


FOUNDATIONS OF
PHARMACOKINETICS



This page intentionally left blank 



FOUNDATIONS OF
PHARMACOKINETICS

ALDO RESCIGNO
University of Minnesota
Minneapolis, Minnesota

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

http://www.wkap.nl


eBook ISBN: 0-306-47924-9
Print ISBN: 0-306-47704-1

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2003 Kluwer Academic/Plenum Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

New York

http://kluweronline.com
http://ebooks.kluweronline.com


To my wife Luisa



This page intentionally left blank 



Nec sum animi dubius, verbis ea vincere magnum
quam sit et angustis hunc addere rebus honorem.

Virgil, Georgicon, III, 289.



This page intentionally left blank 



PREFACE

This book has its origin in my experience as a teacher of pharmacokinetics in many
universities in four different continents.

It was not my intention to write a popular book; what distinguishes this one from
many others on the same subject is its large use of algebra and calculus. For this I make
no apologies; in fact a serious study of pharmacokinetics without the help of mathematics
is, in my opinion, impossible. The exact definition of many pharmacokinetic quantities,
even the most common, and the correct use of many equations, even the most simple,
requires the constant use of mathematical language.

On the other hand I have made a considerable effort to use only elementary algebra
and elementary calculus, as commonly taught in most introductory university courses.
For the few exceptions, when less common mathematical concepts were needed, I have
supplied the necessary explanations in four appendices.

The first three chapters are a general introduction to the scientific method.
Chapters 4 to 12 show different specific methods to deal with pharmacokinetic prob-

lems. There is considerable overlap among those chapters; this is intentional and its pur-
pose is to convince the reader that every problem can be solved in more than one way,
including ways that were not mentioned in this book and that intelligent readers can find
for their own pleasure.

Chapters 13 to 17 show how different parameters of importance in pharmacokinetics
can be exactly defined and measured.

The four appendices deal with a few mathematical concepts that are less frequently
taught in introductory courses on algebra and calculus. The interested reader can study
them in detail, or simply use their results as indicated by the cross-references.

I owe a big debt of gratitude to my late friend Giorgio Segre who introduced me to
the study of pharmacokinetics. Many years ago we wrote together a monograph on “Drug
and Tracer Kinetics”, now out of print; this volume is, in a sense, the continuation and
conclusion of that monograph.

For the preparation of this book I had no grants or financial aid on any sort, just the
help of a few friends, most notably Dr. James S. Beck of Calgary, Alberta, and Dr. Marta
Farolfi of Solarolo, Italy; to them go all my thanks.
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INTRODUCTION1.

1.1. DEFINITION OF PHARMACOKINETICS

The term “Pharmacokinetics” was first used by Dost [1] to mean the quantitative
study of absorption, distribution, metabolism, and elimination of drugs, but pharmacolo-
gists have always been aware that drugs are absorbed, distributed, metabolized, and
eliminated from the organism, and that the rates of absorption, distribution, metabolism,
and elimination are fundamental in determining the effects on the organism they are ad-
ministered to. In a sense, pharmacokinetics has always been a part of pharmacology; but
it began to be considered a new discipline when more sophisticated methods were intro-
duced to study the kinetic properties of drugs. On one side analytical chemistry and
physical chemistry make now possible the detection and measurement of drugs in various
parts of the organism in very low concentrations, and on the other side applied mathe-
matics, statistics and physics make possible the systematic organization of the observed
facts in a wide variety of circumstances.

1.2. OBJECTIVES OF PHARMACOKINETICS

Three different objectives can be observed in pharmacokinetics: a prescriptive one,
which we can call passive pharmacokinetics, a descriptive one, which we can call active
pharmacokinetics, and finally a predictive one, which we can call creative pharmacoki-
netics [2].

1.2.1. Passive Pharmacokinetics

By passive pharmacokinetics I mean the use of known pharmacokinetic concepts and
previously determined pharmacokinetic parameters (see chapter 3) for the prediction of
absorption, distribution, metabolism, and elimination of drugs administered in a given
way (time or formulation) to living beings. The use of these known concepts and pa-
rameters give to the clinical pharmacokineticist the possibility to achieve a clinical goal.
By using known facts about pharmacokinetics we can achieve a clinical goal (a particular
concentration of a drug in a particular part of the body) by appropriate choice of dose,
mode and site of administration, and of formulation of the drug and its vehicle among the
available ones. This is a technological application—both common and important.

1



2 FOUNDATIONS OF PHARMACOKINETICS

1.2.2. Active Pharmacokinetics
By active pharmacokinetics I mean the determination of pharmacokinetic parameters

ofnew drugs or new formulations for their best utilization.
Each new molecule and new preparation of pharmacological interest need to be in-

vestigated for its pharmacokinetic properties; this is the routine job of the pharmacoki-
neticist, and will never end as long as new substances will be added to the list of useful or
potentially useful drugs, or new formulations are requested or proposed.

1.2.3. Creative Pharmacokinetics

I call creative pharmacokinetics, for lack of a better term, the study of new methods
for the determination of pharmacokinetic parameters, and the critical study of old meth-
ods in order to evaluate their validity and applicability to the investigation of new drugs
and new formulations.

An example of creative pharmacokinetics is the constant work of FDA’s Committees
about generic drugs, to establish guidelines for BA and BE determination studies.

1.2.4. Rhetorical Pharmacokinetics

A fourth aspect of pharmacokinetics can be added, that doesn’t correspond to any of
the objectives stated above. We can call it rhetorical pharmacokinetics: it is neither pas-
sive, active, or creative pharmacokinetics. Its objective is not to make predictions, neither
explanations; it is a form of academic gamesmanship and as such is not a desirable activ-
ity. I shall show some examples of rhetorical pharmacokinetics in the next chapter.

1.3. METHODS OF PHARMACOKINETICS

As any other experimental science, pharmacokinetics has two inseparable compo-
nents: the observation of facts, and the interpretation of the observations. I shall call the
first component, descriptive pharmacokinetics, and the second one, analytical pharma-
cokinetics; obviously these two components are strictly interwoven: we can interpret only
facts that can be observed, and we observe only facts that we think can be interpreted.

The strength of pharmacokinetics is due to its constant use of the experimental
method. The experimental method is not just the acceptance of observed facts, but the
acceptance of statements about facts that can be verified by experimental observations.

I will show with more details in the next chapter the meaning of the relationship

1.4. FUTURE OF PHARMACOKINETICS

As all sciences, pharmacokinetics may progress in three different fields, namely the
solution of new problems, the elaboration of new methods, and the development of new
symbolism.

I have shown in section 1.1 that the investigation of pharmacokinetic properties needs
the help of several other sciences, for instance analytical chemistry, physical biochemis-
try, numerical analysis. The methods of these sciences will progress concurrently making
the solution of particular problems easier or more precise.

Observed facts Statement about facts.
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The third aspect in the progress of all sciences is often overlooked; it consists in the
development of a new or an improved symbolism. Algebra never developed in a substan-
tial way in Greece by reason of lack of an appropriate notation, while the Chinese were
able to solve algebraic equations several centuries before the Europeans did, just because
they had efficient symbols for them. In this respect the science of pharmacokinetics is in
its state of infancy. Some efforts were made to develop a unified nomenclature, notably
the proposals by Rowland and Tucker [3] and by Rescigno et al. [4], but besides the fact
that they have not yet reached a general acceptance, those proposals are more on the line
of abbreviations than symbols. For instance AUC (Area Under the Curve) means the inte-

gral where is the concentration of a drug in the plasma following a bolus

injection at time but it is not always clear whether the drug was injected intravenously
or intramuscularly, and whether the dose injected was a unit dose or not. Furthermore,
there are many properties connected to the integral above that could be used directly in
the description of the fate of a drug in vivo. For instance, the ratio of the AUC’s measured
in two different points of an organism, irrespective of the dose and the mode of injection
of the drug, is an invariant quantity for a linear system [5-8]. In addition to the advantage
of being dimensionless, this parameter has an interesting property, namely it can be used
as the element of an algebra to describe the connectivity of the organism.

Examples of this sort could be multiplied at will; each of them represents a theoretical
concept that could lead to important practical developments of pharmacology. In general
we could say that the present trend in pharmacokinetics is mostly to move away from
descriptive models and toward interpretative models. To this end it is necessary to pay
more attention to the mathematical methods necessary to transform the hypotheses of a
physical and physiological character into differential or integral equations.

The numerical solution of those equations is a separate problem; it is an important one
but not crucial as it was a few years ago, thanks to the very efficient hardware and soft-
ware available today.

Much more important is the logical approach to model building, namely to the prob-
lem of determining the minimum number of hypotheses necessary for the explanation of
observed phenomena, and to planning the experiments in the most efficient way in order
to verify the validity of the hypotheses postulated.

Since in many practical cases (e.g., carcinogenic risk assessment), human inferences
are made from experiments on animals, it is imperative that through a combination of
biological facts and mathematical theory, appropriate methods of extrapolation from
animal to human be developed.

1.5. REFERENCES
1.F. H. Dost, Der Blutspiegel. Kinetik der Konzentrationsverläufe in der Kreislaufflüssigkeit (Thieme, Leipzig, 1953).
2. A. Rescigno, Foundations of Pharmacokinetics, Pharmacol. Res. 42, 527-38 (2000).
3. M. Rowland and G. Tucker, Symbols in Pharmacokinetics, J. Pharmacokin. Biopharm. 8, 497-507 (1980).
4. A. Rescigno, A. K. Thakur, A. B. Brill and G. Mariani, Tracer Kinetics: A Proposal for Unified Symbols and

Nomenclature, Phys. Med. Biol. 35, 449-65 (1990).
5. A. Rescigno, On Transfer Times in Tracer Experiments, J. Theoret. Biol. 39, 9-27 (1973).
6. A. Rescigno and L. D. Michels, On Dispersion in Tracer Experiments, J. Theoret. Biol. 41, 451 -60 (1973).
7. A. Rescigno and L. D. Michels, Compartment Modeling from Tracer Experiments, Bull. Math. Biol. 35, 245-

57 (1973).
8. A. Rescigno and B. M. Bocchialini, Pharmacokinetics: Unfolding of a Concept, in: New Trends in Pharma-

cokinetics, edited by A. Rescigno and A. K. Thakur (Plenum Press, New York, 1991), pp. 1-26.
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2. MODELS

2.1. THE EXPERIMENTAL METHOD

I have shown in the first chapter that the strength of Pharmacokinetics is due to its
constant use of the experimental method. The experimental method is not just the accep-
tance of observed facts, but the acceptance of statements about facts that can be verified
by experimental observations. The problem thus consists in selecting the facts that are to
be observed; but how do we know which facts are worth observing? We do not proceed
in a vacuum, but we observe only what we expect to lead to logical statements, and we
use logical statements to decide which facts are worth observing. Now if any logical
statement must be justified by an experiment, and each experiment by a previous logical
statement, we end up to an infinite regression. If we want to avoid this infinite regression,
we must start with some primitive statements: we shall call them axioms. I will explain
the meaning of this term in section 2.4.

At this point I must introduce some definitions [1].

The system to be studied shall be called theprimary system.

What is used by the investigator to study the primary system, by whatever
means, shall be called a secondary system. I shall consider now a further
subdivision of secondary systems.

A simulator is a secondary system that mimics certain aspects of the behavior of
the primary system.

A model is a secondary system created to confirm hypotheses on the primary
system.

Modulating the data means modifying them in accordance with a certain crite-
rion; this transformation may involve a change in their information content.

Coding is a particular case of modulation in which no information is added or
lost.

2.2. CODING AND MODULATION OF EXPERIMENTAL DATA

The data collected through experimental observations may be presented in the form of
graphs or tables. As an example consider Table I, where I have listed the value of the
quantity observed at three different times in a hypothetical primary system.

5



6 FOUNDATIONS OF PHARMACOKINETICS

The same data can also be represented by a graph, as in Fig. 1, or concisely by the
formula:

Whether we use a graph, or a table, or a formula like the one above, the information
content is exactly the same; those are examples of coding.

Other examples of coding are changes of coordinates, for instance from linear to loga-
rithmic or semilogarithmic.

Other transformations of the data are possible. For instance we can redraw the graph
of Fig. 1 with a straight line (Fig. 2), or we can fit the data of Table I with the expression

These last two transformations are examples of modulations in which there is a
change of the information content of the original data; in fact here we loose the knowl-
edge of which points were actually measured, and we add values at points where meas-
urements were not actually taken.

This particular example of modulation, i.e., fitting the intermediate points with a
straight line, may seem obvious, but it is not. The polynomial function
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and the trigonometric function

7

both fit the data as well as the linear function (2); infinitely many other functions can
provide an equally good fit. The choice of the specific function implies a different hy-
pothesis made on the primary system.

So modulation includes data fitting, i.e., computation of parameters of an equation of
a given type, such that the divergence between the data from the primary system and the
data from the secondary system is minimal according to a specified criterion.

The important point is that coding is, in a sense, neutral with regard to the primary
system, while data fitting (modulation) implies some assumptions that need to be justified
and hypothesis that need to be confirmed.

2.3. SIMULATION

In the definition of simulation I implied that its purpose is duplication of some aspects
of the behavior of the primary system; this is done without regard to mechanism. An arti-
ficial arm for instance simulates the mechanical behavior of a human arm by very differ-
ent mechanisms. A mathematical equation may predict the temporal variation of the con-
centration of a drug in treatment planning, for a limited range of its values and without its
parameters having any specific meaning. Simulation may thus be done for a very useful
purpose, but it must be kept in mind that a secondary system may mimic a primary sys-
tem in a very satisfactory manner, but using a mechanism that has nothing, or very little,
in common with the primary system.
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Powerful computers and sophisticated programs are available for modulating experi-
mental data and making them fit rapidly a sum of exponentials, or a sum of trigonometric
functions, or many other mathematical functions with an arbitrary accuracy; such an ef-
fort will always succeed and is, therefore, useful only as a means of imitation of the be-
havior of the primary system.

For instance consider the data in the first two columns of Table II; they can easily be
fitted by a sum of three exponentials,

but also by a hyperbola,

The third and fourth columns show the values computed from identities (3) and (4),
and the last two columns the corresponding deviations of the computed from the meas-
ured data. In both cases the fitting appears to be very good. The parameters of identity (3)
have only one thing in common with the parameters of identity (4): i.e., both provide a
good fit when used in their respective places. But, if the parameters of identity (3) do
have a biological meaning, then what biological meaning can the parameters of identity
(4) possibly have? And vice versa.

Fig. 3 shows that the fitting of identities (3) and (4) is good only at the points where
the experimental data were taken, but some discrepancies occur at other points. Only ad-
ditional experiments can tell which model is more appropriate.

The procedure of curve fitting, inappropriately called “modeling the data”, may be
very useful for simulation. However we must resist the temptation of giving the results of
those computations a meaning besides the phenomenological one.

A classic example of simulation is the Almagest; in it Ptolemy (~100-178 a.D.) used
abstract mathematical functions (cycles and epicycles) to describe the movements of all
known celestial bodies, obtaining a remarkably good fit; but the good fit did not help in
interpreting the data or in predicting future observations. On the contrary Aristarchus of
Samos (~310-230 b.C.) first, then more consistently Copernicus (1473-1545), put for-
ward the heliocentric hypothesis, thereby basing their computations not on the mere fit-
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ting of data (in fact Copernicus fitting was not substantially better than Ptolemy’s), but on
a physical basis [2].

2.3.1. Empirical analysis.

Some authors distinguish two methods for the analysis of scientific data: “empirical”
and “model-based”. In short, the distinction implies that, when reasonable hypotheses
cannot be made on the physical or physiological process under observation, then it may
be useful to fit the experimental data to a set of abstract mathematical functions, “func-
tions that do not necessarily have any physical basis” [3]. The truth is that to elaborate
any data one must have a model. If the model is based on some physical or physiological
hypotheses, the elaboration of the data may confirm or falsify the hypotheses. If the
model is simply a fitting program not based on any physical or physiological hypothesis,
the fitting, per se, can never lead to confirmation or falsification, because there is nothing
to confirm or to falsify [1].

Many models that are called “empirical” in reality are based on some physical hy-
pothesis; statistical models, for instance, require that the data be a random sample drawn
from a population with a certain probability distribution. But any probability distribution
implies a specific hypothesis on the origin of the data. On the other hand, fitting the data
to cubic splines, for instance, may help in putting the experimental results in a more aes-
thetic form, but does not add anything to our scientific knowledge. New knowledge is
acquired only through the process of confirmation and rejection, in the best Galilean tra-
dition.

“Model-free analysis of data” is a strange term used by some authors [4] to signify
that they were unable to make any hypothesis on the system under observation, and they
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expected a computer to do the job in their stead [5]. The result may be considered at most
a simulator, its value will be limited to the description of the data. This is the classic ex-
ample of rhetorical pharmacokinetics.

2.4. CONFIRMATION

In contrast to simulation, a model is a secondary system the purpose of which is to
verify whether some hypotheses made on the primary system are valid. In other words,
the purpose of a model is that of scientific confirmation.

Any scientist, whether a theorist or an experimentalist, pharmacokineticists included,
when observing the object of his study (the primary system) has always present in his
mind a set of statements, which he calls a model. The statements constituting a model are
of two kinds: axioms and hypotheses. The distinction between axioms and hypotheses is
apparently psychological, but it is a fundamental one: axioms are statements that we ac-
cept as true and are not to be doubted; hypotheses are statements accepted on a temporary
bases, but subject to confirmation or rejection.

In short, when choosing a model the investigator knows some facts and wants to dis-
cover other facts; what the investigator presumes to know is an axiom, what he wants to
check is a hypothesis. Now in this context what is the rationale for doing an experiment?
The inescapable conceptual structure of any scientific investigation is as follow (Fig. 4):

a.

b.

c.

d.

e.

f.

g.

Assumption (conscious or unconscious) of axioms;

Choice of hypotheses;

Specification and construction of a model (mathematical, mechanical, ...) in-
corporating those axioms and hypotheses;

Observation of the model (collection of data from equations or a device);

Observation of the primary system;

Comparison of data from model and primary system;

Conclusion (confirmation or rejection of hypotheses).

If the hypotheses are rejected, we make different hypotheses, i.e. we change the
model and start the said process again; if the hypotheses are confirmed, we accept them.

We must not be misled by the term confirmation. Confirmation may occur when evi-
dence is realized which is consistent with a hypothesis, but, as Popper [6] has repeatedly
admonished, a hypothesis cannot possibly be proven true. We can, however, clearly dis-
prove hypotheses. This is not so despairing as reducing an infinity of possibilities to an
infinite set containing one less possibility, for we always test hypotheses within some
theoretical framework, and generally that theoretical construct is valid for some purpose.

The nature and process of confirmation can be illustrated with an example. Suppose
we are interested in insulin binding by rat fat cell receptors to form a hormone-
receptor complex Our hypothesis is that the only reaction taking place is

Then the axiom of mass action leads us to equation

where and are the association and dissociation constants, respectively; the axiom of
conservation of mass gives the equations
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where and are the constituent concentrations of insulin and of receptors, considered
constant. If we eliminate the variables and from these three equations we get

In an actual experiment we can measure at different times; the experimental re-
sults may be represented in Table III. With these data we may determine, by regression
analysis, the values of the two rate constants; the expected values are

and Fig. 5 shows a plot of the measured values given in
Table III together with the values computed using equation (5) and the estimated rate
constants. There is clearly a contradiction between the primary and the secondary system.
We must discard the present hypothesis.
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The data from the primary system suggest a loss of one of the species from the bind-
ing equation; this suggests one of these possibilities:

Model 2:

Model 3:

Model 4:

Now the data from either models of loss of reagent or model of loss of complex from
the site can be made to duplicate the data of the primary system by choosing appropriate
values for the rate of loss of or or The choice between those models must be based
on biological, not mathematical, considerations.

2.5. INFORMATION

All the above discussion can be summarized in just two propositions with respect to
primary system:

Information comes from observation,

Mathematical and graphical models decrease information.

1.

2.

