipment, and
utility meters. It must also be stressed that the standard is not written for
analytical chemists, but for any measurement scientists. Therefore, the ter-
minology tends to be general, and the emphasis is sometimes not clear for
the chemist. However, the standard is wide ranging and covers a whole
community of measurement scientists.
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The standard was first published in 1978 as ISO Guide 25 (ISO 1978),
and later as the standard ISO/IEC 25 (ISO/IEC 1990). It was revised in 1994,
and then underwent a major revision (van der Leemput 1997) and number
change in 1999 when it became ISO/IEC 17025 (ISO/IEC 1999). Further
tweaking to ensure alignment with ISO 9001:2000, and other technical amend-
ments were made in 2005 (ISO/IEC 2005). ILAC has published a guide to
accreditation under ISO/IEC 17025 (ILAC 2001), as have many national
accreditation bodies.

In revising ISO Guide 25 in 1999, the management requirements were
aligned with those in the ISO 9000 series, and conformed with ISO 9001:1994
(ISO 1994a) and 9002:1994 (ISO 1994b). The 2005 revision brought the stan-
dard into line with the single ISO 9001:2000 (ISO 2000). Appendix A in ISO/
IEC 17025 gives nominal cross-references between the sections of the stan-
dards. A laboratory that is accredited to ISO/IEC17025 therefore also meets
the requirements of ISO 9001 when it designs and develops new or nonstand-
ard methods or when it only uses standard methods. ILAC allows a state-
ment to this effect to be included in the accreditation certificate issued by a
national accreditation body.

These notes and comments on different sections of the standard should
be read in conjunction with the standard. The standard is available from
ISO or from a national standards body in countries that have adopted the
standard as part of a national program. (For example, in Australia ISO/
IEC17025 is known as AS17025 and has been adopted without change.)
ISO/IEC 17025 is a full international standard, but for many years its
predecessor, Guide 25 was used, and many analysts and texts still refer
to it as a “guide.” A detailed discussion of the sections of the standard
follows.

9.2.1 Scope

The scope of the 17025 standard states that it “specifies the general require-
ments for the competence to carry out tests and/or calibrations, including
sampling. It covers testing and calibration performed using standard meth-
ods, non-standard methods, and laboratory-developed methods” (ISO/IEC
2005, Preface p ii).

Of interest is the inclusion of sampling in the 1999 revision of the stan-
dard. In the original, the laboratory was expected to analyze material as
received. The laboratory was discouraged from talking to clients about their
requirements or from offering an opinion once results had been obtained.
Sampling is covered, for specific types of material, in a number of standards,
but it is now recognized that if sampling must be done (i.e., the whole of the
system under investigation cannot be tested, and therefore a representative
portion must be analyzed), then the analyst may have to take the represen-
tative sample. If the material presented for analysis is not representative,
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then no matter how good the measurement is, it is likely to be of little use to
the client. Therefore, if sampling is included in the scope of the analysis, it
must also come under the scrutiny of assessment for accreditation.

The second part of the scope refers to the kind of method used and makes
clear that whether the method is an internationally recognized standard or
simply and in-house procedure, it falls within the scope of ISO/IEC 17025.
In specifying exactly what a laboratory is accredited for, the accreditation
body must be careful to correctly detail the methods. So if sulfur is analyzed
by ASTM D5453, the laboratory must have demonstrated its capability to
follow the method as laid specified in the American Society for Testing and
Materials standard, or any changes made by the laboratory must be docu-
mented and validated.

9.2.2 Section 4:
Management Requirements

Table 9.2 gives the subsections of section 4 of the ISO/IEC 17025 standard
that deal with requirements for the management of the laboratory and the
quality system that must be in place.

9.2.2.1 Subsection 4.1: Organization

The first requirement is that the organization exists and is legally account-
able. This applies to small enterprises that must be operating as a legal busi-

Table 9.2. Sections of ISO/IEC 17025:2005 dealing with management
requirements

Subsection Subject

4.1 Organization
4.2 Management system
4.3 Document control
4.4 Review of requests, tenders and contracts
4.5 Subcontracting of tests and calibrations
4.6 Purchasing services and supplies
4.7 Service to the customer
4.8 Complaints
4.9 Control of non-conforming testing and/or calibration work
4.10 Improvement
4.11 Corrective action
4.12 Preventive action
4.13 Control of records
4.14 Internal audits
4.15 Management reviews
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ness, but also subsidiaries of international companies must have identifi-
able owners and structure. When accreditation is given, exactly what is being
accredited must be known. Usually a laboratory or section operating in a
particular location and with particular staff will be accredited. If an organi-
zation has separate laboratories in different cities operating with their own
staff and local management, it is probable that each would need to have
separate accreditation, even for the same analysis.

Another aspect of organizational management is the need for proper
business procedures. The laboratory should not undertake work that results
in a conflict of interest, and generally should not bring the accreditation
system into disrepute by engaging in activities that would diminish confi-
dence in the laboratory.

There is emphasis on the organizational structure, and the 2005 standard
requires that the organization “shall ensure that its personnel are aware
of the relevance and importance of their activities.” (ISO/IEC 2005, section
4.1.5 k)

9.2.2.2 Subsection 4.2:
Management System

A change in emphasis between 1999 and 2005 is the understanding that a
quality system only exists in the context of the organization’s management
system. Thus the standard requires that the laboratory establish and main-
tain an appropriate management system. What constitutes appropriate should
be obvious to the laboratory and must always be consistent with the ability
of the laboratory to assure its quality. The commitment and responsibility of
top management is stressed in this subsection. In particular, the top manage-
ment must provide evidence of commitment to developing and implement-
ing the system and must communicate to the organization the importance of
meeting customer needs and statutory and regulatory requirements. The qual-
ity manual is the defining document and must start with a clear statement of
the quality system policy and objectives. Limited discussion of technical as-
pects of quality control is found in subsection 5.9 of the standard.

9.2.2.3 Subsection 4.3: Document Control

Laboratories should have a procedure for control of documents, including
manuals, software, drawings, specifications, and instructions. An authorized
person must be responsible for approving and reviewing documents, and
there must be a provision for removing out-of-date documents. To accom-
plish this, all documents must be uniquely identified with date of issue, page
numbering and total pages, marked end page, and issuing authority. When
documents are updated or changed, they should be subjected to the same
review and approval procedures.
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9.2.2.4 Subsection 4.4: Review of Requests,
Tenders, and Contracts

A laboratory must have procedures for the review of requests, tenders, and
contracts. Requirements must be defined against which tenders can be judged,
and once in place they should be reviewed periodically. Before agreeing to
any contract, the laboratory should be satisfied that the work can be done
in accordance with the contract. Once a contract is signed, if there are sig-
nificant changes, these must be documented and agreed-upon with the cus-
tomer. Within the organization, staff involved in carrying out work must be
informed of any changes in the contract.

9.2.2.5 Subsection 4.5:
Subcontracting Tests

A laboratory may outsource aspects of its work occasionally because of
unforeseen reasons (too great a workload, equipment problems, need for
outside expertise) or on a regular basis. Where work is subcontracted, a
competent laboratory (i.e., one that complies with the standard), must be
used. The customer must be notified in writing about the use of subcontrac-
tors, and a register of all subcontractors, including calibration services, must
be maintained.

9.2.2.6 Subsection 4.6: Purchasing Services and
Supplies

The laboratory must have policy and procedures for all purchasing require-
ments, whether laboratory consumables, equipment, or calibration services.
Records must be kept and any checks to ensure the products are fit for pur-
pose documented. Records of purchases should be sufficiently detailed to
identify what was purchased, when it was purchased, and any other relevant
information, and the management system standard under which they were
made should be identified.

9.2.2.7 Subsection 4.7: Service to
the Customer

The laboratory must allow the customer reasonable access to the work, allow
the customer to be present during testing, and give the customer access to
any data and quality records in relation to the work. This must be done while
ensuring confidentiality to other customers. It is now a requirement that the
laboratory seek feedback from its customer and use that information to im-
prove its service. Instruments for obtaining feedback might include customer
satisfaction surveys.
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9.2.2.8 Subsection 4.8: Complaints

The laboratory must maintain records of complaints, together with investi-
gations and corrective actions.

9.2.2.9 Subsection 4.9: Control of
Nonconforming Testing
or Calibration Work

Nonconformance arises when any aspect of the work of a laboratory does
not conform to its procedures, to the standard, or the agreed-upon require-
ments of the customer. These are detected by customer complaints, internal
quality control measures, management audits and reviews, and by observa-
tions of staff. They must be dealt with under the appropriate part of the
management system and fully investigated and reported.