The first proposition is obvious to any experimental scientist; the second proposition
may be a little puzzling at first. This subject has been discussed at length by Rescigno
and Beck [1], but I shall give here some justification for it.

The amount of information is defined as the logarithm of where is the expecta-
tion of a particular experimental result, before the experiment is done.
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Given proposition 1, we can increase our scientific knowledge only by observation.
But our time and abilities being limited, our observations must be planned in such a way
that only relevant data are collected. Thus we observe only quantities that we consider
important, and we discard as “experimental errors” anything that deviates from what we
thought should have been the correct or the most likely result. These expectations of what
is relevant to our hypotheses and what is not a deviant result are determined from the
behavior of the model. Without a model we have no expectations: we have no basis for
choosing what to observe or which results are useful. In such a conceptual vacuum we
know nothing about the behavior of a given primary system. Any experiment can gener-
ate any result, as far as expectations go, and there are an infinite number of possible ex-
pected results with an infinitesimal probability, Any observation can generate an infi-
nite amount of information

In contrast with such an unrealistic situation, we always have a model in mind, though
some investigators do not explicitly acknowledge it. If we do have a model, we expect
particular results, and we look only for them. Whether the hypotheses will be confirmed
or not, the information gained from the experiments is smaller in amount than without a
model or with a less specific model because the possible outcomes were more expected.
Also, we are ready to discard as “random error” or “irrelevant result” anything that does
not conform to our expectations, i.e., to our model.

There is an old appealing, but simplistic notion that a scientist must always be com-
pletely free from all preconceptions; we could call it “the dogma of the immaculate con-
ception”. The History of Science is full of examples of great discoveries missed because
the observer was not expecting a particular result, or of great discoveries due to uncon-
fessed or unconscious guiding presuppositions a scientist adopted without being forced to
do so by either data or current theory [7].

To conclude this section, observe that step in the section “Confirmation” includes
modulation of data. Perhaps the most common modulation is computation of a mean.
When we compute a mean, we discard some, possibly a large number of, individual data.
That is, we reduce the amount of information, but we preserve a datum that we consider
important, i.e., with an information that is more relevant for the confirmation or the re-
jection of the model. It is always the model that guides us and that enables us to evaluate
which results are important and which are not.

2.6. VALUE AND STRENGTH OF A MODEL

From what I have said so far, it must be clear that a secondary system, be it a simula-
tor or a model, implies some hypotheses. The difference is that with a simulator the hy-
potheses are accepted a priori and are used to duplicate the expected behavior of the pri-
mary system in situations that have not been observed directly, while with a model the
hypotheses are the issue to be checked a posteriori. This distinction is a fundamental one
and has been stressed very clearly by Zierler [8] in the context of compartmental analysis.

We can loosely define the reliability of a simulator by saying that a more reliable
simulator mimics the behavior, or some relevant aspects of the behavior, of the primary
system more closely. On the other hand, a model cannot be judged solely by the close-
ness of the data observed on the primary and on the secondary system.

A model must be judged from three different points of view: retrodiction, prediction,
and understanding. Retrodiction is simply recalling what happened; this means that the
model must conform with the original data from the primary system, i.e., that the hy-
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potheses are consistent with our experimental knowledge. Although this condition is nec-
essary, it is far from sufficient.

The model must be predictive; that is, it must tell us what will happen in future ex-
periments. If a given model leads us to a new experiment, and this experiment confirms
the hypotheses, we attribute a larger value to the model; but this temporal distinction
between prediction and retrodiction is important only in the context of discovery, not in
the context of explanation, and its value is only psychological. A deeper distinction be-
tween prediction and retrodiction is a categorical one, i.e., one referring not to experi-
ments made at different times but to experiments made in different contexts.

I refer to the predictive property of a model in different contexts as its strength. The
strength of a model can be illustrated with an example.

Consider the Volterra predator-prey equations

where is the number of prey, the number of predators, and their coefficients of
increase in the absence of interaction, and the coefficients of interaction. As shown
by Volterra [9], the model equations predict oscillations with periods

The coefficients and can be measured in separate experiments with only the prey
or only the predators present, i.e., in the absence of interaction; then with those values the
period can be computed using identity (7). If this value of is consistent with the value
of measured in an experiment with the two species interacting, the hypotheses included
in equations (6) are confirmed.

The third aspect of a model, understanding, is more difficult to define. I leave that to
the philosophers and simply point out the significance of understanding in scientific in-
vestigations.

Understanding is what we apply in answering questions such as the following: “Have
we defined the primary system optimally for our purpose?” The model and how it has
performed in the process of confirmation helps us decide and then helps us refine the
definition. Where, when, and what do we need to observe in order to test a particular hy-
pothesis? The model is the basis on which we answer this question. This latter question
and its answer constitute experimental design in laboratory and clinical studies. The
model leads us to useful questions, suggests how we can answer them, enables us to
avoid gathering useless data and helps us to anticipate where the possible results would
lead us.

Finally, understanding includes some ideas of how the primary system fits into the
universe, for in the ultimate analysis the universe—the grand primary system—is consti-
tuted conceptually of all the primary systems we investigate, collectively interacting. Our
models require of us that we take note of where we have cut the connection to the rest of
the universe in constructing them and that we consider the possible effects of such artifi-
cial isolation.

The value of a model is related to these three points of view. In the context of under-
standing, a model has minimal value if it leads to no new questions, if it does not help us
to decide how to answer questions, and if it does not give perspective on where and how
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the primary system fits into the world. It has a higher value the more it helps in further
investigations, the more it helps us to integrate our concepts of primary systems into a
wider, deeper and more effective concept of our world.

The result of confirming a model is a theorem or law. Theorems and laws have a
value within the context of a model, never in the absolute. In physics, there are laws for
the perfect gas (for instance, Boyle’s law), other laws for gases formed by spherical parti-
cles (for instance, the equation of Van der Waals), and so forth. The laws valid for the
model of classical mechanics are not valid for the model of relativistic mechanics. If in
physics we often forget that a law is subordinate to a specific model, it is because these
models are in general very strong, agreeing with a large number of real systems.

This generality is less frequent in biology. This fact does not detract from the utility
of models in biology; on the contrary, it makes it necessary to formulate models more
often, more explicitly, and more carefully.

As observed by Volterra [9], the value of given by (7) is valid only for small oscil-
lations. This presents another opportunity to stress the fact that all conclusions are valid
within a specified model.

In contrast, the fitting ofdataper se can never lead to falsification, for there is nothing
to be falsified, nothing to be tested. And of course there is nothing to be tested in an ex-
periment of a different kind. There is nothing to be assigned strength to as defined here.
The frequency of this kind of report in scientific literature compels further emphasis: a
“model of data” has a strength of zero and value only as a simulator; that is, it retrodicts
and (temporarily) predicts but contributes nothing to understanding.
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3. PHYSICAL QUANTITIES

In mathematics we learn that two pure numbers can always be added, subtracted,
multiplied, divided, with just few restrictions; for instance a divisor cannot be zero. In
physics things are quite different; physical quantities have dimensions, and we learn that
we can add or subtract two quantities only if they have the same dimensions; multiplica-
tion and division of quantities are possible only if the result is an invariant quantity, i.e., a
quantity whose value does not depend, within the limits of validity of some specific hy-
potheses, on the particular experimental conditions.

For instance a mass divided by a volume is a concentration, a quantity certainly in-
variant because we know that, in a well stirred fluid, the ratio Mass/ Volume is constant
for a wide range of sample sizes. In other words, the observation that the above quotient
is constant is the operative definition of a new physical quantity, the concentration [1].

Unfortunately there are a few examples in the pharmacokinetic literature where new
quantities are introduced by means of a product or a quotient without first checking
whether or not the result of that operation is an invariant quantity, i.e., without a proper
operational definition. Later in this book I shall try to indicate, for each pharmacokinetic
quantity, its dimension and its correct definition.
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3.1. INVARIANT QUANTITIES

3.2. EXTENSIVE AND INTENSIVE QUANTITIES

All physical quantities are classified as extensive or intensive. An extensive quantity
is a quantity that is dependent upon the system extent. An intensive quantity is a quantity
that is not dependent upon the system extent. All these quantities may be functions of
time.

An alternative definition is that a quantity is extensive if

A quantity is intensive if

or

“Measure ofA + Measure ofB = Measure of (A + B)”.

“Measure of Measure of Measure of B”,

“Measure of Measure of Measure of B”.



From this definition of extensive quantity, it follows that the quotient of two extensive
quantities is always an intensive quantity. In other words, if and are two extensive
quantities, then is an intensive quantity.

For instance, if is mass and volume, both extensive quantities, their ratio
is density, an intensive quantity; in fact, if the subscripts refer to two separate ob-

jects A and B and to their combination,
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from this identity we can compute

and

thence

and

Only extensive quantities can be measured directly; in fact a direct measurement re-
quires the interaction between a measuring subject and a measured object, and this last
one must be present in a finite extent. An intensive quantity on the contrary can be de-
termined indirectly as the result of a relationship between two extensive quantities. Two
examples will better illustrate this concept.

From a solution we can measure the volume of a sample and separately the amount
of solute contained in that volume; they are both extensive quantities and are depend-

ent upon the chosen sample. Now we can compute the ratio but this ratio is invari-
ant only if the solution is homogeneous; we can call it the “average concentration” in that
particular sample. The correct value of the concentration an intensive quantity, is
given by

i.e., the ratio of mass and volume of an infinitesimally small sample, and may vary ac-
cording to where the sample is taken, if the solution is not homogeneous.

Now suppose that we have determined by other means the concentration of a solution;
the amount of solute contained in a certain volume of solution should be given by
multiplying the concentration by the volume, but this straight product will give the cor-
rect value of only if the solution is homogeneous; if not, remembering that is an in-
tensive quantity, valid at one point only, we should write
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where is the infinitesimal amount of solute contained in the infinitesimal volume
of solution; by integration

Summing up, the derivation of an intensive quantity from an extensive one requires a
differentiation; the derivation of an extensive quantity from an intensive one requires an
integration.

3.3. CONSERVED QUANTITIES

There are many conservation principles in elementary physics: the conservation of
matter, of energy, of linear momentum, of angular momentum, of charge, and so forth;
we see the first one applied in almost all pharmacokinetic equations, sometimes disguised
with other names.

Any quantity that is conserved is extensive, but the converse is not necessarily true. In
more precise terms, if is an extensive and an intensive quantity, their product
may be a conserved quantity, and all conserved quantities can be represented as the prod-
uct of an extensive and an intensive quantity. The classic example of such products is
given by Newton in the first two definitions of his Principia [2]:

Def. I. Quantitas Materiae est mensura eiusdem orta ex illius Densitatae et Mag-
nitudine conjunctim. (Mass = Density × Volume.)

Def. II. Quantitas motus est mensura eiusdem orta ex Velocitatae et quantitate
Materiae conjunctim. (Momentum = Velocity × Mass.)

Some examples of products of this form will be found several times in the second part
of this book.

3.4. PARAMETERS
In mathematics a parameter is a fixed quantity that determines the behavior of a func-

tion. In the experimental sciences a parameter is an observable quantity that remains con-
stant for every definable state of a system.

For each parameter mentioned in this book I will list a definition, a number of prop-
erties, and some methods for its determination; so it may be appropriate to spend a few
lines to explain the meaning of these last terms.

A Definition is a statement that substitutes a new term to some previously known
terms, a Property is a statement about previously defined subjects, and a Determination is
a process used for the evaluation of a physical quantity.

Unfortunately, some authors do not make a clear distinction between definition, prop-
erty and determination. For an example of the confusion among those three terms, see for
instance “Fundamental Concepts in Pharmacokinetics” [3] under the entry “Definition.”

Another source of confusion is generated by the terms model-independent parameter
and model-free parameter, used by some authors in various contexts and with different
meanings; sometimes they mean “a parameter not based on a compartmental model” [4],
sometimes a parameter that “can be evaluated without an explicit pharmacokinetic model
but under basic assumptions” [5], sometimes even a parameter computed “where no
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mathematical formulation is known and when the available data do not permit derivation
of such a model” [6].

It is important to separate the parameters used in pharmacokinetics into three different
categories, namely pharmacokinetic parameters, model parameters, and incidental pa-
rameters.

3.4.1. Pharmacokinetic parameters

A pharmacokinetic parameter is a quantity that depends on intrinsic properties of a
drug and of the biological system it interacts with, but not on any specific hypotheses
made on the system. Examples of pharmacokinetic parameters are clearance, turnover
time, volume of distribution, turnover number, permanence time, yield, residence time.
They are connected by the relationships

Clearance × Turnover time = Volume of distribution,

Turnover number × Turnover time = Permanence time,

Yield × Permanence time = Residence time.

We may chose four of them as fundamental parameters, and define the other three
from them. For instance, if we choose as fundamental parameters Clearance, Turnover
time, Residence time, and Yield, then the derived parameters are

Volume = Clearance × Turnover time,

Permanence time = Residence time ÷ Yield,

Turnover number = Permanence time ÷ Turnover time.

The problem of defining pharmacokinetic parameters independently of a particular
model has been dealt with by several authors, but seldom with convincing results. It is
important to be aware that even if a parameter may be defined independently of a par-
ticular model, its determination is not always independent from the model; the second
part of this book will make this point more evident.

3.4.2. Model Parameters

A model parameter is a quantity that depends on intrinsic properties of a drug and of
the biological system it interacts with, and also on hypotheses made on that system.

For instance the terminal half-life is a model parameter because it depends on the
number of exponentials used to fit the data.

3.4.3. Incidental Parameter

An incidental parameter is a quantity that describes the result of an experiment, but is
not an invariant quantity under a reasonable set of experimental conditions. For instance,

the integral is not an invariant quantity because it depends upon the site of ad-

ministration, the mode of administration, and the dose; the ratio on the

contrary, may be considered invariant because, in many cases and within a certain range,
it does not depend upon the dose
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Another example of incidental parameter is the ratio inappro-

priately called by Yamaoka et al. [7] mean residence time; it depends upon the time of
administration, the site of administration, and the mode of administration; it should more
properly be called time of exit [8, 9].

3.4.4. Macroparameters and Microparameters

The terms macroparameters and microparameters are sometimes used in the litera-
ture, though their meaning is not always very clear.

In short, when assuming a linear compartmental model with time-invariant parame-
ters, one writes the function as a sum of exponential terms; this function is fully
described by independent parameters, i.e. coefficients and exponents; they are
called the macroparameters of the model.

From the macroparameters we can try to determine a number of so-called microp-
arameters that represent the transit rates of, and the transfer rates between, the compart-
ments, necessary and sufficient to characterize the model.

The determination of the microparameters is not always unique; they fulfill a useful
purpose only if we can give them a physical or physiological interpretation [10].

3.5. DIMENSIONAL ANALYSIS

3.5.1. Allometry

The term allometry is derived from the Greek and
It means, in general, the relationship between any two non-homogeneous quantities; more
particularly, the allometric equation

is used to show the relationship between the quantity and the body weight of an indi-
vidual, where and are parameters determined from theoretical considerations or ex-
perimentally.

To explain the theoretical basis of the allometric equation I shall follow a suggestion
of von Bertalanffy [11]; think of a complex system formed by a large number of inter-
acting parts; if all those parts are similar, we can make the reasonable hypothesis that the
growth of the system is directly proportional to the number of elements present, therefore
we can write

where is the growth rate, positive or negative; by integration we get

this exponential law is known as the law of natural growth, and is found to be valid in
many different circumstances, whether the interacting parts are individuals or cells or
inanimate objects.

Now suppose that two kinds of parts are present, and that the increase of each element
depends on that element only; we have two differential equations,
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with the integrals

We solve both integrals for

and finally, eliminating

This expression coincides with the allometric equation (1) if we make and

If the quantities and are measured experimentally on a number of different indi-
viduals, the numerical values of the parameters and can be determined by regression.
In the current literature there are many examples where equation (1) has been fitted very
satisfactorily using data from individuals of different species, even when the body weight
covers a range of five orders of magnitude. A few comments, though, are necessary at
this point.

The allometric equation (1) is usually fitted using the log transformation

in other words the parameters and are determined by minimizing the sum of squares

The base of the logarithms of course is arbitrary, but the minimization of expression
(3) implies that the error in log is normally distributed, i.e that has a logarithmic nor-
mal distribution; this means that the larger values of have a much smaller weight in the
determination of the parameters and

Another related problem has to do with the dimensions of the allometric equation.

The coefficient a has the dimension of where and have appropriate dimen-
sions and is a rational number. But, then, in equation (2), what are the dimensions of
log and of log

The dimensional problem can be resolved with a change of variables in the allometric
equation; if and are the appropriate quantities of a reference species, then from
equation (1),

and dividing each side of equation (1) by each side of equation (4),
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where                and are dimensionless variables. The exponent b is a pure num-
ber.

If the regression is done on equation (5) instead of equation (2), the species with
smaller will not have undue larger weight.

For a detailed review of the method see Adolph [12] and Günther [13].

3.5.2. Buckingham’s Theorem

The main result of Dimensional Analysis [14] is the theorem of Buckingham [15]:
If and only if an equation is dimensionally homogeneous, it can be reduced to a relation-
ship among a complete set of dimensionless products.

To understand the value of this theorem, a few definitions are necessary. An equation
is dimensionally homogeneous if the form of the equation does not depend on the units of
measurements. For instance, the equation

also known as the Stewart-Hamilton principle, is valid for any units of measurement of
and while the equation relating the period of oscillation of a pendulum

with its length

is correct only if is measured in seconds and is measured in centimeters. Dimensions
cannot be assigned to numbers!

A dimensionless product is a product of physical quantities that does not depend on
the units of measurement. A set of dimensionless products of given variables is said to be
“complete” if each product of the set is independent of the others, and every other dimen-
sionless product of the variables is a product of powers of dimensionless products in the
set.

As an example, consider the free ligand the unoccupied receptor and the ligand-
receptor complex the reaction

is governed by equations

where
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There are two dependent variables, and one independent variable, and five
parameters, Their dimensions are shown in Table I.

Actually in the matrix of Table I, one row is linearly dependent upon the others; we
can represent the dimensions of the quantities involved with the simpler matrix of Table
II. In this matrix the rows are linearly independent.

I define now the dimensionless variables

and the dimensionless parameters

The differential equations become

These new equations have three variables and three parameters, therefore the degree
of freedom of their solutions is reduced by two units.

Call the matrix formed with the dimensions of the old quantities shown in Table II,

and the matrix showing the transformation from the old quantities to the new dimen-
sionless products,
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Observe that

this fact is general: any matrix such that defines a set of dimensionless prod-
ucts. Furthermore the number of columns in is equal to the number of columns in
minus the number of its rows; any additional column we may add to matrix defines a
dimensionless quantity not independent upon the previous ones.

3.5.3. Dimensionless quantities

In pharmacokinetics a typical dimensionless parameter is the dilution factor de-
fined as the ratio between the amount of drug present in the organism and the amount of
drug present in the sampling compartment, when the drug is fed to the sampling com-
partment and a steady state has been reached. It can be expressed as the ratio between the
steady-state volume of distribution and the initial volume of distribution.

We can define the dimensionless function, called unit response function,

where is the amount of drug in a compartment after a bolus administration in any
other compartment (see chapter 5). If the dose was administered to the sampling com-
partment we can also write

Other dimensionless parameters are the turnover number, (see chapter 14)

and the yield, (see chapter 17)
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4. THE BIRTH OF COMPARTMENTS

4.1. THE RUTHERFORD EQUATIONS

The first compartmental models were used in physics for the description of radioac-
tive decay. After Becquerel [1, 2] discovered radioactivity, Rutherford and Soddy [3]
found experimentally that Thorium X decays in time according to an exponential law,
i.e., that the number of radioactive atoms decaying per unit time is proportional to the
number of radioactive atoms present. If is the quantity of radioactive substance pre-
sent at time the law of radioactive decay is

whose integral is

where is the value of at time
Later Rutherford [4] developed the theory of successive radioactive transformations.