9.2.2.10 Subsection 4.10: Improvement

New in the 2005 standard is a sentence that exhorts laboratories to continu-
ally improve the effectiveness of their management system.

9.2.2.11 Subsection 4.11: Corrective Action

Subsection 4.11 of the standard gives details the approach for identifying
the root causes of nonconformance and explains how to select and imple-
ment actions to correct the problem.

9.2.2.12 Subsection 4.12:
Preventive Action

Recognizing that heading off a potential problem is usually better (cheaper
and less embarrassing) than coping with a nonconformance, the standard
requires the laboratory to engage in preventive actions. This is defined as a
proactive process to identify opportunities for improvement. The use of trend
and risk analysis of proficiency testing data (see chapter 5) is mentioned as
a possible preventive action.

9.2.2.13 Subsection 4.13:
Control of Records

All activities carried out under the management system must be recorded
and documented to facilitate retrieval as part of management, external re-
view, or an audit. These documents must be identified and indexed and must
be kept securely for a defined period. Electronic records must be secure,
available only to properly identified personnel, and appropriately backed
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up. Technical records of original observations, derived data, calibrations,
and calculations must be kept in a form so as to record the information,
identify who made the observations, and show when the work was done.
Any changes to these records must be done in such a way as to allow iden-
tification of the original record, the change, the person who made the change,
and reason for the change.

The laboratory notebook with numbered pages, dated and signed by the
member of staff and countersigned by a supervisor, is the traditional way of
maintaining original observations. However, more and more instruments are
computer controlled, and their hardcopy outputs are a brief synopsis of the
result, with original data being held within the instrument’s computer or
captured by a laboratory information management system. The operation
of any computer-controlled equipment will be covered by the validation of
the method using the equipment, and this should include data handling.
The management system must identify when protocols for storing and re-
trieving computer data are required.

9.2.2.14 Subsection 4.14: Internal Audits

An internal audit is designed to check compliance with the laboratory’s
management system and ISO/IEC 17025, to determine the effectiveness of
the activity or process, and to identify improvements. An audit of the main
elements of the management system should be carried out at least annually
and should include some of the analytical methods. The schedule of audits
is part of the management system. Trained and qualified auditors should be
used, and, where possible, they should be independent of the activity being
audited. Personnel from the organization can be used as long as they are
not directly involved with the work being audited. The internal audit is one
of the main drivers for continuous improvement and preventive action be-
cause it identifies areas for attention.

Many countries use volunteer peer reviewers for accreditation inspec-
tions. Although the commitment required can be seen as a cost to the re-
viewers’ organizations, a benefit is the training they receive, which can be
put to effective use in internal audits.

9.2.2.15 Subsection 4.15:
Management Reviews

The management system is owned by and is the responsibility of the top
management. It is incumbent on the management to review the overall ef-
fectiveness and currency of the system and the range of services offered by
the laboratory. This should be done annually, and should include input from
internal audits, clients, staff, and quality control records. The review should
also consider supplier performance, wider management issues, and any
changes that have affected the laboratory. The review should be used to
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identify areas for improvement and to set goals and action plans for the
coming year.

9.2.3 Section 5: Technical Requirements

Table 9.3 gives the subsections of section 5 of the ISO/IEC 17025 standard,
which details technical requirements. References to testing and measure-
ment and a focus on how tests should be performed and reported make this
part of the standard unique and of value to analytical chemists.

9.2.3.1 Subsection 5.1: General

The standard recognizes the factors that determine the correctness and reli-
ability of test results: human factors, accommodation and environment,
methods, equipment, sampling, and the handling of test items. In this list,
“measurement traceability” is mentioned, but in fact metrological traceabil-
ity, with measurement uncertainty and method validation, are really sub-
sumed in “methods.” (subsection 5.4). The effect of each of these factors on
measurement uncertainty will differ considerably among kinds of tests.

9.2.3.2 Subsection 5.2: Personnel

It is heartening that the writers of the standard understand that chemical
analysis is a human activity, and that the competence of staff is at the core
of a successful laboratory. In chapter 5 I described some international inter-
laboratory studies showing there was little correlation between correctness
of results and any identifiable factor (including accreditation), leading to
the conclusion that the most important influence on the result is the ability
of the analyst performing the test. The standard requires appropriately quali-

Table 9.3. Sections of ISO/IEC 17025:2005 dealing with technical
requirements

Subsection Subject

5.1 General
5.2 Personnel
5.3 Accommodation and environmental conditions
5.4 Test and calibration methods and method validation
5.5 Equipment
5.6 Measurement traceability
5.7 Sampling
5.8 Handling of test and calibration items
5.9 Assuring the quality of test and calibration results
5.10 Reporting the results
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fied staff. The qualification may be education and training, experience, or
demonstrated skills. Within a laboratory there might be a range of skills, but
the manager or person who is the approved signatory will usually have a
tertiary qualification (diploma, undergraduate degree, or postgraduate de-
gree). During assessment any formal qualifications of staff will be consid-
ered, together with observation of staff conducting analyses for which they
claim competence. Any specific skills are additional to general laboratory skills
such as good occupational health and safety practices. In the documentation
of the laboratory, job descriptions of key personnel must be maintained. On-
going training within the organization is also important in maintaining the
quality of a laboratory.

New to the 2005 standard is the requirement for an organization to mea-
sure the effectiveness of training against predetermined criteria. Sending staff
to take courses chosen for the excellence of the cuisine and exotic location
might not stand the scrutiny of an assessor when the time comes for renewal
of accreditation.

9.2.3.3 Subsection 5.3: Accommodation
and Environmental Conditions

Sufficient and well-maintained accommodation is essential to a quality labo-
ratory. The standard addresses aspects of security and distinction between
areas used for different purposes, although the requirements are not so strin-
gent as those laid out in GLP (see section 9.4.2.3). Good housekeeping is
stressed, and assessors usually notice when a laboratory is badly kept, or if
there are signs of an unusual and sudden clean up.

9.2.3.4 Subsection 5.4: Test and
Calibration Methods
and Method Validation

The central activity in an analysis usually revolves around a procedure in-
volving the test item, calibrators, and equipment. A measurement is made
following a measurement procedure according to one or more measurement
principles, using a prescribed measurement method. This statement implies
there has been some prior activity to identify the principles and to develop
and validate the method. Much of the work will generally have been done
by others, but in choosing to use a given method for a given test item, an
analyst must use his or her judgment (assuming the client has not specified
the method). Whatever method chosen, the client must be informed of it.

For nonstandard methods, the standard 17025 lists 11 items required for
the procedure. Methods must be validated (see chapter 7) and measurement
uncertainty estimated (see chapter 6). In subsection 5.4, reference is made
to the control of data, particularly in relation to electronic or automated
equipment.
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A large part of the documentation of the laboratory will be of the proce-
dures of the test method and associated sample preparation and handling.
However, use of a standard method that is published with sufficient infor-
mation as to how to carry out the method does not require further documen-
tation.

9.2.3.5 Subsection 5.5: Equipment

The requirements for equipment are reasonably obvious: the equipment
should be available, appropriate to the method, used by qualified person-
nel, in good working order, and calibrated. To demonstrate this, proper
records of all equipment must be maintained, uniquely identifying the equip-
ment and keeping a history of its maintenance, calibration, and any repairs
or modifications. Subsection 5.5 references equipment outside the imme-
diate control of the laboratory, putting the onus on the laboratory for ensuring
that this equipment meets the standard. Software that is part of an instrument
or that is used to calculate results of a method falls under the requirements of
this section. All software should be validated and recorded. In particular, there
should be safeguards against unauthorized adjustments to the software (and
hardware) that might invalidate results. If equipment has been borrowed or
used outside its usual scope, it should be checked before use.

9.2.3.6 Subsection 5.6:
Measurement Traceability

Metrological traceability of measurement results is an important part of
ensuring that an analysis is fit for the customer’s purpose. The standard was
written before a full understanding of the nature of metrological traceabil-
ity was gained, and there are some statements that conflict with the current
VIM definition of metrological traceability (not least the use of the term
measurement traceability; metrological traceability is a property of a mea-
surement result, not of a measurement). ISO/IEC 17025 is also written for
calibration laboratories whose requirements for metrological traceability are
somewhat different from those of a testing laboratory. However, the approach
is clear and in the sprit of the modern approach to metrological traceabil-
ity. All calibrations should be traceable to an appropriate metrological stan-
dard. ISO/IEC 17025 goes further than the VIM by specifying that there
should be traceability to the international standard (SI) where possible, but
where not, the reference used should be clearly described and agreed-upon
by all parties concerned. At the end of section 5.6.2.1.2 in the standard is
the requirement, where possible, for participation in program of inter-
laboratory comparisons.

When discussing reference materials and reference standards (standard
section 5.6.3), the quantity values carried by reference materials must be
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traceable to SI units of measurement or to the values carried by certified
reference materials. These materials must be stored and handled properly
to preserve their reference values. Because the standard covers physical
testing and calibration, it mentions “reference standards” that must be trace-
able and maintained in calibration.

The standard recognizes (section 5.6.1) that the traceability requirements
should apply to aspects of the method that have a significant influence on
the result of the measurement. For an analytical chemistry laboratory, as well
as for the reference materials used for calibrating the response of an instru-
ment, balances will need to be calibrated from time to time, and appropri-
ate certification of the traceability of glassware and thermometers must be
available.

9.2.3.7 Subsection 5.7: Sampling

Sampling was not part of the original Guide 25, but because the role of the
laboratory is seen as more proactive in the present standard, provision has
been made for the testing to include acquiring the test material. If the labo-
ratory does sample the test material in the field, then the provisions of the
standard are considered to cover this aspect of the test. There must be a
sampling plan that is based, whenever reasonable, on appropriate statisti-
cal methods. Some sampling will be able to use statistical principles, and
there are a number of standards that guide sampling (ISO 1980, 2003). In
other circumstances, perhaps at a crime scene, sampling is less methodical1

and whatever can be sampled is sampled. Any deviations from the desig-
nated sampling plan must be documented with the test results and commu-
nicated to the appropriate personnel. An accreditation body might place
restrictions on the scope of accreditation if it cannot adequately assess the
sampling activities of a laboratory.

9.2.3.8 Subsection 5.8: Handling of Test
and Calibration Items

The laboratory must have procedures for the proper and safe handling of all
test materials, including provisions to ensure the integrity of the test mate-
rials. Subsection 5.8 also requires adequate identification of all samples and
facilities for tracking samples within the laboratory. Modern laboratory in-
formation management systems (LIMS) are used in many laboratories. These
systems should be properly validated and have auditing and security facili-
ties. Any concerns about samples (e.g., leaking or damaged containers),
should be documented and reported. For forensic samples, chains of cus-
tody must be established, and the custody procedures should be documented.
Procedures should specify how long after analysis test items should be re-
tained and how they are ultimately disposed.
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9.2.3.9 Subsection 5.9: Assuring the Quality of
Test and Calibration Results

For a section that embodies the rationale of the standard, subsection 5.9 is
remarkably short. The laboratory must have quality control (QC) procedures
that are documented, with QC data recorded in such a way that trends are
detectable and, where practical, statistical techniques applied. Five QC tech-
niques are offered as a nonexclusive list;

1. Regular use of certified reference materials and/or internal quality
control secondary reference materials

2. Participation in interlaboratory comparison or proficiency testing
programs

3. Replicate tests using the same or different methods
4. Retesting of retained items;
5. Correlation of results for different characteristics of an item.

There is no mention of control charts or other graphical QC tools (see
chapter 4). There is a note that the selected methods should be appropriate
for the type and volume of the work undertaken. As part of the emphasis on
the overall quality framework, the standard now requires a laboratory to
analyze QC data and to implement corrective action if results are outside
predefined criteria.

9.2.3.10 Subsection 5.10:
Reporting the Results

The outcome of a chemical test is a report containing the results of the
analysis and other relevant information. In a recent unpublished survey,
one of the most frequent complaints from the clients was the inconsistency
and lack of clarity in test reports. Most of the requirements of the standard
can be met in a straightforward manner on a single-page form, perhaps on
a template that requires the appropriate sections to be completed (see fig-
ure 9.2).

There is no standard report form offered because the standard requires it
be completed “and in accordance with any specific instructions in the test
or calibration methods” (subsection 5.10.1). It is noteworthy that the gen-
eral notes to subsection 5.10 do allow a simplified report to be issued to
internal clients, as long as the full information is readily available in the
laboratory. There are 11 items that are required on test reports and calibra-
tion certificates (unless there are valid reasons for their exclusion) plus five
additional items that cover aspects of interpretation and six items when
sampling has also been carried out as part of the test. Increasingly test re-
ports are submitted electronically. This is referred to in the standard (sub-
section 5.10.7) and is allowed as long as the requirements of the standard
are met. Of importance is the integrity of the report and the nature of the
signature when the report is sent by e-mail or via the Internet.
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The ILAC recommends that the logo of the accreditation body not appear
on the test report, lest it be taken as a direct endorsement of the test results.
However, the marketing value for the accreditation body is as significant as it
is to the testing laboratory, and the practice of including the logo is widespread.

Opinions and interpretations are now allowed and covered by the stan-
dard (subsection 5.10.5), although not always included in the scope of ac-
creditation. Interpretations are envisaged as including statements about the
compliance of the result to a specification, if contractual requirements have

Figure 9.2. A template test report that conforms to ISO/IEC 17025. The
letters a to i refer to subclauses of 5.10.2 of ISO/IEC 17025.
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been fulfilled, recommendations on the use of the results, and guidance for
improvements. Although the ability to offer suitable expert opinion has
improved the status of the analyst from mere automaton to a participant in
the business at hand, this new-found freedom must be exercised with ex-
treme caution. Obvious caveats are that the analyst must have sufficient
expertise to offer the opinion and certainly should not stray outside his or
her competence. Analysts should also ensure that they have sufficient knowl-
edge of the problem to make their advice appropriate. The laboratory will
be held accountable for any statement made as part of the service paid for,
and in this litigious age, loss suffered by the customer on account of the
advice will inevitably attract a demand for recompense. Accreditation bod-
ies may not allow opinion to be given on the certified test report if they do
not have procedures for assessing opinions offered. In this case the opinion
must be presented on a separate sheet, not endorsed by the accreditation
body. This is an example of possible mismatch between the standard and
the rules of a particular accreditation body.

9.3 Accreditation to Good Laboratory Practice

In the mid-1970s, a review by the U.S. Food and Drug Administration (FDA)
of toxicology studies on a new drug by a major U.S. pharmaceutical com-
pany caused concerns that the studies had not been properly conducted. The
FDA requested a “for cause” inspection, which revealed serious discrepan-
cies and evidence of fraud and misinterpreted data. In 1976 the government
proposed regulations to prescribe principles of Good Laboratory Practice
(GLP) for the nonclinical safety testing of materials in pharmaceutical prod-
ucts, pesticide products, cosmetic products, veterinary drugs, food additives,
feed additives, and industrial chemicals. These became effective in 1979,
and the U.S. Environmental Protection Agency followed with nearly iden-
tical regulations in 1983. This practice was taken up around the world, and
in 1981 GLP found a home with the Organization for Economic Co-operation
and Development (OECD). The OECD principles were revised and repub-
lished in 1998 (OECD 1998). Similar to ISO 17025, but with a less technical
and more managerial emphasis, the principles of GLP cover the conditions
under which studies are planned, performed, monitored, recorded, archived,
and reported. A study that conforms to GLP allows authorities in many coun-
tries to recognize test data and so avoids duplicate testing, prevents the
emergence of nontariff barriers to trade, and reduces costs for industry and
governments. Thus, GLP does for the management of a nonclinical safety
testing program what a Key Comparisons mutual recognition arrangement
does for more general test results. GLP does not cover the conduct of basic
research or the development of analytical methods. A list of the main sec-
tions of the OECD-GLP document is given in table 9.4, and a commentary
on the sections follows.
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9.3.1 Section 1: Test Facility Organization and
Personnel

Because of its history, GLP emphasizes the need for a single person to be
legally responsible for a study. The “study director” is appointed by the
management of the organization to oversee the study, to sign off on the plan,
and to take responsibility all the way through, until he or she signs and dates
the final report, indicating acceptance of responsibility for the validity of
the data (subsection 1.2h). An assistant study director is not allowed, but
an alternate can be designated to act when the study director is not avail-
able. A study director can direct more than one study at a time. The study
director is distinct from the principal investigator and other study person-
nel who must at all times conform to GLP, but are beholden to the study
director’s overall control.

9.3.2 Section 2: Quality Assurance
Program

The principles of GLP require an independent quality assurance (QA) pro-
gram to ensure that the study is being conducted in compliance with GLP.
The QA personnel cannot overlap with those of the study because of the
potential conflict of interest, but they may be part-time staff if the size of
the study does not warrant a full-time QA section. The responsibilities of
the QA unit are to maintain copies of plans, standard operating procedures,
and in particular the master schedule of the study, and to verify, in writing,
that these conform to GLP. The QA unit is responsible for inspections and
audits, which must be documented and the results made available to the
study director and the principal investigator. The QA unit also signs off on
the final report. Any problems discovered or corrective action that is rec-
ommended by the unit must be documented and followed up.