If A is transformed into B, B is transformed into C, and so forth, be the
amounts of A, B, C,... present at any given time; and be the rates of such
transformations, as summarized in Fig. 1. In analogy with equation (1), he wrote

and by integration, provided all are different,

27
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and so forth.
Many experimental observations have shown that this compartmental model is con-

sistent with the behavior of all radioactive substances, thus confirming the hypothesis
incorporated into equations (1) and (2), i.e. that radioactive decay is a first order process.

4.2. THE BENKE EQUATIONS

The phenomenon of nitrogen absorption by, and elimination from, the various tissues
via the lung and circulation was studied experimentally in dogs and man from the view-
point of determining cardiac output, determining body composition, and prevention of
decompression sickness by Benke et al.[5]. They represented their results (Fig. 2), ob-
tained by measuring accumulated nitrogen elimination from human subjects breathing
pure oxygen, with the equation

where is the amount of nitrogen eliminated up to time is the total amount of ni-
trogen contained in the body at time the instant breathing pure oxygen began, and
an appropriate constant.

The above equation becomes easier to interpret if written in differential form. By
eliminating the exponential from equation (3) and its derivative,

we get

Here is the amount of nitrogen present in the body at time therefore is its
fraction eliminated per unit time.

Proceeding in their analysis, Behnke et al. observed that the value of calculated
from equation (3) decreases after the first 25 minutes; their explanation was that during
the first part of the experiment the nitrogen is eliminated mostly from the body fluids,
while later it is released mostly from fatty tissues. A better model of the experiment is
therefore given by equation
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where is the total amount of nitrogen contained in water, and the total amount con-
tained in fatty tissues, with

In modern terminology we would call this a “two compartments in parallel” model
(see Fig. 3). Alternatively, we can think of a “two compartments in series” model (see
Fig. 4), described by equations
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where is the amount of nitrogen present in the body fluids at time the amount
of nitrogen present in fatty tissues at time and and are their respective initial
quantities, with

The solution of the above equations is the same as given in (4), but with

As both models give the same good fit, the choice between them should by based on
additional experimental evidence.

4.3. THE TEORELL EQUATIONS

In 1937 Teorell [6, 7] published a systematic study of the kinetics of drugs introduced
into the mammalian body in various ways. As in the analysis discussed above, the as-
sumption about the transport and the definition of regions or compartments wherein
measurements are to be made lead to a set of differential equations with constant coeffi-
cients. Beyond that, however, two other interesting considerations appear in this paper.

One is the idea of chemical transformation as a route between compartments where
the latter term now has a more general meaning. Theorell’s concern was the disappear-
ance of a drug from the blood or tissue. The activity of the drug, being dependent upon its
chemical form, could decrease in kinetically identical ways by transport to another
spacial region (elimination) or by transformation to another chemical form (inactivation).
Thus, compartment is defined here as a state characterized by spacial localization and
chemical nature. This is a useful generalization that will be discussed in the next pages.

The other idea is the distinction between what one may call Fick kinetics and what
one may call stochastic kinetics. We dealt with stochastic kinetics in the first example of
transport of inert gases between compartments associated with pulmonary function. In
this case the particles which collectively constitute a variable associated with a compart-
ment each have a constant probability of transport from that compartment to any other.
The instantaneous rate of loss thus is proportional to the number of particles (amount of
substance) present at that instant. A set of such compartments then is represented by a
set of equations

where is the amount of drug (number of particles) present in compartment the con-
stant is the fraction of drug in compartment that is transferred to compartment per
unit time, and the constant is the total fraction efflux of drug from compartment per
unit time. This is the kinetic form attributed by Teorell to the resorption of a drug from a
subcutaneous depot.
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On the other hand, Teorell assumed for the transport between blood and tissues what
one may call Fick kinetics. This may be expressed by the equation

where is the net flux from compartment to compartment and are the activity in
compartment and respectively, and is a constant. Here the driving force for transport
is activity, a thermodynamic quantity, rather than an amount of substance. Then with the
assumption that the activity of a chemical entity is adequately approximated by its con-
centration and that the rate of change of concentration in a homogeneous constant volume
is proportional to the net flux across its boundary, we have the relations

where is the permeability constant for the barrier of constant thickness and area be-
tween the compartments and These equations represent the kinetics of the system of
compartments governed by Fick kinetics.

Equations (5) are more general than equations (6). This is to be expected, for the latter
set follows from physical conditions that narrow the applicability. We can see the relation
between these sets of equations and the respective parameters and variables as follows.
Consider equation (6), where the symbols and have the meanings given above. Then
we define avariable by

where is simply a parameter which is independent of time. Then equations (6) become

Now we define the new parameters

this definition transforms equation (8) into equation (5).
Formally, then, the Fick kinetics is a special case of stochastic kinetics where defini-

tions (7) and (9) hold. Again formally, is the instantaneous time rate of increase of
due to expressed as a fraction of Given the physical interpretation of and one
might choose to regard as a volume, which then leads to the interpretation of as an
amount. Then becomes the fractional turnover rate, the fraction per unit time of
contributed to Though equations (6) are very restrictive, the special case of Fick ki-
netics is an important one, having wide use as a model for biological transport processes.

Returning to Teorell, we look at some of his results. He wrote four differential equa-
tions representing

(a) resorption, that is, passage between subcutaneous depot and blood,

(b) elimination, the passage from blood to urine,

(c) tissue take-up, the exchange between blood and tissue,
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(d) tissue inactivation.
Processes (a) and (c) were represented by Fick-type equations; thus

Here is the amount of drug in the depot, is the amount of drug in the blood, is the
amount of drug in the tissue, is the volume of the depot, is the volume of the blood,
and is the volume of the tissue. However, is very small compared to in man
approximately 50 ml versus 5 liters. Therefore he simplified to

Processes (b) and (d) were considered to be monomolecular reactions, that is, reac-
tions of order one, thus

Combining these equations Teorell wrote (see Fig. 5)

and found that the amounts in blood and tissue as function of time are sums of exponen-
tial terms with constant coefficients.

4.4. TRACER KINETICS

The three examples discussed above represent the historical origins of the concept of
compartment in physical, physiological and pharmacological problems. The concept of
compartment was introduced in the radioactivity problem as a set of particle all with the
same probability of transformation, the nitrogen problem as a geometric space defined by
certain physical and physico-chemical properties. In Teorell’s work the idea was ex-
tended to include chemical transformations. In all cases the substance followed was as-
sumed to be chemically identifiable and the mathematics used was presented rather in-
formally.
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In a 1938 paper Artom, Sarzana and Segré [8] presented a radioactive tracer study of
the formation of phospholipid as affected by dietary fat, in which they gave a more for-
mal analysis than in the two previous examples. They administered inorganic phosphate

containing radioactive to rats and measured the radioactivity present in inorganic
phosphate of blood, in the lipid of liver and in the skeleton at known times after admini-
stration. The physical correlate of compartment, then, is a state determined by the simul-
taneous existence of a particular location in space and a particular chemical state. For

example, the variable representing the amount of in inorganic form in blood is a

compartment and is distinct from the variable representing inorganic in the liver and

distinct as well from that representing lipid in blood.
As a basis for their analysis Artom et al. specify four assumptions:

(a) that the organism is incapable of distinguishing between and

(b) that the quantity of P fixed in any form whatever (for example, as lipid P) by
a tissue per unit time is proportional to the amount of inorganic P in the
blood; and, similarly, that the amount of inorganic P which, in the same
time, is returned to the blood from the considered form is proportional to
the amount of P present in that form in that tissue;

(c) that the total amount of P in each of the tissues remains constant during the
experiment;

(d) that the quantity of P administered is sufficiently small that it does not mod-
ify the metabolism of the animal.

They define the following symbols:

1.

2.

3.

4.

represent the number of atoms of of the form of interest in
blood, liver, and skeleton, respectively.

represent the analogous numbers of atoms of

represents the probability per unit time of fixation in the form of interest
of a given atom of inorganic P by the liver.

represents the analogous probability for fixation by bone.
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From these assumptions and definitions and the additional assumption that no other
appreciable exchange of P occurs (see Fig. 6), three differential equations follow:

These three equations are analogous with equations (5), where, say, and so
forth. The solutions as functions of time, Artom et al. go on to say, are in general sums of
three exponential. The constants of the exponents are characteristic of the system, that is,
they depend upon the coefficients on the other hand are constants de-
pendent upon these parameters and the initial conditions of the experiment.

It is of interest to note here that the parameters play a two-way role in this case as
does the permeability parameter in the case of Fick kinetics in the previous example.
The reason is quite different, however. In this case are number of atoms per unit time
transported between compartments. Hence the number of atoms per unit time transported
from blood inorganic P to liver lipid P, say, is The probability per unit time of transport
for a single atom, then, is and the number per unit time of radioactive atoms trans-
ported is That the same parameter appears in the term for transport from liver
lipid P to blood inorganic P is required by the assumption (c) quoted above. It should be
clear that the probabilities per unit time of transport between liver lipid and blood phos-
phate are not necessarily equal in the two directions, but what is equal is the
number of atoms exchanged in the two directions per unit time Furthermore, if there
were a path for transport from liver to bone not including blood inorganic P, then this
steady-state assumption would not imply the single parameter for both directions.
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5. LINEAR DIFFERENTIAL EQUATIONS

5.1. GENERAL ASSUMPTIONS

In all four examples shown in chapter 4, “The Birth of Compartments,” the differen-
tial equations arrived at were of the general form

the solution of those equations leads in general to a sum of exponential functions of the
form

nevertheless there is a real danger of using the exponential law too frequently. The first
reason is that the exponential function is easier to manipulate and it describes most linear
phenomena, but not all of them; for instance the diffusion is a linear phenomenon, but it
is not exponential at all. A second reason, and the most dangerous of all, is that almost
any reasonably smooth function can be fitted with a sum of exponential functions, thus
hiding its real meaning under a purely phenomenological description.

I shall try here to develop the compartmental equations keeping always in mind their
physical (physiological and pharmacological) meaning, starting from some simple cases
and proceeding toward a more general solution.

5.2. ONE COMPARTMENT

For a single compartment we have equation

where

37

Observe that equation (2) is simply a conservation equation, i.e., it states that the
variation of the quantity present is the difference between its rate of entry and
its rate of exit. Furthermore a fundamental hypothesis is declared by equation (2), that the

= amount of substance in the compartment,

= entry rate into the compartment,

= fractional exit rate from the compartment.



38 FOUNDATIONS OF PHARMACOKINETICS

rate of exit of the drug from the compartment is proportional to the amount of drug pre-
sent; this implies that the process causing this exit is a process of order one.

The integral of equation (2) is

where is the amount of drug present in the compartment at the initial time. Expres-
sion (3) is useful only when has a very simple form. This is true in the first two cases
described below.

5.2.1. No recirculation, single bolus administration

If the drug is administered as a single bolus at time and there is no recirculation,
then and the integral of equation (2) becomes

where is the amount of drug administered as a bolus. Expression (4) can be trans-
formed logarithmically into

showing that is a linear functions of

5.2.2. No recirculation, constant infusion

If the drug is administered by constant infusion and there is no recirculation, then
and the integral of equation (2) becomes

Observe that

therefore

and again a logarithmic transformation shows that

is a linear functions of
Usually we cannot measure the amount of drug in an organ, but only its concentra-

tion, therefore sometimes it may be convenient to transform equation (2) by dividing both
sides by the volume of the compartment, to get
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where is the concentration of the drug in the compartment. From a physical
point of view there is an important difference between equation (2) and equation (5); in
fact the last one cannot be viewed as a conservation equation, because the concentration
is not a conserved quantity; besides, has the somewhat unusual dimension

not a flow rate. Nevertheless from a mathematical point of view equations (2)
and (5) are formally identical, and any solution of equation (2) can become a solution of
equation (5) by substituting to and

If we multiply and divide the first term of the right-hand side of equation (2) by we
get

this form of the one-compartment equation may seem awkward, because it mixes amount
of drug and concentration in the same equation, but it is interesting from two points of
view; first, it shows that the quantity is conserved, second it shows that the quantity
eliminated per unit time is the product of two quantities, one intensive, the other
extensive, Now this last quantity is the clearance, and equation (6) leads to some
very interesting conclusion, as shown in later chapters.

Let us now perform a thought experiment. We administer the drug to the compart-
ment with an infusion at a constant flow rate after a sufficiently long time a
steady state is reached with we can write

but the ratio between the amount present and its rate of elimination is the time elapsed for
eliminating an amount of drug equal to the amount present; this time does not depend on

and it is called the turnover time of the compartment.

5.2.3. Single bolus administration, recirculation possible

This is an important case where we cannot use equation (3), but we can get some in-
formation using directly equation (2). When recirculation is possible, function is gen-
erally unknown, but we can certainly say that at time there is no recirculation, i.e.,

therefore from equation (2) we get

and from a number of experimental values of divided by we can extrapolate the
value of this parameter is called turnover rate, and it is the inverse of the turnover time
defined above.
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5.3.  TWO COMPARTMENTS

For simplicity I consider two compartments with a single bolus administration in
compartment one only. The equations are

with the initial conditions

In those equations and are the fractional rate of elimination from compartments
1 and 2, respectively, while and are the fractional transfer rates from compartment
1 to compartment 2, and vice-versa, respectively. For the conservation of matter it must
necessarily be

The integral of the above differential equations is

where and are the roots of the ordinary equation

provided which is always true if both and are not zero.
In the special case the drug cannot reach the second compartment therefore

the differential equations become

and their integral is

In the other special case the drug cannot return from compartment 2 to com-
partment 1, therefore we have the differential equations
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whose integral is

provided In the special sub-case the integral is

5.4. SEVERAL COMPARTMENTS

With more than two compartments the relevant differential equations become

where

and in general

If we define

For the principle of conservation of matter we must have

= amount of drug in compartment

= fractional rate of exit from compartment

= fractional rate of transfer from compartment to compartment
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the parameters are the fractional transfer rates from a compartment to outside of the
system.

To transform the above equations from amount of drug to concentration, we divide
each term by the corresponding volume thus

In general the dose is administered in one compartment only; there is no loss of gen-
erality if we suppose this to be compartment one. With this hypothesis the terms at the

5.5. OPERATIONAL NOTATION

Using the operational notation, (see appendix B) equations (10) become

and reordering all terms,

Observe that equations (12) are formally identical with equations (10), but the mean-
ings of their coefficients are quite different. Even though concentrations are used more
often than amounts, we will use equations (10) in preference to equations (12), because
their physical meaning is more apparent.

If we differentiate times the first of equations (10) and times each of the
others equations, we get a total of equations from the first one and equations from
each of the other for a grand total of differential equations, containing
and its first  derivatives, plus the other  functions with their first      de-
rivatives; now we can eliminate all these last functions with their derivatives and we are
left with one differential equation containing only the function with its first   deriva-
tives. In short, from first order differential equations in different functions we can
obtain one differential equation of order in one function. The solution of these equa-
tions is much simpler if we use the operational calculus.
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right-hand side of equations (14) become and the solution of those equa-
tions is

where

is the determinant formed by the coefficients on the left-hand side of equations (14), and
is the determinant obtained from by suppressing row and column 1 [1]. By

developing we get a polynomial in of degree

where is the sum of all products of the constants taken by minus all products of
the constants forming rings of length for instance

and so forth. For inequalities (11) all coefficients are non-negative.
By developing we get a polynomial in of degree like but without
and all with the first or the second subscript equal to 1.
For with we have the polynomial in

where

In short, form all possible strings of such that the first subscript of the first   is  1,
the last subscript of the last is and the second subscript of each of them is equal to the
first subscript of the following one; then complete each of those strings with an appropri-
ate number of with a subscript different from the subscripts of the they are with,
but subtract from those all rings.

Observe now that, if are the roots ofequation then
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We can now rewrite equation (15) as

or, in the non-operational notation,

The rules to determine the coefficients from the and are described in Ap-
pendix B, section B.13.

Function (17) is called the unit response function; it is equal to the function measuring
the amount of drug in compartment when a unit dose is given to compartment 1 as a
bolus at time It is dimensionless.

Observe that in the corresponding function (16) the brackets {} themselves have di-
mension of time, [T], therefore the fraction has dimension [T]. The homoge-
neity of the above expression requires that the dimension of and be that be
dimensionless for all values of and from 1 to and the have dimension

5.6. EIGENVALUES OF A SYSTEM OF COMPARTMENTS

The eigenvalues of a system of compartments, also called characteristic values, are
the roots of equation or the exponents of the sum of exponential functions (17);
we indicated them by in the previous section.

The eigenvalues are typical model parameters, i.e., quantities that define a property of
a model.

Consider, for instance, a two-compartment model with reversible reactions, repre-
sented by the differential equations (7) with initial conditions (8); the solution of those
equations is

where the eigenvalues

are the roots of equation (9). Observe that and do not depend upon the initial dose
therefore the eigenvalues are invariant for different doses.
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Suppose now that instead of administering an initial dose   to the first compartment,
we feed it continuously with a constant rate of infusion equations (7) become

with initial conditions

the solution is now

with the same eigenvalues as before. The eigenvalues, therefore, are invariant not only to
the dose, but also to the mode of administration. This result of course applies to the com-
partmental model, and it is not necessarily true for any pharmacokinetic system, unless it
has been specifically confirmed experimentally.

5.7. PROPERTIES OF THE EIGENVALUES

Hadamard [2] did show that, when inequalities (11) hold with all the real ei-
genvalues of are non-positive, and the complex eigenvalues have the real part non-
positive. This property of the eigenvalues will be investigated in more detail in Chapter
11, Matrix Equations. For the time being we observe that if one of the eigenvalues is
zero, then must be zero. Remembering that is the sum of all products of the con-
stants taken by minus all products of the constants forming rings of length then
inequalities (11) imply that only if

When inequalities (11) are strict inequalities, expression (17) converges to zero for
when identities (18) hold, the expression (17) contains at least one exponential term

with a non-negative coefficient, therefore for it does not converge to zero. When
this is the case, we say that the compartmental system is closed.

5.8. DETERMINATION OF THE EIGENVALUES

Determining the eigenvalues from the experimental data is not always an easy prob-
lem. Many times the observation errors propagate in such a way as to invalidate most of
the numerical procedures towards this goal. In general, the easiest eigenvalue that can be
computed is the smallest one in absolute value.
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Suppose that a particular drug in a particular organ is characterized by three eigenval-
ues; in other words, the function representing the concentration of that drug in the
plasma is a sum of three exponential functions; then

where are the three eigenvalues, is the volume of the compartment and
the dose administered. Suppose also that

When increases, the last two exponential functions decrease faster than the first, so
that after a sufficiently long time

and as a consequence,

The plot of versus approaches a straight line of slope when in-
creases. Therefore can easily be determined by plotting as a function of on a
semilogarithmic scale and extrapolating for

The interval of time necessary for to decrease 50%, in the range of where
the approximation of expression (20) is valid, is called or terminal half-life of that drug.
Clearly

Apart from the factor ln 2, the terminal half-life is just one of the eigenvalues of the
model, therefore a model parameter [3].

The unreliability of the determination of the terminal half-life has been demonstrated
experimentally [4] and theoretically [5]. It is important to remember that the slowest
identified eigenvalue of may be equal to the turnover rate of the plasma itself, or of
one of its precursors, or of no compartments of the system.

I mentioned earlier that this particular eigenvalue is easy to determine, but this is not
always the case. There are at least two cases when this determination is difficult and in-
accurate. If is very small, the approximation in equation (20) is still valid, but only for
values of correspondingly small, that is for measurements of taken for
large values of when experimental errors are more likely. This difficulty sometimes can
be overcome. In fact, is invariant, but is not; if the initial conditions are modified
appropriately, for instance, by using a continuous infusion, may sufficiently increase
while stays constant.

Another case when the determination of is difficult is when in this case the
approximation (20) is still valid, but only for very large values of Supposethat
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where is small; the coefficients of equation (19), as shown by Rescigno and Beck [6],
are

therefore

For very large we may use the approximation

The limit of the last fraction on the right-hand side can be determined using
L’Hospital rule; in fact

therefore, for very small,

an expression whose logarithm, for does not approach a straight line.
More details on the eigenvalues of a model can be found in the literature [7, 8].