Table 9.4. Sections of the OECD-GLP, revised 1998 (OECD 1998)

Section Subject

1 Test facility organisation and personnel
2 Quality assurance programme
3 Facilities
4 Apparatus, material and reagents
5 Test systems
6 Test and reference items
7 Standard operating procedures
8 Performance of the study
9 Reporting of study results
10 Storage and retention of records and materials
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9.3.3 Section 3: Facilities

The requirements for the facilities for the study are that they be adequate
for the needs of the study, particularly with respect to controlling hazards
and maintaining the integrity of the test items. There should also be suffi-
cient space for archiving reports and materials and facilities for disposing
of wastes.

9.3.4 Section 4: Apparatus, Material,
and Reagents

Less extensive than ISO/IEC 17025, section 4 of GLP states that all appara-
tus and materials should be appropriate for the tests, used in accordance
with the SOPs, and calibrated, where appropriate, to national or interna-
tional standards of measurement. Chemicals should be properly labeled, with
expiration dates and available material safety data sheets.

9.3.5 Section 5: Test Systems

Biological test systems are considered separately from physical and chemi-
cal systems, which need only be suitably designed and located, with integ-
rity maintained. For biological tests involving animals, proper records must
be maintained, avoiding contamination, and they must be treated humanely.
Laboratories conducting field testing in which sprays are used should be
careful to avoid cross-contamination.

9.3.6 Section 6: Test and Reference Items

All test and reference items should be identified with a Chemical Abstracts
Service registry number or other unique code. Where test items are novel
compounds supplied by the sponsor of the study, there should be an agreed-
upon identification system to allow the item to be tracked through the study.
The composition and concentrations of prepared solutions should be known
and recorded. A sample for analytical purposes of each batch of test item
should be retained for all except short-term studies. This requirement has
the potential to overload storage facilities very quickly, and some sensible
arrangement must be made to archive samples of importance, while not giv-
ing an inspector cause to worry about inappropriate disposal of items.

9.3.7 Section 7: Standard Operating Procedures

A standard operating procedure (SOP) is a document that prescribes how to
perform an activity, usually as a list of action steps to be carried out seri-
ally. The detail in an SOP should be sufficient for a suitably trained and
competent person to carry out the actions. It is important that SOPs docu-
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ment what is actually done, not a theoretical procedure. A recent drug case
in Australia foundered because the government laboratory was forced to
admit that it failed to follow its own SOPs (Hibbert 2003), which could not
be properly followed anyway. The laboratory had done what was practical,
but the procedures were not in the SOP. An enterprising defense lawyer
exploited this fault (R v Piggott 2002). Any deviations from the SOP must
be approved and documented. Section 7 notes that other documents, books,
and manuals can be used as supplements to the SOPs. SOPs can be written
for routine inspections, quality assurance and control procedures, analyti-
cal methods, sampling, data handling, health and safety precautions, record
keeping, storage, handling of test materials, and so on.

Copies of SOPs should be readily available for personnel. There are tem-
plates available for writing SOPs that ensure proper history of the documen-
tation, page numbering, authorization, and so on.

9.3.8 Section 8: Performance of the Study

The study is performed according to a plan approved (by dated signature)
by the study director and verified for GLP compliance by the QA unit. Some
countries also require formal approval by the test facility management and
the sponsor. The plan should usually contain identification of the study, the
test item and reference item, information concerning the sponsor and the
test facility, dates, test methods, documents and materials to be retained,
and other issues that have been identified.

In the conduct of the study, which must conform entirely to the study plan,
all raw data must be available for audit, including computerized records.
Proper laboratory notebooks should be used, with numbered pages and sig-
natures of the laboratory staff and witnesses and dates on each page. Any
changes should be made so as not to obscure the original entry (i.e., the re-
vision should not be made over the original, correction fluid must not be
used, nor heavy crossing out). A line should be lightly drawn through the
incorrect entry and the correction made next to it, with an initialed expla-
nation for the change.

9.3.9 Section 9: Reporting of Study Results

The outcome of the study is a final report that is approved and signed by
the study director, which becomes the official record of the study. Once
released, no further reports should be made, except as amendments and
addenda to the released report. A final report should have, at a minimum,
the following sections:

1. Identification of the study, the test item and reference item
2. Information concerning the sponsor and the test facility
3. Dates
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4. Statement of QA procedures and audits and compliance to GLP
5. Description of materials and test methods
6. Results
7. Information of storage of materials, data, and documentation.

9.3.10 Section 10: Storage and Retention
of Records and Materials

The regulations and laws under which the study is performed might deter-
mine the length of time for which materials and documents are stored. Under
GLP, the study plan must detail what is to be stored, where it is to be stored,
and under what conditions and for how long. To comply with GLP these
arrangements must be adequate to allow retrieval and, if necessary, reanalysis
of material or data. Access to the archives must be by designated and autho-
rized personnel, and any access must be documented. If the organization
conducting the trial ceases to be in business, the archive must be transferred
to the sponsoring organization.

An issue that is not addressed, but is of concern is the currency of com-
puter records. Storage from tapes to disks (hard or floppy) to solid-state stor-
age devices presents the problem of reading data more than a couple of years
old. It is incumbent on the organization to ensure that any electronic data
can be read during the projected life of the archive. This may involve peri-
odically upgrading the storage or storing necessary reading devices with the
archive
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10
Conclusions: Bringing It All Together

286

10.1 Introduction

If you have read this book, whether a few pages at a time, by jumping back
and forth, or meticulously from beginning to end, the aim of this chapter is
to draw together the methods, concepts, and ideas to help you answer the
question, how do I make a good analytical measurement? If nothing else,
you will have discovered, like the answers to the greater questions of life,
that there is not a simple prescription for quality assurance that if followed
leads to success. Even knowing if you have the right answer is not always
vouchsafed; is customer satisfaction sufficient? Does the continuing solvency
of your business say that something must be going well? Does staying within
± 2σ in interlaboratory studies cause you happiness? The best laboratories
do all of this and more. At the heart of a good laboratory is an excellent
manager who has recruited good staff, set up a culture of quality, and who
understands the science and business of chemical analysis and the require-
ments of his or her clients. I do not believe laboratories can be run by people
with only managerial skills; at some point a chemical analyst is going to have
to take responsibility for the product.

In this reprise of the book’s contents I revisit the six principles of valid
analytical measurement (VAM) so cleverly enunciated by the Laboratory of
the Government Chemist. But first some words about clients and samples.
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10.2 Clients and Samples

10.2.1 Clients

As has been stressed throughout this book, many problems can be solved
by chemical analysis, and the point of chemical analysis is therefore not to
do chemistry for its own sake, but to contribute to the solution of those prob-
lems. Clients, or customers as now found in ISO/IEC 17025, come in many
shapes and sizes, from people who gladly admit no scientific knowledge at
all to fellow professionals who can discuss the analysis as equals. The first
kind are more difficult to work with than the latter, although colleagues who
meddle are never totally welcome. An apparently simple request to analyze
something might require extensive negotiation about exactly what is needed.
A written statement of what analytical services are to be provided should
be given to the prospective client, and the final report should be judged
against this document. After ISO/IEC 17025, the vexing question of report-
ing measurement uncertainty has arisen. There are still many laboratories
that would rather not concern the client with measurement uncertainty, and
while they report the reproducibility given in the standard method as their
measurement uncertainty to the accrediting body, they do not really engage
with the concept. Unfortunately, because measurement uncertainty is at the
heart of providing quality results, these laboratories lay themselves open to
error. If a client does ask for a statement of measurement uncertainty, which
they are entitled to do, then such a laboratory might find it hard to justify
their figures. Always stress to the client that the measurement uncertainty
is an integral part of a measurement result and completes the “information
about the set of quantity values being attributed to a measurand.” Measure-
ment uncertainty adds to, rather than detracts from, a result.

10.2.2 Samples

A measurement result should identify the measurand as well as give the quan-
tity value and measurement uncertainty. It is the definition of the measurand
that is at the heart of the result. Consider the following measurands relating
to a 1-L sample from a lake:

1. The amount concentration of chromium in the test sample
2. The amount concentration of chromium(VI) in the test sample
3. The amount concentration of chromium(VI) in the lake
4. The amount concentration of bioavailable chromium(VI) in the lake.