5.9. COMPLEX EIGENVALUES

I have shown in section 5.7 that some roots of equation may be complex; we
shall examine here what are the conditions for this to happen, and what its physical con-
sequences.

We first observe that with only two compartments

therefore the two eigenvalues are
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the expression under the square root is the sum of two non-negative quantities and can
never be negative, therefore no complex eigenvalues are possible with two compart-
ments.

With more than two compartments, complex eigenvalues are possible; let us consider
as an example the case of three compartments. In this case the eigenvalues, if any, are
roots of equation

this equation can also be written as

and can graphically be represented by the intersection of a cubic and a straight line; the
cubic intersects the abscissa at the points and the ordinate at the point

the straight line intersects the ordinate at the point

with condition (11) requiring

the slope of the straight line is

while the slope of the cubic at the point of intersection with the ordinate is

and the condition (11) requires
In general, the straight line intersects the cubic at three points, with abscissae equal to

the real eigenvalues, as shown in Fig. 1; if we make as small as possible and the fold-
ing of the cubic as small as possible, there will be just one intersection between the cubic
and the straight line, and consequently one real eigenvalue and two complex ones. To this
purpose we can make

and the eigenvalues are the roots of equation

i.e.,

where
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where

The solution is

thence

with the eigenvalues

The solution (see appendix B) is

thence

Some oscillations are present, but they are strongly damped by the exponential terms
and hardly noticeable [9].

With four compartments, proceeding in the same way, we find equation
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Again we have some oscillations, but they are strongly damped by the three exponen-
tial terms. Even if we make i.e., if the four-compartment system is closed, the
oscillations are damped by two exponential terms.

Of course, oscillations are possible, and may be noticeable if some non-linear proc-
esses are present; but no general theory is available for this case.
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6. STOCHASTIC COMPARTMENTS

6.1. STOCHASTIC PROCESS

Consider the number of particles present in a compartment at time to be a dis-
crete random variable [1], and call the probability that

The general property of probability requires that

We make the hypothesis that the probability of a particle leaving the compartment in
the short interval of time is proportional to but independent on and on the
number and age of the particles present; the probability of this event is thus
where is an infinitesimal of higher order than

If we call the probability that a particle enters the compartment in the
interval where is an arbitrary function, we can consider three possible
transitions in the compartment during the above interval of time:

for any positive integer
We also have

Clearly, the probability of two simultaneous events (entering and/or leaving the com-
partment) in the same short interval of time is an infinitesimal of higher order than

Combining the statements above we have

thence, rearranging and taking the limits for
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These differential equations must be completed with the initial conditions

where is the number of particles present in the compartment at time

6.2. GENERATING FUNCTION OF

The generating function of the random variable is defined by [2]

with        from the definition we get

Now multiply each of the equations (2) by and add them all together with equation
(1):

or

Rearranging,

Proceeding the same way with the initial conditions we get

The partial differential equation (3) with the boundary condition (4) determines the
generating function uniquely. The solution can be found with Lagrange’s method
[3], by first solving the auxiliary equations
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From the first auxiliary equation

we get

thence,

From the second auxiliary equation

we get

thence, using (5),

whose integral is

using (5) again,

The general integral of equation (3) is

where is an arbitrary function of its argument; therefore

thence
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The expression on the right-hand side is never negative, therefore we can omit the
absolute value sign on the left-hand side; we can also use the notation

where the symbol * means convolution; we have thus

For this expression becomes

and using equation (4),

or

now we are able to eliminate the function from equation (6) and get the final solution

The generating function can be written as the product of two generating func-
tions,

and

defining two new random variables and respectively. From these definitions it
follows that and are stochastically independent and that

The random variable represents the number of particles in the compartment if
i.e., if no new particles enter the compartment. Its generating function shows that

has a binomial distribution corresponding to particles with probabilities and
of being inside or outside the compartment, respectively.

The random variable represents the number of particles in the compartment if
i.e. if the compartment is empty when Its generating function shows that has

a Poisson distribution corresponding to
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where is the product of the number of particles present and the probability of each par-
ticle being present.

6.3. MOMENTS OF THE RANDOM VARIABLE

From the definition of generating function it follows that, for any random variable

where is the expected value of the random function Furthermore,

We can therefore write,

The Variance of a random variable is defined by

therefore,

and using equations (7) and (8),

The Third Central Moment is defined by
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therefore,

proceeding as before and using equation (9),

The moments of the random variable are equal to the sum of the corresponding
moments of and We shall therefore compute separately the moments of these
two random variables.

For we obtain immediately,

therefore,

as we must expect from a random variable with a binomial distribution.
For we obtain immediately,

therefore,
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as we must expect from a random variable with a Poisson distribution.
From (10) and (11) we observe that

and from (13) that

as a consequence,

Similarly from (11) and (12) we observe that

and from (13) that

as a consequence,

6.4. TURNOVER TIME

In the first section of this chapter I defined a compartment as a pool of particles all
having the same probability of transition from their present state to another identifiable
state and called the probability that a given particle present in a specified
compartment leaves from that compartment in the interval of time for the time
being we consider a constant, i.e., the said probability depends on the length of time
considered but not on the absolute time.

Call

then

this last equation can be written

and by integration

the probability that a given particle is present in a given compartment at
time

the actual time of entrance of a particle into that compartment;

for
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We now define the continuous random variable equal to the time spent by a particle
in a compartment from its entry to its next exit, and call it turnover time; its generating
function is

where  is the probability that
This last probability is the product of the probability of being present at time

times the probability of leaving in the immediately following interval of time
therefore

thence,

This is the generating function of a continuous random variable with an exponential
distribution.

Operating as in the previous sections we find that

From these last expressions we find that
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6.5. RELEVANCE OF STOCHASTIC MODELS

From the proceeding sections it must be clear that the stochastic models we have con-
sidered are not providing much more information than the corresponding deterministic
models, unless the number of particles present is quite small.

Now, remembering that, for any random variable, the standard deviation is given by

and the relative standard deviation by

when a compartment contains, say, of a substance, corresponding to parti-
cles, we have

and using inequality (14)

a very small value indeed.
Nevertheless there are many pharmacokinetic studies where the primary purpose is

the study of certain compartments which happen to have a very small number of particles
present even if the given dose is comparatively large. An example [4] is given by the cur-
rent molecular model of carcinogenesis, where a single molecule may be sufficient to
cause a tumor with a “one-hit” in the target organ.
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7. DIRECTED GRAPHS

7.1. INTRODUCTION

One important problem in the analysis of compartment systems is the study of the
properties related to the structure of the model, i.e., of the properties depending upon the
presence or absence of a connection between any two compartments and not upon the
values of such connections.

The topological properties of a system of compartments have been studied by Re-
scigno and Segre [1] using a directed graph [2]. A directed graph was called réseau ori-
enté by Sainte-Laguë [3] and graphe by Berge [4]; I shall use the term graph for brevity
in this chapter when referring to a directed graph. A graph consists of a set of nodes, rep-
resenting the compartments, together with a set of arms connecting the nodes and repre-
senting the transfer between compartments.

7.2. CONNECTIVITY MATRIX

To each graph containing nodes we can associate a square matrix of order called
the connectivity matrix; the element of row and column of the connectivity matrix is
equal to 1 if there is an arm from node to node is equal to 0 if not. The sum of two
connectivity matrices and of the same order is the matrix

where the elements are added according to the rules of Boolean algebra (see Appendix
D); the product of and is

where again addition and multiplication of elements follow the rules of Boolean algebra;
the power of a connectivity matrix is defined by

finally the transpose of is defined by

In a connectivity matrix a column of zeros means that the corresponding node is an
initial node, a row of zeros means that the corresponding node is a terminal node. For

61



62 FOUNDATIONS OF PHARMACOKINETICS

convenience we shall consider only graphs with only one initial node; this kind of graph
corresponds to systems of compartments where the drug is introduced only at one point;
of course the linearity of the system implies that if the drug enters through several com-
partments, that system can be considered to be the sum of several systems, each with one
initial node.

We shall call the initial node, node 0. Node 0 does not correspond to a real compart-
ment of the system, but rather to the ideal point from where the drug enters the system
[5].

If an element of amatrix is equal to 1, we say that is the precursor of and is
thesuccessorof

A succession of arms such that the node entered by each of them (except the last one)
is the node at which the next arm begins, is called a path. If the starting node of the first
arm coincides with the ending node of the last arm of a path, that path is called a cycle.
The length of a path is equal to the number of its arms. A path, including a cycle, is called
simple if every arm of it appears only once; it is called elementary if every node of it is
entered only once.

A graph is called connected if there is at least a path from its initial node to any other
node; in this section we consider only connected graphs. A graph is called strongly con-
nected, or a strong graph, if there is at least a path from every node, including node 0, to
every other node, excluding node 0. In a strong graph there is at least one cycle.

Deleting row and column from matrix results in the minor of and corre-
sponds to disconnecting node from the graph. The minimum number of nodes that must
be deleted to transform a connected graph into a non-connected one, is the connectivity of
the graph. A graph ofconnectivityp is also called p-connected.

A subgraph is a connected graph obtained by suppressing some nodes and their con-
necting arms from a given graph; the subgraph obtained by suppressing the initial node
and the arms leaving it, from a given graph, is called its subgraph. A subgraph in
which each node occurs in exactly one cycle is called a linear subgraph.

Each set of cycles in which each node of the subgraph occurs in exactly one cycle is
called a strong component. A Hamiltonian cycle ofa graph or subgraph is an elementary
cycle that joins all the nodes of that graph or subgraph. For instance the graph of Fig. 1
has one Hamiltonian cycle two strong components

three elementary
cycles

The graph of Fig. 2 too is strongly connected, but it is not the linear subgraph of any
graph; it does not have Hamiltonian cycles or strong components, but it has two elemen-
tary cycles

and
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A graph is symmetric if for any arm connecting a non-initial node to another node,
there is an arm in the opposite direction; the connectivity matrix of the subgraph of a
symmetric graph is symmetric, i.e.,

A graph is asymmetric if there is no more than one arm between any two nodes; if an
asymmetric graph is strongly connected, it admits one Hamiltonian cycle. Define the
element-by-element product of two matrices and by

then for any asymmetric graph

if in a graph some of the connections between nodes are symmetric, the set of such con-
nections is given by the non-zero elements of the element-by-element product

A lineal or catenary graph is a graph with all nodes entered by no more than one arm,
as in Fig. 3; it has one initial node, one terminal node, and one path; its connectivity ma-
trix has no more that one non-zero element in each column and in each row.
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A tree is a graph in which all nodes, except the initial one, are entered by exactly one
arm, and from at least one node more than one arm starts; these last nodes are called
roots. The connectivity matrix of a tree has no more than one non-zero element in each
column and at least one row with more than one; the rows with more than one non-zero
element correspond to the roots of the tree. For instance the roots of the graph of Fig 4
are 1, 2, 6; the connectivity matrix is

A mammillary graph [6] has a central node connected with all other nodes, in one or
in both directions, while all other nodes are not connected among them. Its connectivity
matrix has all elements not on the row or column corresponding to the central compart-
ments equal to zero. For instance the connectivity matrix of the graph of Fig. 5 is

The successive powers of the connectivity matrix show the existence of paths in the
corresponding graph; in fact the element of row and column of matrix is equal to 1
if there is a path of length from to of course the diagonal elements of show the
existence of cycles of length

If a graph with nodes does not contain any cycle, then there is a number such
that and matrix is said to be nilpotent. If but then is the
length of the longest path of the graph. Marimont [7] has proved that a matrix is nilpotent
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if and only if every principal submatrix has at least one zero row or zero column; as a
practical rule for finding whether a matrix is nilpotent, i.e., whether the corresponding
graph has no cycles, we can delete successively the rows (or columns) whose elements
are all zero and the corresponding columns (or rows); if some non-zero elements are left,
the original matrix is not nilpotent.

The sum of successive powers

shows the paths of length up to If is nilpotent and then shows the paths
of any length. If is not nilpotent, and is the length of the longest simple path in the
graph, then adding higher powers of does not change because it includes all possible
connections between nodes. We call reachability matrix, the limit of the above sum
for sufficiently large; then a non-zero element of shows that there exists a path
from node to node i.e., that compartment can be reached from compartment Harary
[8] has shown that the element-by-element product of and its transpose, indicates in
row the nodes belonging to the same cycle as node

For instance, from the graph of Fig. 6,

therefore

this last matrix shows that nodes 2 and 4 are on one cycle and nodes 3 and 5 on another.
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7.3. PRECURSOR-SUCCESSOR RELATIONSHIP

Another important application of graphs to compartmental analysis is the classifica-
tion of the precursor-successor relationship [9]. If in a graph there is a path from to
then is a precursor of and is a successor of the length of the shortest path from to
is called the order of the precursor. For instance in the graph of Fig. 6, node 1 is the pre-
cursor of order one of node 2, of order two of nodes 3 and 4, and of order three of node 5.
Precursors of order one can be further classified in different types:

a)

b)

c)

d)
e)

f )

g)

h)

Absolute precursor: the arm from to is the only one leaving and the only
one entering

Complete precursor: there is only one arm leaving no cycle may enter ex-
cept from

Complete precursor with recycling: there is only one arm leaving belongs
to a cycle not including

Unique precursor: there is only one arm entering

Total precursor: there are no paths from to of length more than one; if
belongs to a cycle, belongs to the same cycle;

Total precursor with recycling: there are no paths from to of length more
than one; there is a cycle in not through

Partial precursor: there is a paths from to of length more than one; if be-
longs to a cycle, no node of the cycle except has an arm entering

Partial precursor with recycling: there is a paths from to of length more
than one; there is a cycle in not through

Observe that a precursor of is classified “with recycling” only when there is a cycle
in not passing through Therefore, in the examples of Fig. 7, is an absolute precursor
of The reason for this is that, in the case of Fig. 7, even though is a precursor of (of
order 2), a knowledge of is sufficient to explain the behavior of while with recycling
is determined by but also by itself, and is not sufficient to explain the behavior of

Fig. 8 shows the graphs of the different types of precursors of first order, while Table
I shows how they can be classified according to the values of the matrices and

If but forsome then is a precursor of order two of classification
of second order precursors according to different types is done as above. More details on
the precursor-successor relationship will be given in Chapter 10.
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8. LINEAR GRAPHS

8.1. FUNDAMENTAL PROPERTY OF LINEAR GRAPHS

Equations (14) of chapter 5 can be written in a concise form,

showing how the operator of compartment i depends on the operators of its
initial condition and on the operators of all other compartments. Equation (1) can be
represented graphically with a node for a node for each function and a node for

plus an arm from each of the former nodes to this last node, these arms equal to the
coefficients of the respective terms on the right-hand side of equation (1). Thus node
is equal to the sum of all arms entering it, times their nodes of departure. For instance to
equation

corresponds the graph of Fig. 1 (next page).
Of course an equation like (1) can be written for each compartment of a system, and

to each equation corresponds a graph; all those graphs can be combined together, because
the arms entering a node of one graph will not change the values of the nodes determined
by another equation. If equation (2) is holding with the two additional equations

and

their two corresponding graphs are shown in Fig. 2 and Fig. 3. All those graphs can be
combined in a single graph, as shown in Fig. 4.

This last graph includes all the information contained in the given differential
equations (2), (3), (4), plus the initial conditions. This kind of graph was introduced in
1953 by Mason [1] who called it signal-flow graph; it has been used in compartmental
analysis since 1960 [2]. I prefer the name linear graph as more indicative of its function,
even though this term was used by Kirchhoff [3] in a slightly different context.
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Almost all definitions given for directed graphs are valid for linear graphs too. In
particular a path has a length, as in a directed graph, but also a value, equal to the product
of its arms.

The fundamental property of a linear graph, as an immediate consequence of its
definition, is: “Each node is equal to the sum of the products of the arms entering it times
their departing nodes.”

8.2. TRANSFORMATIONS  OF  LINEAR  GRAPHS

A number of transformations can be made, including the suppression of some nodes,
without changing the fundamental properties of the nodes left. These four transformations
were described by Mason:

a) Two tandem arms can be substituted by a single arm equal to their product
and the intermediate node suppressed.

b) Two parallel arms can be substituted by a single arm equal to their sum.

c) An arm entering a node can be substituted by arms entering all nodes
immediately following it, each new arm being equal to the product of the
original arm and the arm connecting the previous to the new node.

d) An arm starting and ending at the same node can be suppressed by dividing
all arms entering that node by one minus the value of the suppressed arm.

Repeated application of these four rules leads to a much simpler linear graph that
helps interpreting some of the properties of the system of compartments it represents.
More details can be found in the literature [4, 5, 6]; here I intend to show only some
simple properties of the linear graphs.

Going back to equations (1), observe that the term represents the contribution to
compartment i from outside the system of compartments; we can call this term the input
to compartment i. For simplicity consider the case when only one compartment has an
input different from zero; then its linear graph has only one initial node, as defined in
chapter 7; without any loss of generality we can suppose this node to be node 1.

If the graph does not contain any cycles, there are only a finite number of paths
between its initial node and any other node; repeated application of the first three
Mason’s rules lead to a graph containing exactly one arm between the source and each
other node. For instance the graph of Fig. 5 has one path from to equal to

one path from to equal to two paths from           to

respectively equal to and to and

so forth.
The graph of Fig. 6 is therefore equivalent to the graph of Fig. 5. The values of its

arms are given in Table I. In this new graph there is one initial node, the source; all other
nodes are terminal nodes, therefore any of them can be suppressed without altering the
properties of the rest of the graph. This is important, because when the behavior of only
one compartment is of interest, the graph can be reduced to only one arm, between the
source and that particular node.
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The problem is slightly more complicated when the original graph contains some
cycles, because in this case the number of paths between some nodes is infinite. A first
step in the simplification of such graph is to look for essential nodes, i.e., nodes that must
be removed to interrupt all cycles; their choice is not unique, but in any case it must be
such that the number of essential nodes be minimum. Once the essential nodes are
chosen, the simplified graph contains:
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a) an arm from the source to the terminal node of interest,

b) an arm from the source to each essential node,

c) an arm from each essential node to the terminal node,

d) an arm from each essential node to each other essential node,

e) an arm from each essential node to itself.

The value of each of these arms is equal to the sum of the values of the elementary
paths between the nodes they connect, excluding all other nodes of the simplified graph.
Some of the arms listed above may be missing, and the terminal node itself may be an
essential node. Fig. 7 shows a simplified graph with one essential node; Fig. 8 shows a
simplified graph where the terminal node is an essential node; Fig. 9 and Fig. 10 show
simplified graphs with two essential nodes.
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From the simplified graph the closed arms can be eliminated using Mason’s forth
rule, then the new graph can be further simplified as before, until only one initial and one
terminal node are left. The value of the only arm left is called the transfer function
between those two nodes. The properties of the transfer function will be studied with
more details in chapter 10.

For instance the essential graph of Fig. 11 using Mason’s fourth rule becomes the
graph of Fig. 12 not containing any cycles; then using Mason’s first and second rules
becomes the graph of Fig. 13 with only one arm.

The rules shown here are conveniently applied when a graph contains very few
cycles; if the simplification of the graph involves more than one or two essential nodes, it
is more convenient to use the method of the strong components [7] (See Section 8.5).
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8.3. VARIABLE ADJACENCY MATRIX

The value of an arm from node to node in the complete graph of a compartmental
system is in the simplified graph the arm is an expression formed with the
operator s and the transfer rates; let’s call in general the value of the arm from node i to
node at any stage of simplification of the graph. We define now the variable adjacency
matrix A a square matrix whose elements are the operators of a linear graph, or of the
system of compartments it represents. Matrix is formed by the elements

and it represents the values of the paths of length 2 of the associated

graph. In general, we can say that matrix represents the values of the path of length r.