The value of each of these measurands could well be different, with very
different measurement uncertainties. If measurement 1 implies total chro-
mium, then it is likely that its value will be of greater magnitude than that
of measurement 2. As soon as the result encompasses the larger system, the
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issue of sampling, only touched upon in this book, becomes important. There
is some debate about whether a measurand such as that in item 3 can be
measured with metrological traceability because of the sampling step, and
some hold that the traceable measurement should stop with the laboratory
test sample. Further calculations and estimations might then be done to
provide a result for the lake as a whole, but these would be derived results
from the information obtained by the analysis. The analyst should only take
responsibility for what is in his or her control. With training and experi-
ence, the analyst can learn the ins and outs of sampling lakes, and so take
sufficient samples to be analyzed. The analyst should not be given a single
sample of water labeled “from Lake X” and be expected to return a result
reflecting the amount concentration of chromium(VI) in Lake X. Of more
dubiety still is measurement 4, where the definition of bioavailability must
be carefully stated, and the result is then tied to that definition, in addition
to the sampling issues discussed above.

A hypothetical graphical comparison of values and measurement uncer-
tainties for this example is shown in figure 10.1. Note that the usual approach
to evaluating measurement uncertainty leads to expanded uncertainties that
include zero. Applying the Horwitz estimate for relative standard deviation
(see chapter 6) leads to a 100% uncertainty for a relative concentration of
about 5 ppt (1 : 5 × 10-12), although such an extrapolation is not advised (see
chapter 6). As a final point, when a claim is made about the concentration
of a species in something like a lake, the date and time must also be speci-
fied, as the measurement will only be valid for the particular moment when
the samples were taken. A large part of the uncertainty for results that refer
to the lake as a whole will arise from concerns about changes in the compo-
sition of the samples when they are taken from the body of the lake.

Figure 10.1. Four measurement results
corresponding to measurands. 1, the amount
concentration of chromium in the test sample;
2, the amount concentration of chromium(VI)
in the test sample; 3, the amount concentration
of chromium(VI) in the lake sampled; and 4,
the amount concentration of bioavailable
chromium(VI) in the lake sampled.
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10.3 Valid Analytical Measurement Revisited

So are you now in a position to make valid analytical measurements? Re-
call the six principles (LGC 2006):

1. Analytical measurements should be made to satisfy an agreed-upon
requirement.

2. Analytical measurements should be made using methods and equip-
ment that have been tested to ensure they are fit for purpose.

3. Staff making analytical measurements should be both qualified and
competent to undertake the task.

4. There should be a regular independent assessment of the technical
performance of a laboratory.

5. Analytical measurements made in one location should be consis-
tent with those elsewhere.

6. Organizations making analytical measurements should have well-
defined quality control and quality assurance procedures.

10.3.1 Principle 1: Clients

The VAM recommends identifying a “responsible analyst” who can talk to
the client and determine what services are needed for the analysis. Aspects
that might impinge on the discussion could be the nature of the analyte and
matrix, the sampling protocol, the purpose of the analysis, and whether any
legal or regulatory limits are involved. Identification of critical issues will
help the analyst and the client arrive at the most effective solution in terms
of time, cost, and overall quality. The job of the responsible analyst is to
interpret the client’s desires into parameters of the analysis,—for example,
the target measurement uncertainty will be contingent on the confidence
the client requires in the result. If there are choices between a quick, but
less precise method and a more expensive one, then the likely range of re-
sults will need to be assessed. Even if the result must be compared to a limit
with a higher degree of precision, it might be decided to use a quicker and
cheaper method as a screen and to use the better method for confirming cases
for which the result and (higher) uncertainty include the limit. This requires
some care on the part of the analyst to educate the client in just what a re-
sult and measurement uncertainty conveys.

A benefit of this approach has been to see a more informed body of cli-
ents. The old days of “trust me, I’m an analyst” have given way to a partner-
ship in search of appropriate information on which the client can act with
confidence.

10.3.2 Principle 2: Methods

Chapter 8 considers method validation, the procedures that demonstrate that
a method used in a laboratory can achieve a set of predetermined performance
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criteria. In using standard methods, an organization still needs to show that
the method, as practiced in their laboratory with the analysts employed at
the time, will give results that follow the criteria. In my opinion this is one
of the most often overlooked quality principles. No one expects working
laboratories to revalidate entire methods on a regular basis, but simply
running a control sample with every batch does not demonstrate the mea-
surement uncertainty often claimed. Older standard methods have repro-
ducibility and repeatability information, and one of these is often passed
on as a measurement uncertainty, without consideration of other factors, or
even a demonstration that these figures are appropriate for the laboratory.
In a recent case in Australia concerned with horse racing, it was emphasized
that the measurement uncertainty of a particular test had been agreed-upon
by all laboratories in the country, despite evidence that the checks on the
ranges of repeat measurements were quite different from one laboratory to
another. A point well made by the VAM is that particular care must be taken
when making nonroutine measurements. Validation or verification then
becomes particularly important.

10.3.3 Principle 3: Staff

There are two aspects to having appropriately competent and trained staff.
First, the required level of knowledge and training must be determined be-
fore employing a person. Whether this implies a postgraduate qualification,
a graduate degree, or a technical certificate, the organization needs to be
aware of the level of understanding and basic knowledge needed for the
particular tasks to be undertaken. A limited understanding of the principles
of operation of an instrument or of the basis on which a method is founded
can lead to serious errors. A common example seen in students starting their
training is using an instrument outside its applicable range. A blessing and
a curse of modern instruments is that they are increasingly “idiot proof.”
An instrument manufacturer will try to sell the idea that the “intelligent”
software will prevent a hapless operator from making egregious errors. Un-
fortunately, artificial intelligence is often more artificial than intelligent, and
while some checks along the way are desirable, no instrument can compen-
sate for the truly creative idiot. Paying more for the instrument and less for
the operator can be a recipe for disaster.

Having employed a person with the right credentials is only the first step.
As with laboratory accreditation, an appropriate qualification is a necessary,
but not sufficient, criterion for competence. All staff should undergo care-
ful training when they begin work or when they are asked to undertake new
duties. This training should include close scrutiny of their experimental
technique, demonstration that they understand quality principles, and veri-
fication that they can apply a method to give results consistent with the
claimed measurement uncertainty. Good organizations will also make sure
that employees have on-going training. Modern analytical chemistry is evolv-
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ing, with new methods and new applications of methods, and even in the
field of metrology in chemistry concepts and methodology are continually
under debate. It is ironic that accountants in many countries have to under-
take regular training, otherwise they lose their right to practice, while ana-
lytical chemists can sit back and enjoy their decades-old qualifications,
without having to prove any modern competence.

All training should be documented. Some professional associations have
introduced an accredited portfolio for members in which the career of an
analyst can be documented and their skills clearly listed. Ideally, perfor-
mance in any course taken should be assessed. Certificates on a wall for
merely showing up for class are not sufficient.

Finally, it should be stressed that well-trained personnel will be better
motivated, make better measurements, and will pay for their training many
times over.

10.3.4 Principle 4: Assessment

Chapter 5 covers the principles and practice of interlaboratory studies, in-
cluding proficiency testing of laboratories. This principle of the VAM stresses
that no matter how careful a laboratory is in making measurements, with-
out comparison with external results, it is possible for a laboratory to have
a bias or trend that can go undetected. Even regular analysis of a certified
reference material can hide a problem across the complete method of an
analysis. Consider a storage procedure that degrades both samples and cer-
tified reference materials and calibration standards about equally. Until a
proficiency testing sample is analyzed and the result is shown to be very
different from other laboratories, such a problem might never be detected
(until a client complains). Best of all is regular proficiency testing, when
comparison against peer laboratories is made for each sample, but a regular
trend can be observed. Is the laboratory getting better? Is its intralaboratory
precision acceptable? When there was that one-off bad result, were the causes
understood, and did this lead to changes in procedures?

Increasingly a price of accreditation is mandatory participation in pro-
ficiency testing schemes. If the scheme test materials really do match the
routine analyses performed by the laboratory, proficiency testing gives an
excellent assurance to both the laboratory and the client as to the quality of
the laboratory’s results. If the scheme has assigned quantity values for the
test materials sent out, the cohort as a whole can be judged, and biases at
the sector level discovered.

10.3.5 Principle 5: Comparability

Metrological traceability (chapter 7) is at the heart of comparability of re-
sults. As emphasized in chapter 7, very few measurements are made that
are not compared with other values. In trade, buyer and seller often analyze



292 Quality Assurance for the Analytical Chemistry Laboratory

a product, the doctor assesses a result against the knowledge of what is
healthy, a regulatory agency compares an analytical result against the legal
limit, and a manufacturer compares today’s results against yesterday’s and
earlier results. Without confidence in a result, it cannot be compared and
so has little use to the customer.