8.4. DETERMINANT OF THE VARIABLE ADJACENCY MATRIX

The determinant (see Appendix C) of the variable adjacency matrix of order n of a
subgraph (i.e., of the subgraph obtained from by deleting node 0 and the arms

leaving it) is called zero-axial or invertebrate because all elements of its principal
diagonal are null. Its development was obtained by Caley [8]. He used the notation

and omitted the second bar when two such symbols were written consecutively in a
product, for instance

We now observe that the symbol represents the product of the values of the
arms forming an elementary cycle through the nodes and that the symbol, say,

represents the product of the values of the arms forming a strong
component of According to Cayley, is equal to the sum of the products formed
with the values of the arms of the strong components of Each product has the sign +
or –, depending on whether the number of cycles with an even number of arms is even or
odd. When there are no strong components, is equal to 0. For instance, with

where the two sums are extended to the permutations of the numbers 1, 2, 3, 4, giving
different values of the products [9]. As with our notation this is
equivalent to

For

the first sum being formed by 24 terms and the second by 20 terms [8], For n = 6, Muir
[10] gave a formula which evidently contains a printing error and should read
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the number of terms in each sum is 15, 90, 40, 120, respectively. The convenience of the
Cayley notation is very apparent.

Calling the determinant formed by the elements the development of has the
same terms as the development of the terms corresponding to cycles with an even

number of arms have the same sign in as in the terms corresponding to cycles with

an odd number of arms have the sign changed. Therefore the sign of the terms of is +
or – according to whether there is an even or odd number of cycles in the corresponding
strong component.

For instance, with

with

8.5. ENUMERATION OF THE STRONG COMPONENTS

The number of terms of an invertebrate determinant of order was first
calculated by Stockwell [11]; he expressed it with the recurrent formula

Balzer [12] showed that

and later [13] he demonstrated that is the nearest integer to Because of what
was said previously about is the number of strong components in a complete
graph of order i.e., a graph with nodes and arms. From Stockwell’s formula
one obtains

that shows the law of formation of the strong components of a complete graph of order
from the strong components of order and

Given the strong components of a graph of order the strong components of a
graph of order n obtained by adding a new node and the corresponding arms are found by

1. Including the new node in the cycles of the old strong components
after each one of the old nodes, i.e., in different ways, and

2. Connecting the new node in a cycle with each one of the old nodes and
coupling each one of these new cycles with the strong components
containing the other nodes.

The same reasoning is true for a non-complete graph. For instance, given the graph of
Fig. 14, the determinant of which is
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we first construct the subgraph suppressing node 4, then the three subgraphs suppressing
each one of the nodes 3,2, 1. Of each one of them we construct the strong components, if
any. In the cycles of the strong components of order 3 we insert node 4 after node 1, after
node 2, after node 3, if possible, i.e., if there are the corresponding arms; to the strong
components of order 2 we add a cycle formed by node 4 and by the node missing, if
possible. As shown in Fig. 14, there are three strong components symbolized by

8.6. DETERMINANT OF A SYSTEM

The solution of a compartment system corresponds to the solution of a system of first
order differential equations with constant coefficients. And any system of first order
linear differential equations with constant coefficients can be represented by a linear
graph and solved by the method described here.

The system of differential equations is

with the initial conditions where or 0, according to whether
compartment is connected or not to the initial compartment. In operational form the
system is written

or

and in matrix form
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where is the identity matrix, and is the transpose of
The solution is obtained by the Cramer’s rule,

where in the last fraction the numerator is the minor of the denominator obtained by
suppressing its row 0 and its column

The row 0 of is 1,0,0,...; furthermore, the value of a determinant does
not change if its columns are changed with its rows. Therefore

where the expression on the right hand side is the determinant obtained by changing the
sign of all the elements of and making equal to 1 all elements of its principal diagonal.
If we move the first column of after the one, and then change the

columns with the rows, we obtain the determinant where

is the determinant with its row substituted by the elements
Therefore

8.7. DEVELOPMENT OF THE DETERMINANT OF A SYSTEM

If the rows and the columns of det are rearranged such that all nodes from
where no paths go to node are represented after and all nodes from where a path goes
to node are represented before then all the elements belonging jointly to the rows after

the and to the columns to the are zero. Therefore det is equal to its principal
minor corresponding to the node i and to the nodes from where a path goes to node
times the principal minor corresponding to the nodes from where no path goes to node

If from every node a path goes to node then In the same way it can
be shown that

where is the determinant with the row substituted by the elements
Therefore
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The determinant

can be developed in terms of and its principal minors, following a theorem enunciated
by Cayley [14] for skew determinants, but evidently valid for any determinant: M is equal

to 1, plus the determinant of the subgraph obtained from the original suppressing
the node from where no paths go to node plus all principal minors of this last
determinant.

According to Cayley’s rule, each of these determinants is equal to the sum of the
products of the arms forming a linear subgraph (see Chapter 7, section 7.2) of the sum
being extended to all possible linear subgraphs, including if the case, and each
product has the sign + or –, according to whether in the corresponding subgraph there is
an even or odd number of cycles.

The expansion of

is the same as substituting a 0 to the i’s appearing as first subscript, multiplying all
terms not containing as first subscript by and changing the sign of all terms.
Therefore is equal to the sum of the products of the arms forming an elementary path
from node 0 to node plus the same products times the products of the arms forming a
linear subgraph with the nodes untouched by the same path. Each product has the sign +
or – according to whether there is an even or an odd number ofcycles.

For an example, see Fig. 15. In that graph there is one elementary path from node 0 to
node 1, plus two linear subgraphs formed by nodes 2, 3, 4 untouched by that path,
therefore we can compute

two elementary paths from node 0 to node 2, plus a linear subgraph formed by the nodes
untouched by the first path, therefore

two elementary paths from node 0 to node 3, therefore
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two elementary paths from node 0 to node 4, plus a linear subgraph formed by the nodes
untouched by the first path, therefore

and finally eight linear subgraphs, therefore

8.8. TRANSFER FUNCTION

The transfer function between any two compartments and can be obtained
from the ratio of the two functions and provided a is a precursor of
therefore

For instance from the graph of Fig. 16 we can compute
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thence the transfer function from compartment 1 to compartment 2 is
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9. MOMENTS

9.1. DEFINITION OF MOMENT

Moments have been used in pharmacokinetics for many years, but with different defi-
nitions and different names. An early example is given by Rescigno and Segre who used
moments to determine the pulmonary transfer function from radiocardiographic data [1]
and then generalized the method to include a larger class of problems [2]. Bergner [3]
offered a critical analysis of the method and suggested possible applications. Hearon [4]
analyzed the distribution of residence times in a compartmental system. Rescigno and
Gurpide [5] applied the moments to the study of distribution and metabolism of blood-
born compounds. Rescigno [6] defined transit time, residence time, time of entrance and
time of exit in terms of moments.

In this chapter I shall try to develop the concept of moment in a simpler way and with
a more convenient set of symbols.

Given the function defined and continuous for any the integral

if it converges, is called the moment of order or shortly the of
Sometimes the moment of a function is defined without the at the denominator; I

prefer definition (1) because with it all following formulas are considerably simpler.
The moment of order 0 of if it exists, is given by

while for the moment of order i of if it exists, is given by

i.e. minus the moment of order of
Consider now the function its moment of order 0, if it exists, is given by

and its moment of order 1, if it exists, by

83



84 FOUNDATIONS OF PHARMACOKINETICS

while for its moment of order i, if it exists, is given by

i.e. the moment of order of
By induction we can show that the moment of order of the function with

if it exists, is equal to times the moment of order of function while for

These results can be generalized by defining, for any positive integer

and calling the moment of order of with this notation we can say that the mo-
ment of order of the function with any integer if it exists, is given by

with arbitrary integers.
If a function has an i-moment the ratio

is called relative moment of order   of as seen above, may be a positive or negative
integer.

The i-moment of has the dimension of times The corresponding relative
moment has the dimension The number may be positive, negative, or null.

9.2. MOMENTS AND CONVOLUTION

Given the convolution equation

we can compute the different moments of

now we change the order of integration,

it is equal to
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then we change the variable of integration of the inner integral,

we expand the binomial,

and finally

i.e.,

and

The continuous convolution of equation (5) has been transformed into the discrete
convolutions of equations (6) and (7).

9.3. MOMENT OF ORDER ZERO

The 0-moment of function its integral  from  0 to

it has obviously the dimension of function      times [T].
If measures the concentration of a drug in a compartment, its 0-moment is called

by some authors “Area Under the Curve”, abbreviation AUC. The AUC depends on the
dose and on the mode of administration; it is therefore a typical example of an incidental
parameter, i.e., of a quantity that defines a property of a pharmacokinetic experiment, not
the property of a drug or of a model. I recommend to abandon the use of this symbol be-
cause it is often a source of ambiguity.

To understand the meaning of the 0-moment, think of a simple compartment de-
scribed by the differential equation
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where is the amount of drug in the compartment, K its turnover rate, and the rate
of entry into the compartment from recyrculation. If is the initial dose in the
compartment, then, by integration of the above equation,

if the system is open, rearranging we get

if the turnover rate is constant we can export it from the integral and we get finally,

The term of the left-hand side is the 0-moment of       , the term of the right-hand side
is the turnover time multiplied by the total amount of drug that went through the com-
partment.

If we divide the total amount of drug that went through the compartment by the dose
D, we get the number of times the drug goes through the compartment; this quantity is
called turnover number. The product of turnover time by turnover number is the total
time spent by the drug in the compartment in all its passages through it; we call it per-
manence time:

Both turnover number and permanence time will be discussed in detail in later chap-
ters.

The zero moment has one more important meaning, even when the system is not lin-
ear. With the hypothesis that the effect of a drug is proportional to its concentration and
time of presence at the site of sampling, the zero moment is a measure of the effect of the
drug at the point where it was sampled. But it is important to stress the fact, as observed
in section 17.4.1, that this statement is valid even if the processes of absorption and of
elimination are not linear, but only if the effect is a linear function of the product time ×
concentration.

9.4. MOMENT OF ORDER ONE

The 1-moment of function is the integral

it has obviously the dimension of function times
The relative moment of order one is
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and it has the dimension [T].
If measures the concentration of a drug in a compartment, its 1-moment is called

by some authors “Area Under the Moment Curve”, abbreviation AUMC. The AUMC, as
the AUC, depends on the dose and on the mode of administration, but also on the time of
administration; it is therefore another incidental parameter. I strongly recommend to
abandon the use of this symbol, even more ambiguous of AUC.

To understand the meaning of the relative moment of order one, observe that, if        is
the amount of drug in a compartment and K its turnover rate, then

Nothing changes if we substitute “concentration” to “amount of substance”, because
the factor “volume” will appear on both numerator and denominator and will cancel out.

The relative moment of order one of a compartment is called exit time, symbol and
will be discussed in more detail in chapter 16. But I will show in section 16.4.1 that if K
is not constant, i.e., if we are not dealing with a perfect compartment, the parameter K
cannot be exported from the above integrals, therefore in that case the first relative mo-
ment is not equal to the exit time.

9.5. MOMENT OF ORDER TWO

The 2-moment of function  is the integral

it has obviously the dimension of function       times 
The relative moment of order two is

and it has the dimension
Consider the difference

rate of exit from the compartment,

amount leaving the compartment in the interval

time of this event,

average time of exit from the compartment.
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if measures the concentration of a drug in a perfect compartment we can multiply
each of the four integrand functions on the right-hand side by K; then reasoning as in the
previous section we find that the fraction

is the expected value of the square of the exit time from the compartment, while

is the square of the expected value of the exit time from the compartment, therefore the
difference

is the variance of  the exit time from the compartment.
Some applications of the variance of the exit time can be found in the literature [7, 8].

9.6. MOMENTS OF NEGATIVE ORDER

The –1-moment of function is its initial value,

it has obviously the dimension of function
The –i-moment is given by

where i is any positive integer; it has the dimension of function times

9.7. MOMENTS AND OPERATORS

The different moments of a function can easily be computed using the operational
notation. For instance we know from section B.5 that

and from section B.15 that

combining the two above expressions we get
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therefore

We also know from section B. 10 that

and combining this with the previous results,

therefore

Proceeding the same way we obtain, in general,

therefore

for any positive integer
For the moments of negative order we can use the formula

from section B. 14 to obtain

and identity

from section B.5 to obtain

Proceeding the same way we can write
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for any positive integer

9.8. EXAMPLES

The successive moments of an exponential function

are

The successive moments of a gate function, as defined in section B.7, are

Consider the function defined by

as shown in section B.12, if is small, we can write

Its successive moments, for very small, are approximated by

MOMENTS AND COMPARTMENTAL EQUATIONS9.9.

We have seen in section 5.4 that if is the measure of a drug in a particular com-
partment of a system of n compartments, then is the integral of a differential equation
of the type

We can compute the moments of order of all terms of this equation as shown in sec-
tion 9.1; then,
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Observe that each homogeneous equation (9) represents a linear relationship among n
+1 moments therefore only  of them are linearly independent.

The persymmetric matrix (see section D.12)

with any integer (positive, negative, or null), is of rank because only of its elements
are linearly independent. As a consequence, if we construct the successive persymmetric
matrices

only the first   of them are non-singular.
In practice, if a number of moments of a linear system have been measured, the first

of the matrices (10) that is singular shows the order of the system it was taken from. The
vector that annihilates it is formed by the coefficients of differential equa-
tion (8).

For instance, if the system is formed by only two compartments, the matrices
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contain the same information; we are free to choose the one with the elements that were
measured with the highest accuracy.

9.10. EXAMPLE

Suppose we have observed the following moments:

we can construct the matrices

The solution is

and the observed system has the characteristic equation

or, in operational notation,

reordering we get

We know that is equal to the –1-moment and           to the –2-moment, therefore

the first is non-singular and the second singular, therefore the order of the system of
compartments they were taken from is 3, and we must find the vector satisfying equation
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Alternatively, after having found that the order of the system is 3, and therefore it can
be represented by a sum of two exponentials, we can write

and for its moments,

the four equations above determine the parameters in a unique way.
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10. INTEGRAL EQUATIONS

10.1. TRANSFER FUNCTION

Consider a particle in a living system and suppose that that particle can be recognized
in two different states of the system, where by state I mean a particular location or a par-
ticular chemical form, or both. If one state is the precursor of the other (not necessarily
the immediate precursor), then we can study the relationship among event (the particle
is in the precursor state), event (transition from precursor to successor state), and event

(presence of the particle in the successor state).
For any and such that                 call          the probability of at time and C(t) the

probability of at time Suppose now that depends only on the interval of time sepa-
rating and so that we can call now the conditional probability that a parti-
cle is in at time if it left in the interval

The product

therefore is the absolute probability that a particle leaves in the interval of time be-
tween   and and is still in at time

By integration of the above product we obtain the probability of a particle being in
state at time irrespective of when it left i.e.

The integral on the left-hand side is called convolution integral; it represents the rela-
tionship among the variables of a linear, invariant system. See Appendix A for a discus-
sion on the different aspects of convolution.

If we think of an experiment where a very large number of identical particles is used,
then the number of particles present in the precursor and in the successor states are good
estimates of functions and respectively. Function represents the probability
that a particle that was in at time 0 will still be in at time therefore in a hypotheti-
cal experiment where all identical particles left the precursor near time zero, the number
ofparticles found in the successor will be given by

In more general terms, if and are two compartments of a system, and if the drug
was added to compartment (or to another compartment from where it could not reach
compartment before going through compartment  ), there might exist a function
of two variables such that

95



96 FOUNDATIONS OF PHARMACOKINETICS

where and are the amount or the concentration of drug in compartment and
respectively. This is a Volterra equation of the second type [1]; if any two of the three
functions are known, the third can be computed.

Function if it exists, is called the transfer function from compartment to
compartment The use of transfer functions in pharmacokinetic problems began in 1960
[2].

The integral in equation (2), called convolution, is a linear operation. This means that
two of its solutions can be added to give a new solution. The consequence is that if in one
experiment the amount of drug in compartments and were and respectively,
and in another experiment they were and respectively, then in an experiment
where the amount of drug in is the amount in will be

The existence of a transfer function can be assumed as the definition of linearity of a
system.

When the transfer function is a function of one variable, equation (2) takes the sim-
pler form of equation (1), i.e.,

and the linear system is said to be state-determined or time-invariant. This means that a
solution does not change if the time origin is changed. In fact suppose that are a
solution of equation (3), and consider the new function

For this new function,

but

furthermore

therefore

i.e.,        and  are shifted along the time axis by the same quantity.
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10.2. OPERATIONAL FORM OF THE TRANSFER FUNCTION

Appendix B shows that the operational calculus transforms the convolution integral
into a product of functions; we shall therefore use the operational notation to transform
equation (3) into the form

The above ratio is the transfer function from compartment to compartment by an
obvious extension, the ratio is called the transfer function from the source of
compartment to compartment [3,4].

It is worth repeating that all these definitions are valid only if the drug were added to
compartment or to another compartment from where it could reach compartment only
through compartment

As an example, consider three compartments 1, 2, 3 connected in series (see Fig. 1);
the amount of drug in each of them is these three functions are related by
the differential equations

with initial conditions

The integrals of those equations, if are

therefore the transfer functions are

In operational notation the differential equations (5) and (6) are
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thence

As a second example, consider the three compartments as above, with a reversible
transfer between the second and third one (see Fig. 2); equation (5) becomes

while equation (6) does not change formally, though the coefficient in this case in-
cludes the transfer rate from compartment 3 to compartment 2.

Equations (6) and (9) can be integrated with the standard methods of analysis, giving

 where        and      are the roots of the characteristic equation

that is,

The transfer functions are therefore

In operational notation the differential equations (9) and (6) are
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thence

and by eliminating first then

Observe that and are always real and different one from the other; in fact the dis-
criminant

of the characteristic equation (10) is always positive because of the relationships

An alternative approach to transfer functions was shown in section 8.8. More proper-
ties of the transfer functions will be investigated in later chapters.

10.3. INITIAL VALUES OF THE TRANSFER FUNCTION

The numerical computation of the transfer function between two compartments where
a drug has been measured is always a difficult operation, and in all cases requires a very
detailed knowledge of the two given functions. Nevertheless a partial determination of
the transfer function is possible from a limited number of sampling points of the func-
tions and In fact by sampling         and          at different times we can plot a
number of values of and extrapolate those values for if using
L’Hospital rule [5],

If                   but                     we apply L’Hospital rule once more and get

By induction, if m is the lowest order of derivative of different from zero for
then
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Suppose now it was found that we can plot versus and extrapolate
those values for again if using L’Hospital rule,

If   and                  but we can apply L’Hospital rule once more,

Proceeding in the same way we can prove that, if

then

Conditions (11) are not very restrictive, for if they do not hold for a specific transfer
function we can define the function

conditions (11) hold for function and since

we can write
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with

and compute in succession
The physical meaning of the initial value of and of its successive derivatives may

be explained with the following considerations.
From the definition offunction we know that

conditional probability that a particle that left compartment in the

conditional probability that a particle that left compartment in the

thence is the fractional rate at which the particles in compartment enter compart-
ment and means that no particles are transferred from compartment to com-

thence, when the meaning of is the derivative of the fractional rate at
which the particles in compartment i enter compartment

thence in this case the meaning of is the second derivative of the fractional rate at
which the particles in compartment enter compartment

For example consider the transfer function (7); its initial value is That means
that the particles leaving compartment 1 enter compartment 2 without any intermediary
step with fractional rate

For the transfer function (8) the initial value is zero; in fact there is an intermediate
compartment between 1 and 3 and the initial transfer rate from compartment 1 to com-
partment 3 is zero. The derivative of that transfer function is

whose initial value is in fact from equation (6) we get

interval is in compartment at time

consequently

interval is in compartment at the same time

partment instantly.
If from differentiating equation (3) we get

Similarly, if with a second differentiation we get
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and by substituting (5) and (6) into this one,

showing that the fractional transfer rate from 1 to 3 increases with rate

10.4. INTEGRAL OF THE TRANSFER FUNCTION

We go back now to equation (3), valid for a linear state-determined system; by inte-
gration ofboth sides from 0 to we get

and with a change of the order of integration,

This last identity can be written in the form

analogous to (4).
In the above fraction, the denominator is the number of particles present in compart-

ment times the interval of time they spend there, the numerator is the same for com-

where is the fraction transferred from compartment 1 to compartment 3, and
is the ratio of the turnover times of the two compartments.

With the operational notation the computation of the integral of the transfer function
is much simpler. From

partment therefore the integral on the left-hand side is equal to the fraction of particles
transferred from to times the ratio of the turnover time of the two compartments.

For example, for the transfer function (7) we get

where is the fraction transferred from compartment 1 to compartment 2, and
is the ratio of the turnover times of the two compartments.

For the transfer function (8) we get
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using the corollary 1 (section B.15) we get

from

we get

10.5. MOMENTS OF THE TRANSFER FUNCTION

In the two previous sections I have shown the meaning of the initial value of the
transfer function and of its derivative, and of the integral of the transfer function from 0
to In this section I will show how those results can be unified and generalized using
the method of moments, as outlined in chapter 9.

Observe that using equation (6) of section 9.2 we can transform the convolution inte-
gral equation (1) into the discrete convolution

Expression (16) is identical to identity (12) shown in the previous section; all other
expressions can be solved sequentially to compute the moments of a transfer function
from the moments of two compartments.

then (14) to compute and so forth.
I will show the use of expression (17) in the next section.
A special case is presented by the transfer function from the source of a compartment

to that same compartment (see section 10.2); that transfer function is defined as the ratio

For instance, if has been computed from (16), we can use (15) to compute

where  is an arbitrary integer, positive, negative, or null.
In particular, for    from equation (13) we get,
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therefore its moments are identical to the corresponding moments of di-
vided by its initial value we can write

for any positive, negative or null. Substituting this identity into equation (13) we con-
clude that all moments of the source are 0 except the 0-moment equal to the initial value

In expression (17) we divide all terms by the 0-moments of and

we substitute expression (16) into the denominator of the right-hand side, and rearrange,

The two fractions on the right-hand side are equal to the times of exit from compart-
ments 2 and 1, respectively. Their difference, called transfer time from compartment to

to the average time spent by the particles from the time of exit from to the time of exit

first relative moment of is

in fact compartment 1 is the immediate precursor of compartment 2, and the transfer time
from 1 to 2 is just the time spent in the second compartment.

The first relative moment of is

from
As an example consider the compartments described by equations (5) and (6). The

compartment is the first relative moment of the transfer function from    to  it is equal

The only function whose moments are for is the unit impulse
function with defined in section B.12, and whose moments where computed
in section 9.8. We conclude that the transfer function from the source of a compartment
to that same compartment is equal to the Dirac delta function multiplied by the initial
value of the compartment.

10.6. FIRST RELATIVE MOMENT
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in fact after leaving compartment 1 the particles have to spend time first in compartment
2 and then in compartment 3.

Consider now the compartments described by equations (6) and (9); the first relative
moment of is

and the first relative moment of is

We shall start analyzing this second result; the transfer time from compartment 1 to
compartment 3 is we can write

then, observing the characteristic equation (10) and remembering that and  are its
roots,

we can divide numerator and denominator of the right-hand side fraction by

Observe that is the fraction of substance leaving compartment that is trans-

ferred to compartment therefore the product is the fraction of substance recir-

culated through compartments 2 and 3. We shall call this product this product is
certainly smaller that one, therefore we can write

The transfer time from compartment 1 to compartment 3 can now be written,
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this expression shows that, after leaving compartment 1, the substance spends the time
in the second compartment and the time in the third one, plus the same time

multiplied by for the fraction recirculated once, plus the same time multiplied by
for the fraction recirculated twice, and so forth.

For the transfer time from compartment 1 to compartment 2 we found above the value

the term is subtracted from the time spent in both compartments 2 and 3 because the
time spent by the substance in its first passage through compartment 3 does not accrue
toward the time of exit from compartment 2. A more detailed analysis of the transfer time
will be in Chapter 16.

10.7. OPERATIONAL FORM OF THE TRANSFER TIME

From section 9.7 we know that the first moment of is

and its 0-moment is

therefore the first relative moment of       is

It follows that the first relative moment of the transfer function           is

10.8. EXAMPLES

10.8.1. From Model to Transfer Function

Consider the model described by the differential equations
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and the initial conditions

As shown in section 8.1 to this model corresponds the linear graph of Fig. 3.
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With the rules illustrated in section 8.2 the graph of Fig. 3 can be transformed into the
essential graph of Fig. 4 containing the initial node the essential and the
terminal node In Fig. 5 the closed arm has been removed, and finally in Fig. 6 it is
transformed into a graph with just one arm, equal to the transfer function from to

Operating in the same way we can find the transfer functions from to and to
the results are

Of the transfer function we can compute different moments as shown in section
9.7; they are

The moments of negative order can be computed with the formulas of section 9.7 or
directly from the differential equations; they are

Proceeding the same way with the transfer function we find
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The moments of negative order can be computed with the formulas of section 9.7 or
directly from the differential equations; they are

For the transfer function we find

The moments of negative order can be computed with the formulas of section 9.7 or
directly from the differential equations; they are

The 0-moment of the transfer function is equal to the permanence time of the first
compartment, i.e., the turnover time of that compartment times its turnover number,
as shown in section 9.3. The first relative moment of the transfer function is the exit
time from the first compartment, as shown in section 9.4; it is equal to the sum of two
terms, the time spent in compartment 1 (equal to its permanence time), plus the time
spent in compartment 2 before the exit from compartment 1; this last time is the perma-
nence time of compartment 2 times the fraction
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that is actually recyrculated between the two compartments.
The 0-moment of the transfer function is equal to the residence time of the second

compartment, i.e., its permanence time

times the fraction that reaches compartment 2 from compartment 1 (see chapter
16). The first relative moment of the transferfunction is the exit time from the sec-
ond compartment, as shown in section 9.4; it is equal to the sum of two terms, the time
spent in compartment 1 plus the time spent in compartment 2, both equal to their respec-
tive permanence times.

The 0-moment of the transfer function is equal to the residence time of the third
compartment, i.e., to its permanence time times the fraction

that reaches compartment 3 from compartment 1. The first relative moment of the trans-
fer function is the exit time from the third compartment, as shown in section 9.4; it is
equal to the sum of three terms, the time spent in compartment 1 plus the time spent in
compartment 2 (both equal to their permanence times), plus the turnover time of com-
partment 3, where there is no recyrculation.

10.8.2. From Transfer Function to Model

If in an actual experiment the moments have been measured, what
conclusions can be drawn about the model?

There are 4 parameters, to be determined by the four equations

The fourth equation is redundant; from the third equation we determine from the
first and the second, the product              and
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and that to the maximum value or corresponds the minimum value of and vice
versa; therefore

If, in addition to the moments of the 0-moment of were determined, we could
write

the –2-moment
Observe that no information on and on can be obtained from the transfer func-

tions and and from their moments. We can determine the parameter from

and the parameter from
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With the data available we cannot determine the separate values of       and but we
can determine a range for them; in fact we know that

and compute the exact value of Alternatively, this last value could be obtained from
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MATRIX EQUATIONS11.

11.1. DEFINITIONS

Equations (10) from chapter 5 can be written in matrix form,

or with a more synthetic notation,

Observe that for the transfer rate from to I use the symbol while some authors
use the symbol the reason for my choice is fourfold:

i) The physical meaning of becomes more evident if, while reading the
subscripts, one thinks of the transfer of the drug from one compartment to
another as happening in the same direction as the letters are read in English
and most other European languages;

ii) If the drug is transferred through a succession of compartments, the product
of the transfer constants involved, written as a string with the second
subscript of a constant equal to the first subscript of the following constant,
has a particularly useful physical and mathematical meaning [1];

iii) This definition is consistent with the notation used in the theory of Markov
processes, as shown by Thakur, Rescigno and Shafer [2, 3]

iv) This definition conforms with the standards adopted by the Journal of
Pharmacokinetics and Biopharmaceutics [4] and by the European Journal of
Clinical Pharmacology [5].

On the other hand, the alternative notation was used because, when in equations (1)
the matrix is post-multiplied by the column vector then the element of in the
row and column is the transfer rate to from In my opinion there is no reason to
prefer post-multiplying by a column vector rather than pre-multiplying it by a row
vector.

Physical realizability of the system requires that

113
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as seen in chapter 5.
Most of the following definitions are due to Hearon. [6]
A matrix is called diagonal dominant if either

or

obviously conditions (2) make matrix diagonal dominant. The determinant of such a
matrix has been called unisignant by Muir, [7] and it has been shown to be non-negative.

Matrix is said to be decomposable if, with a number of permutations of its rows and
corresponding columns, it can be put in the quasi-diagonal form

where and are two square matrices, and 0 are null matrices of appropriate size.
When this is the case, if n × n is the size of and m × m the size of then the n
compartments can be partitioned in two different systems, one of m and the other of n – m
compartments, completely independent of each other. A system whose matrix is not
decomposable is said to be connected. Unless otherwise explicitly stated, I shall only
consider non-decomposable matrices.

Matrix is said to be reducible if, with an appropriate permutation of its rows and
corresponding columns, it can be put in the form

where is m × m, is [n –m] × [n –m], and B is m × [n –m], but different from 0.
When this is the case, the n compartments can be relabeled in such a way that the first m
of them are independent from the remaining n – m. A system whose matrix is not
reducible is said to be strongly connected.

Observe that if a matrix is decomposable, its corresponding linear graph is not
connected. To a connected matrix corresponds a connected linear graph. To a strongly
connected matrix corresponds a strong graph.
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11.2. PROPERTIES OF MATRIX K

11.2.1.Theorem 1

To prove the second part of the theorem, i.e., to show that matrix is singular only if
conditions (4) hold, consider a matrix of size n, singular by hypothesis; this means that
there is a linear relationship among the elements of its columns, i.e., we can find a set of
numbers not all zero, such that

By adding all the above expressions we get

all terms in parenthesis are non-negative by hypothesis, therefore the above sum is zero
only if some of the a’s are negative; now we write expression (6) in the form

where on the left-hand side we put all terms with a positive a coefficient, and on the
right-hand side those with a negative a coefficient; the terms with an a coefficient equal
to zero of course can be ignored. Now from expressions (5) choose only those containing
a appearing on the left-hand side of expression (7); add them together and reorder the
result as in expression (7). On the right-hand side the terms in parenthesis are all negative
because all have disappeared, while on the left-hand side all terms in parenthesis are
still positive; because a negative sum cannot be equal to a positive sum, we conclude that
all terms in parenthesis are zero, q.e.d.

11.2.2. Theorem 2

is the order of the irreducible matrix its rank cannot be less than n – 1.

If is irreducible, then it is singular if and only if the second of conditions (2) is a
strict equality, i.e., if

when this is the case, the system is closed, i.e., the drug can move from one compartment
to another in many different ways, but it never leaves the system.

The first part of this theorem is obvious; in fact, if conditions (4) hold, then the sum
of the elements of each row is zero, and the matrix is singular.

If is irreducible and singular, then 0 is a simple eigenvalue of in other words, if n
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If is singular, for theorem 1 we can write expression (4) for each of its rows. If its

the principal minor obtained by suppressing row 1 and column 1 from for all of its
rows we can write the corresponding expression (4), i.e.,

subtracting (8) from (4) we get

this means that is reducible, against the hypothesis.

11.2.3. Theorem 3

If is reducible and singular, it can be written in form

where are all irreducible matrices, and only matrix is singular.
In fact if is reducible, we can put it in the form (3); if either or or both, are

further reducible, we can transform them in the same way and proceed until has the
above form, where are all irreducible matrices. If any of these last
matrices, say is singular, then 0 is a simple eigenvalue of it, and the corresponding
subsystem is closed; this implies that all matrices on the same row as are zero, and the
system is decomposable. It follows that if is not decomposable, only matrix can be
singular.

11.3. INTEGRATION OF THE MATRIX EQUATION

11.3.1. All eigenvalues of K are real and separate

To integrate equation (1) we need to specify its initial conditions, i.e. the vector
we can make equation (1) even more general if we allow the administration of the drug
after the initial time, namely if we include a vector

where represents the feeding function into compartment i; equation (1) thus becomes

its integral is

rank is less than n – 1, any of the principal minors of is singular; consider for instance
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where by definition (see Appendix D)

being the n×n identity matrix. The properties of the exponential matrix depend on
the eigenvalues of therefore we shall spend the next few pages on the analysis of these
eigenvalues.

If is the diagonal matrix formed by the eigenvalues of and is the matrix of the
eigenvectors of then

This expression can be solved only when has some simple form. For instance if

If the eigenvalues in are all real and different, then

therefore

where the coefficients are functions of the transfer constants and of the initial
conditions.

11.3.2. Some eigenvalues of K are multiple

If the eigenvalues are not all different, we can transform into a quasi-diagonal
matrix, i.e., into a matrix of the form

therefore expression (10) becomes
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where is a double eigenvalue, is a simple one, and so forth (see section D.8).
Observe now that to the Jordan submatrix

corresponds the differential equation (in matrix form)

or, in scalar form, the two equations

The first of these two equations can be integrated into

substituting the value of into the second one we get

If we put these results back in matrix form we can write

For the general case with eigenvalues of multiplicity three or more, see Rescigno et
al. [8].

11.3.3. Some eigenvalues of K  are complex

If some of the eigenvalues are complex, we can transform into a quasi-diagonal
matrix, i.e., into a matrix of the form

whose integral is
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where is the real part of a complex eigenvalue and its imaginary part, while ...,
are the real eigenvalues (see section D.9).

Observe now that to the submatrix

corresponds the differential equation (in matrix form)

or, in scalar form, the two differential equations

These two equations can be integrated into

If we put these results back in matrix form we can write

I leave to the interested reader the solution of the case of multiple eigenvalues.

11.4. MATRIX K AND ITS POWERS

From equation (1) by successive differentiations we get

thence, by induction,
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and

for any non-negative integerp.

In the special case we have

another formulation of the transfer rate as defined in section 5.4. I will describe in chapter

16 with more details the general properties of the elements of

11.5. INVERSION OF MATRIX K

We return now to equation (1); if the system is open, is not singular, therefore it has
an inverse (see section D.6); we call it Multiply both members of equation (1) to the
right by

integrate from 0 to t:

and

The system is open by hypothesis, therefore and

given only to compartment as a bolus; in that case vector has all its elements equal
to 0 except the one in position equal to The product on the right-hand side of (11),
except for the sign, is equal to times row i of matrix

Call the element of row and column of matrix call the amount of

drug present in compartment that was given to compartment at time and
its time derivative. From identity (11) we get

To understand the meaning of identity (11) think of an experiment where the drug is
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section 11.1, is diagonal dominant, therefore its determinant is non-negative; but is
also non-singular, therefore its determinant is strictly positive. The elements of are (see
section D.4),

where is the cofactor of the element of This cofactor, when is non-
negative because all principal minors of are also diagonal dominant. If we can use
expression (1) of section D.2 to transform it into a sum of products of elements of
times cofactors of of order n – 2, one of them a principal cofactor, therefore non-
negative. We can continue this transformation until the numerator of expression (15)
contains only principal cofactors of of all orders from n – 1 to 1. Each of those

sign of the corresponding cofactor is negative; because all non-diagonal elements of
are non-positive, all terms from expression (15) are non-negative, q.e.d.

We can now say that all elements of are strictly positive if and only if is

the cofactor is zero, and the corresponding element of is zero. On the other hand
suppose that an element of is zero; if it is an element of the principal diagonal, say
then the cofactor is zero and its corresponding submatrix is singular; the sum of the
elements of each of its rows is zero, and consequently the elements of the same rows and
the missing column in this submatrix are zero, and is reducible. If the null element of
is not a diagonal one, say then the cofactor is zero; we can transform it into a sum

cofactors is multiplied by a string of non-diagonal elements of all non-positive. But if

corresponding cofactor is positive, if it contains an odd numbers of elements of the
one of those terms contains an even numbers of elements of the sign of the

All elements of are non-negative. To prove it, observe that, as it was shown in

irreducible. In fact if is reducible, there is at least a value of and a value of such that

of products of elements of times principal cofactors of of all orders from n – 1 to 1,
as done in the previous paragraph; all those terms are non-negative; their sum is zero,
therefore each of those terms is zero, and matrix     is reducible, q.e.d.

11.6. MATRIX T AND ITS POWERS

Back to equation (13), by successive integrations we get

and, with an integration by parts,

with the hypothesis that the system is open,
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and by induction,

for any positive integer p.
Using the same thought experiment as in section 11.4, we can say that

where is the element of row and column of matrix and is the amount of
substance that, having entered compartment at time 0, is present in compartment at
time it follows

In the special case we have

where in the last integral is the fraction of substance that entered at time 0,
present in at time while is its rate of exit from and the integrand at the
right-hand side is the fraction that leaves in the interval therefore the integral

is the total fraction that leaves from at any time. This last number may be larger than
one if the same particles exit from more than once due to recirculation. The factor
the turnover time in is the average time spent by the particles in each passage through
therefore is the average interval of time spent in compartment by particles introduced
into compartment

If this time is called permanence time. If there is no recirculation, the
permanence time coincides with the turnover time; in general the permanence time
divided by the transit time is equal to the average number of passages through a
compartment, or turnover number.

If this time is called residence time. Observe that the ratio is equal to the
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All these parameters will be examined in mote details in chapter 16.

11.7. RECONSTRUCTION OF MATRICES K AND T

If all compartments of a system can be controlled and all observed, then from n

computed, hence by inversion is obtained, which describes completely the
compartment system. More often than not only very few compartments are controllable

of its powers, can be computed. The problem is the reconstruction of from these known
elements.

Call

the characteristic polynomial of as shown in D. 11, p(s) annihilates that is,

we multiply each term of this identity by

If only compartment i is controllable and only compartment is observable     and
may be equal or different), function can be measured for that particular set of values

where is computed with identity (12) in section 11.4, is computed with identity

(17) in section 11.6, and is the Kronecker delta, i.e.

Any set of n equations chosen from equations (19) may be used to determine the

fraction of particles administered to compartment that reach compartment We call this
ratio yield from to

and few observable, so that only very few elements of and the corresponding elements

experiments and n measurements for each experiment, all elements of can be

of and we can rewrite identities (18) for row and column only:

coefficients of the characteristic polynomial of
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With the coefficients of the characteristic polynomial of we can write n ordinary

If the vector in equation (9) is constant but not identically zero, after a
sufficiently long time a steady state is reached for the vector then,

therefore at steady state,

From this last identity, multiplying on the right by weget

where

is the matrix of the permanence times and residence times of the compartmental system
as defined in section 11.6. This is the case when the substance under observation is
endogenously produced by the system. If this endogenous production stays constant, then
by administration of a dose at time equation (10) becomes

thence, by integration,

and finally, using identity (17),

This identity shows that by simply subtracting from the measured values of the state
variables the corresponding base values, one gets the same result as though there were no
endogenous production.

This is not true when the rate of endogenous production changes with the
concentration of the substance under observation. For instance, suppose that is
proportional to the deviation of from a fixed value provided that all elements of

are always positive definite; we can write

where

equations that determine the elements of with degrees of freedom.

11.8. ENDOGENOUS PRODUCTION
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is a diagonal matrix of constant coefficients Equation (9) now becomes

and the steady-state value of the state variables is given by

Using identity (19), equation (18) can be written in the form

and its integral is

Again subtraction of the base values from the measured values of the state variables
leads to an exponential function, but in this case matrix has been substituted by matrix

i.e. to the turnover rate of each compartment has been added the coefficient
measuring the rate at which the endogenous production in that compartment is controlled.
In other words, by subtracting the base values, the compartments whose concentration is
regulated by endogenous production will appear to have turnover rates larger than their
real value.
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12. NON-LINEAR MODELS

12.1. LINEAR VERSUS NON LINEAR

All models so far considered were linear. There are two important reasons for this; the
first is that many pharmacokinetic systems are linear, or exhibit a linear behavior under
proper conditions, or at least can yield considerable information under linear analysis
using tracer techniques; the second is that linear models have an important role in under-
standing the qualitative behavior of non-linear systems and in the definition of most
pharmacokinetic parameters. Hearon [1] adds an additional reason: “Linear theory is
pleasant; the concepts are relatively simple but far reaching, and, in principle at least, the
formalism is tractable”.