Laboratories must use calibration standards that are metrological trace-
ability to an embodiment of the unit in which they are expressed. This re-
quires use of certified reference materials, usually to make up working
standards that calibrate instruments in the laboratory. Implicit is that results
will be expressed in common units, and while this is increasingly the case,
the example of the Mars Climate Orbiter (chapter 1) should signal those still
using versions of imperial units that it might be time to join the rest of the
world and use SI units.

The other side of metrological traceability is the proper estimation of mea-
surement uncertainty. Chapter 6 gives the GUM (Guide to the Expression of
Uncertainty in Measurement) approach, currently espoused by most bodies,
and with a philosophical basis in the latest revision of the International Vo-
cabulary of Basic and General Terms in Metrology (VIM; Joint Committee for
Guides in Metrology 2007). In the third edition of the VIM, many additions
and changes have resulted from incorporating the needs of chemical measure-
ments. The draft introduction to the third edition stresses the move away from
concepts involving true answers with different kinds of error to the “uncer-
tainty concept” in which a measurement result consisting of a value and
uncertainty gives information about the dispersion of values that can be at-
tributed to the measurand after measurement. While this is still filtering down
to the practical laboratory, I hope that a better understanding of the basic
metrological premises will allow more sensible decisions to be made.

10.3.6 Principle 6: Quality Assurance
and Quality Control

This final principle in some respects subsumes all the others. A proper QA
approach will include communication with the client, valid methods and
equipment, trained staff, methods for tracking quality (proficiency testing),
and making traceable measurements with appropriate measurement uncer-
tainty. The totality must be stressed. Given conscientious people at differ-
ent levels in an organization, each contributing to a quality service, an
organizational structure and an imprimatur from the wider organization is
still needed. In this respect the more laudable statements from quality gurus
about a state of mind of quality have some point.

Regular audit and review of the quality system are essential. It must al-
ways be in the mind of the QA manager whether the system is doing its job.
Having no problems might sound as many warning bells as numerous iden-
tified failures. If QC samples (chapter 4) are being tested and flagged when
they are outside the 95% confidence intervals, then do 5 out of a 100 actu-
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ally fail? If not, the tolerances are set too wide. In other words, the system is
not necessarily in statistical control. Unfortunately, the job of QC manager
is one of constant worry and doubt.

Accreditation to ISO/IEC 17025 or GLP is becoming a standard approach
to creating a quality system (chapter 9). Note that accreditation, as such, is
not part of the VAM principles, but it is one of alternative quality systems
(see chapter 1). Like any quality system, accreditation only fulfills its pur-
pose if implemented properly. Some laboratories have done the minimum
to achieve accreditation, and then take the view that having paid for their
accreditation payment of the annual fee will then suffice. This practice is
evidenced when accredited laboratories perform no better in testing rounds
than experienced laboratories without accreditation (see chapter 5).

Modern quality systems are based on a statistical approach to measuring
quality (chapters 2, 3, and 4). Chemical analysis has always been at a disad-
vantage compared to many fields of measurement because of the small num-
ber of measurements that can be made. Duplicate measurements are often
considered the best that can be achieved, and any more is a luxury. Over
longer periods the intralaboratory reproducibility can usually be estimated
quite well from the greater set of data available, but the uncertainty associ-
ated with small degrees of freedom remains a limiting factor. Multiplying a
combined standard uncertainty by 2 to give a 95% confidence interval is
often done without a proper regard to the degrees of freedom, which are not
always the infinity implied by k = 2 (see chapter 6).

10.4 Final Words

I have enjoyed writing this book. I have learned much along the way, and
although I remain an academic whose day-to-day experience of analytical
chemistry is mostly vicarious through my students and others, I have tried
to pass on some of the knowledge I have gained. After reading this book, my
earnest hope is that a quality assurance manager can be confident enough
to implement an appropriate system that suits the laboratory, the organiza-
tion (the manager’s bosses who think they pay for it), and ultimately the
organization’s clients (who really pay for it).
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AAS Atomic absorption spectrometry
AOAC Association of Official Analytical Chemists
ARL Average run length
ASTM American Society for Testing and Materials
BIPM International Bureau of Weights and Measures
CAS Chemical Abstracts Service
CCQM Consultative Committee on the Amount of Substance
CGPM General Conference on Weights and Measures
CIPM International Conference on Weights and Measrues
CITAC Cooperation in International Traceability in Analytical

Chemistry
CRM Certified reference material
CV Coefficient of variation
DMADV Define – measure – analyze – improve – control
DMAIC Define – measure – analyze – design – verify
EAL European Co-operation for Accreditation of Laboratories
EURACHEM A focus for analytical chemistry in Europe
EUROMET Association of European Metrology Institutes
GC Gas chromatography
GLP Good Laboratory Practice
GUM Guide to the Expression of Uncertainty in Measurement
HPLC High-performance liquid chromatography
ICP-MS Inductively coupled plasma mass spectrometry
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ICP-OES Inductively coupled plasma optical emission spectroscopy
IDMS Isotope dilution mass spectrometry
IEC International Electrotechnical Commission
ILAC International Laboratory Accreditation Cooperation
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
LC Liquid chromatography
LGC Laboratory of the Government Chemist (U.K.)
LIMS Laboratory information management system
LOD Limit of detection
LOQ Limit of quantitation
MAD Median absolute deviation
MRA Mutual recognition arrangement (agreement)
MS Mass spectrometry
MSDS Material safety data sheet
NAMAS National Measurement Accreditation Service
NATA National Association of Testing Authorities
NIST National Institute for Standards and Technology
NMR Nuclear magnetic resonance
OECD Organization for Economic Co-operation and

Development
pdf Probability density function
QUAM Quantifying Uncertainty in Analytical Measurement
RSD Relative standard deviation
SOP Standard operating procedure
SPC Statistical process control
TBT Technical barrier to trade
VAM Valid Analytical Measurement
VIM International Vocabulary of Basic and General Terms in

Metrology
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acceptable measurement uncertainty, 232
acceptable precision, 106, 245, 291
acceptable tolerance, 20
acceptance criterion, 130, 131, 133, 134
accepted reference value, 146, 147, 148
accreditation, 14, 17, 105, 136, 140,

148, 154, 156, 162, 166, 173, 199,
229, 234, 262–285, 290, 291, 293

to ISO/IEC 17025, 267–280
to Organization for Economic Co-

operation and Development
(OECD) Good Laboratory
Practice, 280–284

accuracy, 17, 24, 229
index of, 107
of instrument, 166
from interlaboratory trials, 231
lack of, 153
in method validation, 232, 233, 251
synonym for trueness, 163

action limit. See control limits
acts of God, 164
alternative hypothesis, 44
American Society for Testing and

Materials (ASTM), 140, 145, 227
analysis of variance. See ANOVA
Analysis ToolPak. See Excel
analyte, 3, 4, 24, 63, 130, 132, 133, 134,

141, 155, 171, 214, 225, 232, 238,
254, 289

ANOVA, 23, 50–59
in interlaboratory studies, 142, 147,

150, 153
least significant difference (LSD), 51

in method validation, 246
one-way, 48, 51–57
two-way, 57–59

AOAC International (Association of
Official Analytical Chemists), 8,
9, 169

ARL. See control charts
assigned reference value (ARV), 30, 32,

115, 134
and degree of equivalence, 158
in International Measurement

Evaluation Programme (IMEP),
156, 157

in interlaboratory studies, 138, 143,
144, 149, 150, 151, 291

ASTM. See American Society for
Testing and Materials

atomic absorption spectrometry (AAS),
156

atomic clock, 212
atomic weight, 215

of cadmium, 216–218
average. See mean
AVERAGE. See Excel
average run length (ARL). See control

charts

base unit. See unit
benchmarking, 18, 19, 93
Berzelius, 24
bias, 4, 23, 231, 233, 251–254, 291

and control charts, 118, 122, 123, 124
correction for, 170, 180, 181, 198, 233
estimation of, 106, 112, 181, 184–186
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bias (continued)
example calculation, 48
and interlaboratory studies, 138,

145–148, 150–152, 230
laboratory, 138, 146, 171, 252
maximum, 235 (see also tolerance)
and measurement uncertainty, 164–