The truth is that there is no general treatment of non-linear models; each particular
model must be solved separately. All I can do in this chapter is to show a few examples
of selected non-linear models with general indications on their possible applications.

12.2. REACTIONS OF ORDER ZERO

The simplest non-linear model is the zero-order elimination from a compartment. An
elimination of this type was observed in the disappearance of ethyl alcohol [2, 3] as well
as other volatile substances (ether, acetone) from the blood, and in the elimination of hip-
puric acid in the rabbit upon administration of benzoic acid [4].

A reaction of this type is to be expected whenever the systems responsible for detoxi-
cation, or for elimination, are saturated by the given substance; in these cases the amount
of substance that undergoes detoxication or elimination per unit time is constant and not
proportional to its concentration.

The equation of first order elimination is

where

Compare this equation with equation (2) of chapter 5.
The integral of equation (1) is

127
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so far this model is linear because equation (1) is linear and its integral (2) has the linear
property described in section 10.1. The problem is, this model is not physically realizable
because, as Fig. 1 shows, the variable becomes negative after a certain value of

To make the model physically realizable we must modify equation (1); the simplest
realizable model is

and its integral, when is

as shown in fig. 2.



129NON-LINEAR MODELS

We can now compute the moments of this function. The 0-moment is the area of the
triangle with base and height i.e.,

the higher moments are given by

For the moments of negative order we use formula (2) of section 9.1 and get

I will show in later chapters that all those moments have a different meaning from the
moments of the linear compartment systems and can be misleading if not used in the ap-
propriate context.

It is impossible to give a general explicit solution of equation (3) in the general case
with not identically zero, because there is no way to know a priori when function
reaches a zero value and the elimination process stops.

12.3. REACTIONS OF MIXED ORDER ZERO AND ONE

A variation of the previous model allows elimination of order zero when the concen-
tration is above a certain critical value and elimination of order one when the concen-
tration is below that critical value.

order rate constant (dimension For reasons of continuity it must be

where

The differential equation of this model, again with is

where is the zero-order rate constant (dimension of times and is the one-

If the initial value is larger than the solution is
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is the time when the critical concentration is reached (see fig. 3).
The moments of order zero and up of function (6) are computed from the integrals

Elimination from a compartment with a reaction of second order is described by the
differentialequation

then substituting the value of and of

and so forth. For the moment of negative order we have the same result as in (4).

12.4. REACTIONS OF ORDER TWO
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where the rate constant has the dimension of times
The integration of this differential equation, when leads to

See fig. 4 for a typical case of elimination of order two.
We can compute the moments of negative order directly from the differential equa-

tion; they are

For the 0-moment we must find the integral of expression (7), i.e.,

unfortunately the expression on the right-hand side does not converge for even
though the integrand function does; therefore the 0-moment, and a fortiori all higher

where is the time the last sample was measured and is the estimated slope of at
time may lead to wrong conclusions, as will be shown in the next chapter.

moments, do not exist [5]. This is an important case when the so-called AUC computed
with the formula
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12.5. REACTIONS OF MIXED ORDER ONE AND TWO

We consider now the simultaneous elimination of a drug by a process of order one
and a process of order two. This model is described by the differential equation

where is the rate constant of the first-order process (dimension and the rate
constant of the second-order process (dimension of times (see fig. 5).

The moments of negative order are

The solution of the differential equation is

and the integral of this function is

therefore the 0-moment converges to the value
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12.6. MICHAELIS-MENTEN ELIMINATION

A model frequently invoked for non-linear processes is the Michaelis-Menten equa-
tion

Observe that when that is, for the initial part of the curve, the rate of
elimination is

therefore we can consider as a zero-order elimination constant valid when is large
enough. When that is, for the final part of the curve, the rate of elimination is

where (dimension of times and (dimension of are appropriate rate
constants, whose meaning will be discussed later. The solution of this equation is given
by the implicit expression

Fig 6 shows a typical graph of equation (8).
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therefore we can consider as a first-order elimination constant valid when is
small enough. The model of section 12.3 is similar to the one of this section, but in the
last one the transition from order zero to order one is smoother.
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small case letter is easily confused with the capital letter I; but there is no danger of con-

four different clearances: the subscripts mean out of organ or

If the drug is eliminated from an organ with a uniform concentration then, from
the definition ofclearance it follows that

is the rate of elimination from the organ at time and

is the amount of drug eliminated in the interval of time from By integration

If we call that amount, then
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13. CLEARANCE

13.1. DEFINITION OF CLEARANCE

Clearance is one of the most important pharmacokinetic parameters. It is defined as
the volume containing the amount of drug eliminated per unit time by a specified organ;
it has the dimension of a flow It is usually represented by the symbol
some authors use the symbol CL, but the use of two capital letters for a symbol is con-
trary to all scientific conventions.

Note: I once heard that the use of the symbol CL is necessary because in print the

fusing with a non-existing symbol CI or
A word of caution is necessary at this point: the drug may be eliminated by an organ

reversibly or irreversibly; furthermore, we may distinguish between total elimination
from an organ, and transfer from an organ to another specific organ. Thus, we can define

from organ to organ the superscripts mean reversibly or irreversibly.
If not indicated differently, by “clearance” I mean “total irreversible clearance from a

specified organ”, i.e., the volume containing the amount of substance eliminated, or
transferred, or inactivated, per unit time, from the specified organ; where by “organ” I
mean any anatomical organ or physico-chemical space properly defined.

13.2. PROPERTIES OF CLEARANCE

over the interval of time we get

the integral at the right-hand side is the amount of drug eliminated in that interval of time.
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where the brackets mean “average value”.
If a drug is eliminated from an organ where its concentration is not uniform, then con-

sider the clearance from the infinitesimal volume where the concentration is
the subscript means that the concentration depends upon the location through the volume

The amount of drug cleared from that infinitesimal volume in the interval of time
is

taking the integral of the above expression for the interval of time and for the whole
volume of the organ, we get the total amount of drug eliminated in that interval
of time,

Define, for any time

where is the average value of the concentration at time in the volume computed
with a weight proportional to the clearance, and is the total clearance from the volume

now expression (5) can be written as

if the total clearance is constant in time, we can export it from the above integral and
write

If the clearance is constant in time, we can export from the integral and write

If the clearance is not constant in time, from (2) we get

where the fraction at the left-hand side is the average value of the clearance weighted for
the concentration; therefore when the clearance is not constant in time, expression (3)
becomes
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similar to expression (3).
If the total clearance is not constant in time, from (6) we get

where the fraction at the left-hand side is the average value of the clearance weighted for
the average value of the concentration; therefore when the clearance is not constant in
time, expression (7) becomes

Observe that (3) and (7) give the exact value of the clearance, while (4) and (8) give
only an approximate value; but only (3) is of practical use, because in general we cannot
measure the average concentration nevertheless the above expressions are useful to
define correctly the other pharmacokinetic parameters.

These results are summarized in Table I.
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13.3. DETERMINATION OF CLEARANCE

If the concentration of the drug in an organ is uniform and the clearance is constant,
its determination can be done using formula (3), provided the amount of drug eliminated
in the chosen interval of time has been measured and its concentration in the clearing
organ has been monitored for that same interval of time. Actually in general in formula
(3) it is customary to put and so that

Two observations are necessary at this point:

1.

2.

If the amount of drug eliminated cannot be determined directly, it can
be substituted by the product F.D, where F, bioavailability, is the fraction
of the given dose D that reaches the organ investigated. The bioavailability,
of course, must be determined by a separate experiment.

The integral in the denominator can be determined exactly only if the con-
centration can be monitored until no drug is left inside the organ, an un-
realistic assumption. One must use the extrapolating formula

3.

where the integral is computed with the values of the concentra-

tion monitored up to time and the integral is computed with

values of concentration estimated using a selected model; see for instance
Bass et al. [1].

Formula (9), like formula (3) from where (9) is derived, is valid only if the
clearance is constant, a condition hard to verify. In fact sometimes the inte-

gral does not converge at all [2]; in that case the resulting error

may be very large.

13.4. VERIFICATION OF CONSTANCY OF CLEARANCE

To verify whether clearance depends or not on concentration, think of a pharmacoki-
netic system at steady state, i.e. a system where a drug is administered in a continuous
way to keep its concentration in all organs constant in time, but not necessarily uniform.
Call the concentration at the point of elimination from a given organ and the rate of
elimination therefrom; by definition the ratio

is the clearance of the drug from that organ. Clearance may depend upon concentration
or not; but in either case all quantities involved are constant in time, therefore we can
write
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upon

13.5. SCALING OF CLEARANCE

Sometimes the clearance is divided by the body weight; for instance the “Notice to
applicants for marketing authorizations for medicinal products for human use in the
Member States of the European Community” (III/118/87-EN) explicitly requires that the
clearance, computed as Dose/AUC, be referred, if possible, to 1 kg of body mass. The
result is a quantity with the dimension and should not be called clearance,
but with a different name, for instance specific clearance or normalized clearance. But
aside from the name, what is the rational for dividing clearance by body mass?

As I have shown in Chapter 3, a quantity may be divided by another quantity only if
their quotient is an invariant, i.e., if the result of that division is a meaningful quantity
whose value does not depend, within the limits of validity of some specific hypotheses,
on the particular experimental conditions. But can we say that clearance is proportional to
body mass? According to many authors [3], the experimental evidence points to a rela-
tionship ofthe form

where is the body mass, a is a constant depending upon the particular substance, and
is a number between 0.69 and 0.89.

If the clearance is not proportional to the body mass, what other quantity can be used
to scale its value in a biologically sensible way?

From expression (1), dividing and multiplying the left-hand side by the volume of
the organ under consideration,

or

where the fraction at the right-hand side is the inverse of the turnover time, an important
pharmacokinetic parameter, as shown in chapter 14. It appears that dividing clearance by
volume of the eliminating organ, in general plasma, is a more sensible way of scaling
than dividing by the body mass. Of course the volume of the plasma is not always known
with precision, but neither is the clearance; using estimates of well defined quantities is
certainly better than using exact values of quantities that do not have any physical or
physiological meaning.

by experimenting with different values of and we can check the dependency of



FOUNDATIONS OF PHARMACOKINETICS140

13.6. ENDOGENOUS SUBSTANCES

A peculiar problem is presented by endogenous substances when determining the
clearance with formula (9) using

As shown by Marzo, Rescigno and Thakur [4, 5], for endogenous substances we can
define F, bioavailability, as “fraction of exogenous substance absorbed” or as “fractional
increase of the level of exogenous plus endogenous substances”.

In an analogous way, by clearance we may mean “volume containing the amount of
exogenous substance eliminated per unit time” or “volume containing the amount of ex-
ogenous plus endogenous substance eliminated per unit time”; both definitions are
meaningful. Even if the eliminating organ does not distinguish between the exogenous
and the endogenous substance, the two clearances will be different when a homeostatic
mechanism reduces the endogenous production after administration of the exogenous
substance.

13.7. EXAMPLES

Consider the case of zero-order elimination described by equation (3) in section 12.2.
If is the amount of drug in a compartment whose volume is the concentration there

concentration. The actual instantaneous value of the clearance at time is the ratio be-
tween its rate of elimination and its concentration at the same time, as shown by equation
(1) at the beginning of this chapter, i.e.,

the clearance starts with initial value

reaches the value when then continues to increase with the de-
crease of the concentration, and suddenly stops when the concentration becomes zero.

Consider now the case of second-order elimination described by equation (7) in sec-
tion 12.4. The true value of the clearance at time is the rate of elimination divided by the
concentration, i.e.,

Strictly speaking we cannot use formula (9) above because the integral at the denomi-
nator does not converge; but suppose we succumb to the temptation and use that formula
stopping the integration at a time where we think the concentration is small enough.
We have

is using formula (9) above we get

but this is only an average value of the clearance, that is changing with the change in
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thence we estimate the value of the clearance as

The ratio between the true value of the clearance and this “estimated” value is

and can be very large. Paradoxically, the error increases when increases, even though

“it seems” that with a larger value of we have a better approximation of

I invite the reader to experiment with other examples of non-linear models.
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14. TURNOVER

14.1. TURNOVER TIME

Another important pharmacokinetic parameter is turnover time. The turnover time of
an organ is defined as the average time spent by the drug in one passage through that or-
gan.

Consider first an organ where the drug has a uniform concentration. From expression
(1) of chapter 13, after multiplying both sides by the volume of the organ, we get

is the average time spent by the drug in that organ. We call it turnover time [1],

centration, not necessarily uniform. If is the amount of drug present in the organ and
its rate of elimination therefrom, the ratio is the interval of time taken by the organ to
eliminate an amount of drug equal to the amount present, or in other words, the average
time spent by the drug in one passage through that organ,

In general, in an organ where the concentration is neither constant or uniform, the
time T spent by the drug in the infinitesimal volume of the organ before being cleared
is

by integration over the volume V we get

143

symbol and write

Consider now an organ where the drug is at a steady state, i.e. it has a constant con-

but the product is the amount of drug present in the organ, therefore the ratio
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but the ratio of volume cleared over clearance is equal to the time spent in the whole or-
gan, therefore the turnover time of the organ is

identical to definition (1) above; we conclude that this definition of turnover time is valid
even if the concentration is not uniform and constant. Therefore the turnover time may be
considered a pharmacokinetic parameter [2].

This expression shows the general relationship among turnover time, clearance, and
volume of the organ the drug is distributed in.

14.2. DETERMINATION OF TURNOVER TIME

If the physical volume of an organ is known and the clearance can be measured, the
turnover time can be calculated using definition (1). In some instances the turnover time
can be measured directly. For instance if a drug can be administered to an organ as a bo-
lus at time and we can monitor its uniform concentration there, the differential
equation

holds, where the amount of drug present in the organ at time is the rate at
which the drug leaves the organ is and is the rate of reentry, if any. But

therefore

and dividing numerator and denominator by V,

14.3. TURNOVER TIME AND  COMPARTMENTS

The turnover time of a compartment is defined as the expected interval of time
spent by the drug in one passage through it. The general equation of a compartment can
be written

where is the amount of drug present in the compartment, the fraction eliminated
per unit time, and the rate of entry due to external feeding or internal recycling, or
both.

The turnover time is the inverse of the fraction eliminated per unit time,
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in fact at any moment the amount of the drug present in the compartment is its rate
of exit is therefore the ratio

is the time spent by the drug, on the average, in that compartment. We can call the
turnover rate; its dimension is

The turnover time of a pool formed by a number of compartments is still defined as
the expected interval of time spent by the drug in one passage through it; its determina-
tion though is possible only if the detailed fate of the drug in all components of that pool
is known.

For instance consider the two-compartment system described by equations

with initial conditions

We know that the turnover time of compartment 1 is and of compartment 2 is
What is the turnover time of the two compartments pooled together?

The volume of the pool is the clearance of the first compartment is and
the clearance of the second one is therefore using identity (2) the turnover time of
the pool is

If the pool includes many compartments, the turnover time of the pool is given
by

where is the turnover time of the compartment from where the drug enters the pool,
the time employed by the recirculating particles for a complete cycle, and the fraction of
particles recirculated [3,4].

14.4. TURNOVER RATE

The turnover rate, symbol is the inverse of the turnover time, as seen in the previ-
ous section. By definition,
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As seen above, the turnover rate of a compartment is equal to its fractional elimina-
tion rate; in a pool of compartments like the one described in the previous section, using
expression (4) we have

In general, for any organ, we can write, using expression (2),

14.5. TURNOVER NUMBER

The turnover number, symbol is the number of times a particle goes through the
same site; it is a typical dimensionless parameter. If there is no recirculation of course the
turnover number is one.

Take for instance equation (3) of a compartment; by integration of both sides from 0
to we get

if the system is open, therefore

Observe that in this expression the left-hand side shows the total amount of drug
leaving the compartment, and the right-hand side the amount of drug entering it at the
initial time and later by recirculation. Without recirculation the left-hand side integral is
equal to because the number of particles leaving is identical to the number of parti-
cles entering. With recirculation the number of particles leaving divided by the number of
particle that were introduced the first time is equal to the number of times the particles
passed through the compartment, therefore

14.6. TURNOVER AND MOMENTS

If the turnover rate K is constant, it can be exported from the integral in the expres-
sion (6) above, and we can write

Observe that the above integral is the 0-moment of and is its –1-moment,
therefore we can write
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The turnover number times the turnover time is the time spent by the drug in a par-
ticular organ. This important pharmacokinetic parameter called permanence time will be
discussed in detail in chapter 16.
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15. VOLUME AND DILUTION FACTOR

15.1. INITIAL VOLUME

If the concentration of the drug in an organ is uniform, the volume of that organ is the
ratio between the amount of drug present in it and its concentration.

Consider a simple pharmacokinetic experiment. If a drug is injected as a bolus in an
organ at time call the dose administered and its concentration there at time
If we ignore the short interval of time necessary for the drug to distribute uniformly in the
organ, then by extrapolation we get an approximate value of the concentration of the drug
had the mixing been instantaneous. Call this extrapolated value; the ratio is
called initial volume. See Fig. 1.

Several observations are necessary at this point. The ratio is not necessarily
the volume of the sampled organ, or even a physical volume, even though it has the di-
mension of a volume, There may be several reasons for this discrepancy; for in-
stance, the drug may be bound to some other organs before being distributed in the sam-
pled organ, or the mixing may never be complete. In any case if, when repeating the ex-

149



150 FOUNDATIONS OF PHARMACOKINETICS

periment with a different dose the concentration changes in the same proportion,
the ratio

defined above will not change. In this case, and only in this case, we can say that the
quantity defined by expression (1) is an invariant, as explained in chapter 3.

Nevertheless the initial volume, as defined by expression (1), cannot be considered a
pharmacokinetic parameter because its value depends on the choice of a particular model,
namely upon the hypotheses of rapid and complete mixing, only rarely satisfied, and
upon the site of sampling. It is a classical example of a model parameter.

15.2. VOLUME OF DISTRIBUTION.

We have already implicitely given a model-independent definition of the volume of
distribution of an organ with expression (1) of chapter 14; it can be rewritten as

The product (turnover time)×(clearance), called “volume of distribution” by defini-
tion, is a pharmacokinetic parameter and it coincides with the initial volume computed
with expression (1) if and only if the mixing of the drug in the organ is rapid and com-
plete.

15.3. STEADY-STATE VOLUME

In the first section of this chapter we defined the initial volume in an organ as the ra-
tio between the given dose and the extrapolated value of the concentration of the drug in
the sampling organ; we can rewrite that definition as

where the limit at the denominator is taken on the modified function
Consider now the ratio where is the total amount of drug in the body

and the concentration of the sampling compartment, usually the plasma; some
authors call it apparent volume,

both numerator and denominator vary with time in a complex way, and we cannot con-
sider an invariant quantity. What can be considered an invariant quantity is the limit
of for if and when such limit exists.

A non-trivial steady state, i.e., a steady state with both and different from
zero, may be reached if the system is closed, or if the open system if fed with a constant
infusion. In this last case we define the steady-state volume, by
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In general we can say that

as the drug gets distributed from the feeding compartment through other parts of the sys-
tem.

I will show in the next sections that is an incidental parameter, because its value
depends on the site of infusion.

15.4. EXAMPLES

15.4.1. Two compartments fed with a bolus

In the general case of two compartments fed with a single bolus in the first compart-
ment, as shown in section 5.3, we can write

without loss of generality we may suppose divide numerator and denominator of
the right-hand side fraction by then take the limit,

But

therefore

This result is valid in general when a steady state is reached, but it is of practical in-
terest only if the steady state is not a trivial one, i.e., if the two compartments are not both
empty. With a single bolus administration we have a non-trivial steady state if and only if
the system is closed, i.e., when

consequently,



152 FOUNDATIONS OF PHARMACOKINETICS

Now from definition (5) we get

where is the volume of the sampling compartment.