165
method, 138, 145, 146, 152, 171, 252
and random effects, 25
run, 170, 171, 252
significant, 48, 186
uncorrected, 105, 291
See also error, systematic; recovery

biosensor, 98, 101, 102, 103, 225, 237,
261

BIPM. See International Bureau of
Weights and Measures

blank, 130–131
in calibration, 62–63, 245
correction for, 62–63
field, 130
in limit of detection, 238–241
method, 130
in method validation, 254

blood, 225, 237
ethanol, 219
glucose, 237

box-and-whisker plot, 143–144
Box-Behnken design. See experimental

design
breathalyzer, 219

cadmium
electrode for, 99, 101–103
reference solution, 215–218
in shrimp from Chile, 7
in water, 201

calibration, 4, 59–65, 69, 205, 231, 232,
233, 242–251

certificate, 157, 218, 278
function, 59, 231, 246
hierarchy, 210, 213, 223 (see also

traceability)
linear, 59–65, 239
multivariate, 232, 245
one point, 63–64
parameters, 61, 248
range, 132, 133, 232, 245–247
solutions, 127, 129, 133, 158, 238
two point, 63–64
uncertainty of, 167, 176, 177, 179,

180, 184, 188, 194
See also limit of detection

calibrator, 106, 132, 133, 179, 184, 203,
205, 212, 213, 214, 220, 225, 275,
277, 292

primary, 205, 211, 213, 214, 221
working, 210, 219, 223, 225, 251, 292

capability
demonstration of, 154, 269
national, 138, 157

capability index, 107
process, 107, 108
for setting, 107 (see also accuracy,

index of)
capable, 106, 107
cause-and-effect diagram, 110, 112,

113, 175
in measurement uncertainty, 175–

177, 179, 181, 182, 186
CCQM. See Consultative Committee on

the Amount of Substance
center point of a design, 94, 96, 97
central composite design. See

experimental design
certified reference material. See

reference material
CGPM. See General Conference on

Weights and Measures
chain of custody, 203
chemometrics, 9
chi square test, 37, 39, 40, 44, 148. See

also Excel
cholesterol, 7, 157, 158, 159
chromatography, 132, 133, 237, 257

comprehensive, 237
gas, 133, 178, 220
liquid, 73, 74, 84, 110, 237
with mass spectrometry, 158, 159,

236, 237
two dimensional, 237

chromium, 46, 287–288
CIPM. See International Conference on

Weights and Measures
classical approach to method

validation, 233
classical least squares, 61, 179
Cochran test, 39, 45, 46, 47, 146
coefficient of determination (r2), 63
coefficient of variation (CV), 29, 235.

See also standard deviation
collaborative trial, 138, 148, 150, 172
combined standard uncertainty. See

uncertainty
commutable reference material, 214
comparability of measurement results,

161, 204, 206–210, 214, 291
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comparison
of mean against a given value, 45–48
of two means, 48–49
of two variances, 43–45

confidence interval, 4, 24, 29, 33–35,
36, 45, 56, 206, 217, 218, 292,
293

of bias, 48
of calibration parameters, 62
of effect in experimental design, 89
of estimated x in calibration, 64
and limit of detection, 238
in measurement uncertainty, 161,

169, 179, 197, 201, 256
target, 69
See also coverage factor; uncertainty,

expanded
conformity assessment, 262
Consultative Committee on the

Amount of Substance (CCQM),
12, 14, 136, 138

Key Comparisons, 153, 154, 157, 158
contour plot of response, 72
contrast coefficient, 81

for fractional designs, 91
for full factorial design, 84, 85, 87
for interaction effects, 88
for Plackett-Burman design, 92–94

control charts, 115–128
average run length (ARL), 119, 120,

121, 124, 127
CuSum, 121–127, 232
Shewhart means, 116–120, 124, 126,

127
Shewhart range, 121, 122

control limits, 36, 38, 116–122, 124,
127, 128

correlation, 73, 74, 78, 114, 156, 194,
195, 278

coefficient (r), 23, 61, 187
COUNT. See Excel
covariance, 187
coverage factor (k), 33, 158, 159, 162,

169, 179, 186, 196–197, 200, 201,
209, 218, 256. See also
uncertainty, expanded

critical value
in hypothesis testing, 36–50, 56
in interlaboratory studies, 141–143
method validation parameter, 232,

234, 235, 238
Certified reference material (CRM). See

reference material
cross-border trade, 155, 266

cross-contamination of test items, 164,
282

cumulative distribution, 27, 41, 102, 208
cumulative frequency, 40. See also

Rankit
cumulative sum chart (CuSum). See

control charts
curvature in a response, 81, 244
CV. See coefficient of variation

Data Analysis Tools. See Excel
degree of equivalence, 138, 153, 158, 159
degrees of freedom

in ANOVA, 51, 53
in calibration, 62, 64, 65, 241, 247, 248
effective, 196, 197
in hypothesis testing, 34–38, 43, 44,

45, 48, 49, 89, 97, 147, 208, 209,
253, 254

in measurement uncertainty, 158,
167, 196–198, 201, 218, 256, 293

Welch-Satterthwaite formula, 197
Deming, W E, 8, 67, 76, 109
derived unit. See unit
detection limit. See limit of detection
dioxin, 4
distribution

chi square, 141
F-, 43, 141, 247, 248
of the mean, 38,165
of the measurand, 162, 169, 179, 196,

238
normal, 23, 24, 26–35, 36, 102, 106,

107, 114, 117, 121, 152, 169, 187,
208, 255

rectangular, 177, 179, 255
t-, 34, 35, 36, 37, 45, 89, 147, 161,

197, 198, 208, 241
triangular, 179, 183, 255
uniform, 255

Dixon’s Q-test, 41, 243
DMADV (define–measure–analyze–

design–verify), 20
DMAIC (define–measure–analyze–

improve–control), 20
Doehlert design. See experimental

design
D-optimal design. See experimental

design
drugs

illicit, 167, 283
pharmaceutical, 17, 67, 237, 280
sports, 14

dummy factor, 92, 93, 99, 102
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effect
factor, 76, 81–88, 89, 96, 102
interaction, 57, 78, 80, 81, 86, 87, 88,

91, 237
main, 78, 80, 81, 85, 88–92, 99, 237,

258
random, 19, 102, 150, 166, 183
significant, 38, 51, 69, 78, 103, 258

empirical fit, 172
empirical method, 149
empirical result, 165
enzyme, 7, 57, 232, 237
equivalence of measurement results.

See degree of equivalence
error, 19, 30, 106, 122, 151, 163–166,

174, 240, 243, 292
bars, 156, 158, 196
gross, 24, 133
maximum permissible, 106
mean, 107
model, 78, 88, 92, 245
random, 24, 51, 53, 61, 89, 115, 146,

163, 165, 188
residual in ANOVA, 57, 246
standard, in calibration, 61–63, 241,

244, 246, 251
systematic, 24, 25, 27, 163, 165–166,

177, 188, 194, 233, 237
transcription, 32
Type I, 117, 118, 148, 209, 238
Type II, 238

Excel
ANOVA in, 51–59
control charts in, 127–128
Data Analysis Tools, 50, 51, 52, 55, 251
functions

AVERAGE, 29, 100, 125, 183, 248
CHIDIST, 39, 44
CHIINV, 39, 44
COUNT, 40
FALSE, 248
FDIST, 39, 43, 248, 249, 250
FINV, 39, 43, 141
LINEST, 62, 63, 96, 251
NORMSINV, 40, 41, 102
RANK, 40, 41
ROUNDDOWN, 49
SQRT, 100, 125, 183, 185, 191, 192,

193
STDEV, 29, 47, 183
SUM, 47, 249, 250
SUMPRODUCT, 100, 101, 102
SUMSQ, 100, 185, 191, 192, 193,

248, 249, 250

SUMXMY2, 248, 249, 250
TDIST, 37, 38, 39, 46, 49, 89, 100,

101, 103, 208, 247
TINV, 37, 38, 39, 46, 49, 50, 89,

185, 197, 198
TREND, 248, 249, 250
TRUE, 248
TTEST, 50

Rankit, 40–41
statistical process control in, 107

expanded uncertainty. See
measurement uncertainty

experimental design, 38, 66, 74–76,
78–104

Box-Behnken, 97–98
central composite, 82, 94–96, 97
D-optimal, 97
Doehlert, 97, 99
fractional factorial, 89–92
full factorial, 67, 81–89, 98–100
Plackett-Burman, 92–94, 99–103,

257, 258
extrapolation, 288
extreme values, 30, 114, 151, 164, 243, 244

factor, 51, 69
controlled and uncontrolled, 69
latent, 69
space, 70, 71, 76, 77, 81, 97
See also ANOVA; experimental

design
factor effect. See effect
FALSE. See Excel
false negative, 7, 233, 238, 240
false positive, 7, 124, 233, 238, 240
Federation of Clinical Chemistry, 170
FDIST. See Excel
FINV. See Excel
fish bone diagram. See cause-and-effect

diagram
Fisher, R A, 67
fit for purpose, 7, 10, 27, 150, 172, 174,

228, 232, 271, 289
flow chart, 109–112
fortified sample, 254
fraud, 280
F-test, 39, 43

gas chromatography. See
chromatography

Gaussian distribution. See distribution
General Conference on Weights and

Measures (CGPM), 11, 157
GLP. See good laboratory practice
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Good Laboratory Practice (GLP), 17,
275, 280–284, 293, 295

goodness of fit, 61
Gosset, W S, 65
Grubbs’s test, 45, 142, 143, 146, 164,

242, 243
single outlier, 39, 41
two outliers, 39, 42, 44

Guide to the expression of uncertainty
in measurement (GUM). See
measurement uncertainty

High-performance liquid
chromatography (HPLC). See
chromatography, liquid

hill climbing, 76, 77, 78
histogram, 28, 113–114, 116
homoscedacity, 180
Horwitz, W, 169, 170, 231
Horwitz

formula for interlaboratory RSD, 147,
172, 198, 231, 288

horn curve, 173
Horrat, 147, 172

HPLC. See chromatography, liquid
hypothesis

alternative, 44
null, 36, 42, 43, 44, 46, 48, 49, 53,

89, 102, 148, 247, 253
test, 27 (see also chi square test;

Cochran test; F-test; Grubbs’s
test; t-test)

IAEA. See International Atomic Energy
Agency

ICP. See inductively coupled plasma
ICP-MS. See mass spectrometry,

inductively coupled plasma
identity, 136, 141, 144, 213, 215, 233
IDMS. See isotope dilution mass

spectrometry
IMEP. See International Measurement

Evaluation Programme
imperial units, 292
indication of a measuring instrument,

59, 64, 68, 74, 189, 240, 241,
248, 251

inductively coupled plasma (ICP), 133,
134, 156, 295

influence factor, 78, 152, 164, 165, 169,
181, 215, 223, 228, 235, 255, 274

interaction effect. See effect
intercept, 59, 62, 63, 180, 240, 241,

243, 248

interference, 99, 102, 103, 134, 237
interlaboratory precision. See

reproducibility
interlaboratory studies, 12, 17, 19, 26,

30, 32, 45, 129, 136–160, 169,
170–171, 172, 182, 198, 214, 222,
225, 229, 230–231, 234, 252, 255,
274, 276, 278, 286, 291

kinds of, 137, 138
materials certification, 151–153 (see

also reference material)
method performance studies, 145–

148 (see also method validation)
organization of, 140
proficiency testing, 17, 26, 30, 129,

137, 140, 141, 144, 148–151, 153,
154, 272, 278, 291, 292

interlaboratory trials. See
interlaboratory studies

internal standard, 63, 64, 133, 191
International Atomic Energy Agency

(IAEA), 152, 162
International Bureau of Weights and

Measures (BIPM), 10, 12, 21,
140, 157, 170, 206

International Conference on Weights and
Measures (CIPM), 12, 153, 157

International Measurement Evaluation
Programme (IMEP), 41, 137, 138,
143, 153–157

International Organization for
Standardization (ISO), 7, 17, 45,
140, 145, 238, 263, 268

International System of Quantities
(ISQ), 10

International System of Units (SI), 10–
12, 14, 206, 207, 210, 211, 212,
214, 215, 220, 221, 276, 277, 292

International Union of Pure and
Applied Chemistry (IUPAC),
169, 203, 215, 218, 238, 240, 241

International Vocabulary of Basic and
General Terms in Metrology. See
VIM

interquartile range, 33, 151
intralaboratory precision. See

reproducibility
ion-selective electrode, 237, 238, 240
IQR. See interquartile range
Ishikawa, K, 8, 18, 68
Ishikawa diagram. See cause-and-effect

diagram
ISO. See International Organization for

Standardization
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isotope dilution mass spectrometry
(IDMS), 63, 137, 220

ISQ. See International System of
Quantities

IUPAC. See International Union of
Pure and Applied Chemistry

Juvenal, 21

k. See coverage factor
Key Comparison. See Consultative

Committee on the Amount of
Substance

laboratory information management
system (LIMS), 277

Laboratory of the Government Chemist
(LGC), 7, 9, 10, 13, 156, 259, 289

lack of fit, 78, 88, 246, 248, 249, 250
least significant difference, 51
leverage, 243
LGC. See Laboratory of the Government

Chemist
limit of detection (LOD), 7, 8, 231, 232,

233, 235, 238–241, 245, 248
limit of determination, 233, 245
limit of quantitation (LOQ), 130
LIMS. See laboratory information

management system
linear correlation coefficient. See

correlation, coefficient
linear model, 59, 74, 76, 78, 80, 180,

239, 242, 243, 244, 245, 246, 248
linear range. See calibration
linear regression. See regression
LINEST. See Excel
liquid chromatography. See

chromatography
local optimum, 70
LOD. See limit of detection
LOQ. See limit of quantitation
lower control limit. See control limits
lower warning limit. See warning

limits

MAD. See median
Mars Climate Orbiter, 21, 292
mass spectrometry, 24, 237

inductively coupled plasma (ICP-
MS), 133, 156

isotope dilution (IDMS), 63, 137, 220
See also chromatography

materials certification. See
interlaboratory studies

matrix, 3–4, 130, 132–134, 141, 184,
214, 225, 232, 236, 237, 238, 253,
254, 289. See also analyte;
reference material

mean, 25, 28–33
consensus, 149, 151, 153
grand, 153
population, 29, 34, 45, 49, 102, 106,

161
robust, 143, 151
sample, 29, 34, 39, 49

measurand, 3, 4, 34, 156, 221, 222, 223,
236, 255, 287, 292

and measurement uncertainty, 162–
163, 174, 179, 196

measurement result, 4
measurement uncertainty, 6, 7, 20, 27,

33, 110, 129, 140, 149, 151, 153,
156, 161–202, 287, 288, 289, 290,
292

bottom-up approach to, 169, 170,
172–200

budget, 158, 159, 161, 164, 174, 177,
186, 195, 196, 199, 201, 219, 231,
255

“Guide to the expression of
uncertainty in measurement”
(GUM), 34, 156, 162–163, 169,
170, 173, 174, 181, 187, 198, 292

in ISO/IEC 17025, 274–276
and method validation, 229, 230,

231, 232, 235, 238, 251, 254–256
“Quantifying uncertainty in

analytical measurement”
(QUAM), 163, 181

reporting, 200
target, 20, 69, 119, 124, 235, 289
top-down approach to, 169, 170–172
and traceability, 205, 207, 208, 214,

217, 218, 219, 223, 225, 251
Type A, 153, 163, 165, 191,196, 233,

255 (see also error)
Type B, 163, 165–166, 174, 184, 196,

233, 255 (see also error)
median, 31, 32, 143, 151

absolute deviation (MAD), 31, 151
mercury in fish, 181
method validation, 26, 28, 35, 63, 92,

132, 170, 171, 180, 181, 182, 197,
198, 222, 227–261, 289

for accreditation, 274, 275–276
defined, 228
development-validation cycle, 229–
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interlaboratory studies for, 138, 140,
141, 148, 150, 231

parameters for, 232–258
See also verification

metrological reference, 161, 203, 205,
206, 207, 210, 211, 214, 221, 223,
225

metrological traceability. See
traceability

metrology, 12, 13, 14, 161, 205, 267,
291

moving average, 122, 126
MRA. See mutual recognition

arrangement
MS. See mass spectrometry
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153, 157, 263, 280
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nonclinical safety testing, 280
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nonlinear model, 242, 249
nonlinear terms, 194, 246
normal distribution. See distribution
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NORMSINV(). See Excel
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See quantitative nuclear
magnetic resonance

null hypothesis. See hypothesis

odds, 201
OECD. See Organization for Economic

Co-operation and Development
one-tailed, 43, 50, 53, 186, 241, 247
one-way ANOVA. See ANOVA
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pdf. See probability density function
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pipette, uncertainty of volume, 24–25,

178, 182–185, 188
Plackett-Burman design. See
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reproducibility
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primary measurement method, 137,

140, 154, 155, 213, 214, 220
primary measurement standards. See

calibrator
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in Excel, 44 (see also Excel)
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