15.4.2. Two compartments with continuous infusion

More interesting is the case when there is a constant infusion. If the drug is fed into
the sampling compartment, then at steady state we have

therefore

consequently

If the drug is fed into the second compartment, then at steady state we have

therefore

consequently
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15.5. DEFINITION OF DILUTION FACTOR

We call dilution factor, the ratio of the total amount of drug in the body and its
amount in the sampling compartment at steady state [1]; the dilution factor is a dimen-
sionless parameter.

If a steady state is reached with a constant infusion, is defined by

where and are the amount of drug in the whole body and in the sampling com-
partment, respectively, at time

By multiplying both sides ofdefinition (6) by we obtain

therefore

The dilution factor is an important model parameter that links the total amount of
drug in the body with other parameters easily measured in the sampling site; it must be
known when planning a chronic therapeutic regimen. In the next sections I will show
how it can be determined in a number of cases.

15.6. DILUTION FACTOR AND COMPARTMENTS

15.6.1. Two open compartments

From the results of section 15.4.2 we know that with the model

where is the sampling compartment, the dilution factor is given by

if feeding the first compartment, and by

if feeding the second compartment.
The practical problem is to determine the dilution factor from an experiment done

with a bolus administration in the sampling compartment.
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Suppose that in a one-bolus experiment we have measured the concentration of a
compartment and have found it to be the sum of two exponential functions,

in operational notation,

we know from section 5.5 that

We have three equations in the four unknown parameters we can
compute, sequentially,

with the explicit solution

We cannot compute the exact values of the separate transfer rates and but we
can determine a range for them; in fact knowing that

the smallest value of corresponds to the largest value of and the smallest value of
to the largest value of therefore
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thence

If the drug was fed into the first compartment, from (7) we get

thence

If the drug was fed into the second compartment, from (8) we get

thence

15.6.2. Many Compartments

Suppose that the drug is distributed among n compartments, but only one can be sam-
pled; suppose also that the concentration in that same compartment after a bolus ad-
ministration at time can be approximated reasonably well by a sum of exponential
functions, then

and in operational form

or

The dilution factor is given by
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at steady state the amount of drug in each compartment is proportional to the time spent
in it, therefore,

The time spent in the sampling compartment, as seen in section 14.6, is given by the
0-moment of divided by its –1-moment; using B.14 and B.15, the denominator of the
above fraction is

We cannot determine the exact value of the numerator, but we can determine a lower
and an upper bound for it. We start by observing that the drug spends a minimum time in
the body when it is eliminated exclusively from the sampling compartment; the time of
elimination from it, as seen in section 9.4, is given by the 1-moment divided by the 0-
moment of i.e.,

Observe that the term is the sum of the products of the turnover rates taken
by divided by the product of all turnover rates, therefore

i.e., the time spent in the whole system if there were no recirculation. Incidentally, the
term difference between the time of exit from the sampling compartment and
the time spent in all compartments in one passage, is called the short circuit term [2]; it
represents the time spent in all passages through the system after leaving the sampling
compartment.

We can now write

or
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15.7. DILUTION FACTOR AND MOMENTS

Inequalities (9) and (10) can be transformed to show how to compute the dilution
factor from the moments. When the feeding is in the sampled compartment, inequalities
(9) can be written, after dividing numerator and denominator of the left-hand side fraction
by and numerator and denominator of the right-hand side fraction by as shown
in section 9.8,

When the feeding is in the second compartment, inequalities (10) can be written,

It is important to remember that we are considering here a system of two compart-
ments, therefore, as shown in section 9.9, the persymmetric matrices

are all singular; this means that the moment in (13) can be expressed in terms of other
moments using equation

and that the moment in (12) can be expressed in terms of other moments using equa-
tion

Inequalities (11), remembering that

can be written
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of which (12) is just a special case with

15.8. NON-COMPARTMENTAL SYSTEMS

We have seen that it is impossible to determine the exact value of the dilution factor if
we don’t have a detailed knowledge of the compartmentalization of the system under
observation. We have also seen that a lower bound for the dilution factor is given, in gen-
eral, by the ratio of exit time over permanence time, i.e.,

This estimate is correct if the drug is eliminated only from the sampling compartment;
this is not true in most cases. A better estimate is obtained if we use the apparent exit

time when it is available, because we know that it is closer to the correct exit

time from the system, than the exit time from the sampling site, Therefore we
can write

where is the total amount of drug present in the system at time

Unfortunately, though, we don’t know whether this estimate is smaller or larger than
the true value.

15.9. EXAMPLES

Christine Matthews [3] studied the metabolic rate and mass of proteins using radioac-
tive iodine as a tracer in human, rabbit and rat. In a typical experiment she found

with measured in hours. In operational form,

Here the plasma is both the feeding and the sampling compartment; using expression
(11) we get
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We can also compute the moments of order –1,0, and 1 as shown in section 9.7,

and the sum of the inverse of the eigenvalues,

then use expression (14) to get the dilution factor, thus

yielding the same result.
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16. TIME PARAMETERS

16.1. PERMANENCE TIME

16.1.1. Definition of Permanence Time

The permanence time, symbol is the expected time spent by a drug administered to
an organ in all its passages through that organ. By definition it is equal to the product of
the turnover time and the turnover number:

The pharmacokinetic parameters turnover time and turnover number were defined in
sections 14.1 and 14.5; as a consequence the permanence time is another pharmacokinetic
parameter, as anticipated in section 3.4.1.

16.1.2. Determination of Permanence Time

If is the total number of particles introduced into an organ at time and
the number of particles present there at time wehave

This last integral, if it converges, is just the permanence time. We can therefore write

Observe that the above derivation is valid even if the drug is not uniformely distrib-
uted inside the organ it was measured in; but it is necessary that the integral of con-
verges. In this sense, even though the permanence time is defined as a pharmacokinetic
parameter, its determination depends upon the choice of model.

16.1.3. Permanence Time and Compartments

I have shown in section 11.6 that the diagonal elements of matrix are equal to
the permanence times of all compartments of a system. If matrix of a system is known,
by inverting it we can know the permanence times of all compartments of the system.

= fraction of particles present in the organ at time

= expected time spent in the organ by all particles in the interval

= average time spent by all particles in the organ.

161
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Consider a hypothetical experiment where a drug is given as a bolus in a unit dose in
the first compartment; suppose the amount of drug in the first compartment is

where is measured in minutes; we have immediately

therefore the permanence time in that compartment is 0.75 min.
With the data available we can determine more parameters; first we write equation (1)

in operational form,

using the results of section 15.6.1 we can write

thence

where is an unspecified parameter. The matrix is

and shows that the turnover rate of the first compartment is while the turnover
rate of the second compartment is By inversion we get

therefore the permanence time of the second compartment is 0.50 min.

16.2. RESIDENCE TIME

The residence time, symbol is the expected time a drug administered to an organ
spends in all its passages through another organ. We can use two subscripts to indicate
the fed organ and the sampled organ.

If is the total number of particles introduced into an organ at time and
the number of particles present in a second organ at time we have

= fraction of particles introduced in the first organ that are present in
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the second one at time

= expected time spent in the second organ in the interval by the

= average time spent by all particles in the organ.

This last integral, if it converges, is just the residence time. We can therefore write

As shown in section 11.6, the element of row and column of matrix is equal to
the residence times fromcompartment to compartment

Matrix in the previous section shows that and are the resi-
dence times of the system above.

In the previous section I said that is an unspecified parameter, but we can put some
bounds on it; we know that

therefore

and

16.3. YIELD

The fraction of drug fed into an organ that eventually reaches a second organ is called
the yield, symbol Here again two subscripts can be used to indicate the fed organ and
the sampled organ. Evidently,

From the example of the previous section we can compute

thence

particles introduced in the first one,
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16.4. EXIT TIME

The exit time from an organ, symbol is defined as the interval of time spent by a
substance from the time of entry into the system to the time of exit from that organ.
While turnover time and permanence time are periods of time spent by a drug in an organ
in one single or in many passages through it, the exit time includes the time spent outside
that organ before entering it and between different passages through it. In general we can
write

We have

Turnover time = Permanence time

when the turnover number is one, i.e., when the drug is not recirculated; we have

Permanence time = Exit time

when the drug is fed to the sampled organ and is not recirculated.
The exit time depends upon the site, the mode, and the time, of administration; it is

therefore an incidental parameter.

16.4.1. Exit Time from a Compartment

We have seen in section 9.4 that, if is the amount of drug in a compartment, the 1-
moment divided by the 0-moment of is the exit time from that compartment. Nothing
changes, of course, if we use a concentration function instead of an amount-of-drug
function, because both the first and the zero moments will then be divided by the same
volume.

It is important to remember that the expression

is not the definition of exit time, but the property of a linear, homogeneous compartment
[1,2] and a consequence of the fact that

only if the turnove rate is constant and can therefore be exported from the integrals.
In the literature the first relative moment of the drug concentration in the plasma is

often called “mean residence time in the systemic circulation” [3]; this is correct only if
the drug is distributed uniformely. In general, without any hypotheses on the distribution
of the drug in the organ it is measured in, the first relative moment should more correctly
be called “age of the drug” [4, 5, 6].

Consider for instance the case of two compartments pooled together. Call and
the amount of drug in each of the two compartments, with only their sum
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accessible to measurement.
We can compute

and call it apparent exit time from the pool [7]; I will show that the apparent exit time is
different from the real exit time, except in some very special situations.

In fact, following the procedure of section 9.5, the real exit time from the pool should
be

where and are the respective fractional rates of exit of the drug from the two com-
partments out of the pool. From the above fraction those two constants cannot be elimi-
nated, but we can write

The difference

can be written as

and after some simplifications,
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This identity shows that

in the same way we can show that

therefore

where and mean the smaller and the larger of the quantities in
parenthesis, respectively.

Now we observe the difference

and after some obvious simplifications we find that it has the sign of the product

It follows that the apparent exit time and the true exit time coincide when the two
compartments have the same exit time or the same fractional rate of exit. When this is not
the case, the true exit time will be smaller than the apparent one if the compartment with
the larger exit time has the smaller fractional rate of exit, and vice-versa.

In conclusion, without any hypothesis on the compartmentalization of a system, we
can only say that the first relative moment is an approximation of the exit time, and the
approximation depends on the disuniformity of the concentration of the drug inside the
system.

16.4.2. Exit Time from the Organism

An important problem is the determination of the time a drug spends in the whole
organism when only the central compartment, say the plasma, can be sampled [7].

Suppose after a bolus administration at time of a unit dose of a drug we have
found that the amount of drug in the plasma can be approximated reasonably well by a
sum of exponential functions,

in operational form

As shown in section 9.7, the 0-moment of x(t) is
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and the 1-moment is

therefore the first relative moment is

This is the exit time from the plasma, if the drug is homogeneously distrib-

uted in it. It is also the exit time from the organism if the drug leaves the organism only
from the plasma, and not from any peripheral compartments. If the drug spends some
time in other compartments before leaving the system, the exit time from the organism,

will be larger, therefore

Now that we have a lower bound for we shall look for a higher bound. As
we saw in section 15.6.2, the term difference between the time of exit from the
sampling compartment and the time spent in all compartments in one passage, is called
the short circuit term [1, 2]; it represents the time spent in all passages through the sys-
tem after leaving the sampling compartment. When the short-circuit term is zero, the time
spent by the drug in the organism will be maximum, therefore is the upper bound
of the exit time from the organism:

As shown before,

16.4.3. Example

We can use the data of section 15.9 for the computation of the exit time from an or-
ganism.

From the function

we can compute
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and

16.5. TRANSFER TIME

The difference between the exit time from and the exit time from provided that no
drug enters without first passing through (i.e., is a unique precursor of of any order)
is called the transfer time from compartment to compartment symbol is

We can say that the transfer time is the time spent by a drug from the exit from com-
partment to the exit from compartment

Even though the definition of transfer time depends on exit time, an incidental pa-
rameter, the transfer time is a model parameter, because it is an invariant quantity; in fact,
given a specific compartmental model, the difference between exit times in the above
definition does not depend upon the site, the mode, and the time of administration, but
only on the structure of the model itself.

For instance consider the model described by the graph of Fig. 3 in section 10.8.1;
from the data in that section we can write

and

as shown in sections 9.4 and 9.7 the exit time from compartment 1 is

and the exit time from compartment 3 is

therefore the transfer time is
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Observe that the transfer time does not depend on the dose
After leaving compartment 1 the drug spends the time in compartment 2 and the

time in compartment 3 before leaving this last one.

16.6. TRANSFER TIME AND TRANSFER FUNCTION

There is obviously a very close relationship between transfer time and transfer func-
tion. In section 10.2 the transfer function from compartment to compartment was de-
fined by

Take the logarithms of both sides of that definition,

then the derivatives with respect to

and finally the limits for

Remembering the results of section 9.7 we can now write

therefore

Going back to the example of the previous section, we could compute, sequentially,
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and finally

the same result as before, but in a much simpler way.
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17. BIOAVAILABILITY AND BIOEQUIVALENCE

17.1. DEFINITION OF BIOAVAILABILITY

In 1933 Walker and Nelson [1] observed that vitamin B given to rats as yeast is ab-
sorbed differently if the yeast is fresh or dried. This observation marked the beginning of
a number of studies that eventually formed the branch of pharmacokinetics called
“Bioavailability”.

Unfortunately the term bioavailability has not a unique meaning.
Allen et al. [2] define “bioavailability” as the “relative amount of drug which enters

the systemic circulation from an administered dosage form and the rate at which the drug
appears in systemic circulation”. The symbol proposed for the “fraction” of administered
dose systemically available is but no symbol is proposed for the “rate” of this absorp-
tion.

A paper [3] published by a panel under the patronage of the Fédération Internationale
de Pharmacie discusses a number of different definitions of “bioavailability”, concluding
that the definition given by the U.S. Food and Drug Administration (FDA) is sufficiently
precise, but might be slightly improved. The original version of the FDA definition is [4]:

Bioavailability means the rate and extent to which the active drug ingredient or
therapeutic moiety is absorbed from a drug product and becomes available
at the site of drug action.

The revised definition proposed by the above mentioned panel is:

Bioavailability means the rate and extent to which the active drug ingredient or
therapeutic moiety from a drug product becomes available at the site of
drug action or in a biological medium believed to reflect accessibility to a
site of action.

The above examples could be multiplied ad libitum. While nobody in the current
pharmacokinetic literature contests the official definition of bioavailability, which in-
cludes both the fraction absorbed and the rate of this absorption, the common use of the
term “bioavailability” refers only to the “fraction absorbed”, excluding any reference to
the “rate of absorption”, which is considered a separate parameter.

Rowland and Tucker [5] avoided this problem by proposing the use of the term avail-
ability, symbol F, for the fraction of drug absorbed, independently of the rate of this
process.
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17.2. DEFINITION OF BIOEQUIVALENCE

Strictly connected to the concept of bioavailability is the concept of bioequivalence.
Here again the official definition accepted by the FDA [4] is,

“Bioequivalent drug products means pharmaceutical equivalents or pharmaceu-
tical alternatives whose rate and extent of absorption do not show a signifi-
cant difference when administered at the same molar dose of the therapeutic
moiety under similar experimental conditions, either single dose or multiple
dose. Bioequivalent means ... drug products whose rate and extent of ab-
sorption do not show a significant difference when administered at the same
dose under similar conditions.”

More recently, the Center for Drug Evaluation and Research, FDA, (CDER), pro-
vided a similar definition [6]:

Bioequivalence is defined ... as “the absence of a significant difference in the
rate and extent to which the active ingredient or active moiety in pharma-
ceutical equivalents or pharmaceutical alternatives becomes available at the
site of drug action when administered at the same molar dose under similar
conditions in an appropriately designed study.”

Similarly, the U. S. Center for Veterinary Medicine [7],

Two products are considered to be bioequivalent when they are equally
bioavailable; that is, equal in the rate and extent to which the active ingredi-
ent(s) or therapeutic ingredient(s) is (are) absorbed and become(s) available
at the site(s) of drug action.

The European Agency for the Evaluation of Medicinal Products [8] also provided a
comparable definition of product bioequivalence:

Two medicinal products are bioequivalent if they are pharmaceutically equiva-
lent or pharmaceutical alternatives and if their bioavailabilities after admini-
stration in the same molar dose are similar to such degree that their effects,
with respect to both efficacy and safety, will be essentially the same A
bioequivalence study is basically a comparative bioavailability study de-
signed to establish equivalence between test and reference products.

Also [9],

Bioequivalence exists between veterinary medicinal products or between routes
of administration if, under identical and appropriate experimental condi-
tions, the bioavailability of the active substance only differs within accept-
able limits. Limits must be qualified, a priori, according to the aim of the
tests. Bioavailability of a veterinary medicinal product is defined by the rate
and extent to which the active substance reaches the systemic circulation
and becomes available to the site(s) of action. Rate and extent are typically
measured by (peak concentration) and AUC (Area under the Curve),
respectively.

It is important to note that in all these cases, the definition of bioequivalence is strictly
connected with the definition of bioavailability, as given in the previous section. These
definitions are based on the tacit, but universally accepted, assumption that [10]

Two formulations that do not differ very much in the rate at and the extent to
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which they make the active ingredient available in the circulating blood will
not differ much in their therapeutic efficacy.

Because of this connection, I shall treat the problems of bioavailability and of bioe-
quivalence together.

17.3. DETERMINATION OF BIOAVAILABILITY

From a scientific point of view, as opposed to the legalistic point of view, what is
really important to know is “how” a drug given to an experimental animal or to a volun-
teer or to a patient, becomes available to the target organ, usually the systemic circula-
tion. This is the first step of the pharmacokinetic investigation. This “how” is nothing
more and nothing less than the curve i.e., concentration versus time of the drug in
the target organ. This curve contains all needed information regarding the rate of ab-
sorption and the extent of absorption; in short, the curve tells us how much drug is
available and when it is available.

Unfortunately, bioavailability and bioequivalence were born with an original sin. The
original sin is in the definition of bioavailability that mentions “rate” and “extent” of ab-
sorption as two separate entities; as a consequence, a great effort was spent in trying to
determine a value for the rate of absorption and a value for the extent of absorption. In
the following sections I shall discuss these two problems, then offer my opinion on their
best solution.

17.3.1. Extent of absorption

For the extent of absorption the generally accepted measure is the so-called AUC, i.e.,
the 0-moment of the curve depicting the systemic drug concentration versus time
after a bolus administration.

If is the rate of drug appearance into the systemic circulation, and is the rate
of its elimination from the central (blood) compartment, provided that the elimination
process is linear and invariant (see section 10.1), the concentration of the drug in the
plasma is given by the convolution integral

The corresponding AUC is given by equation:

Observe that is the amount of drug entering the plasma in the interval of time

from therefore is the total amount of drug absorbed; if D is the ad-

ministered dose and F is the fraction absorbed, we can write

therefore
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in other words, AUC is proportional to the fraction of drug absorbed, but only if the

elimination process is linear and invariant, and the integral is constant.

If the drug is eliminated from the plasma by a non-linear process (a not so rare occur-
rence) the convolution integral (1) no longer holds and we cannot reach the conclusion of
identity (3). In this regard, it is even possible, as shown in section 12.4, that the integral
in (2) does not converge at all, and the so-called AUC cannot be expressed with a finite
number [11,12].

Furthermore there is no a priori guarantee that the elimination rate may not be modi-

fied by an excipient; it this happens, the integral is not constant from one

preparation to another of the same drug product, and equation (3) contains one unknown
term too many [13, 14].

The inadequacy of the common measures of extent of absorption is well known [15,
16], but it has not yet been taken care of in the current legislation, as I will show in sec-
tion 17.4.1.

17.3.2. Rate of absorption

The problem of determining the rate of absorption is even more complex. For one
thing, except in some very special cases, there is not a rate of absorption, but an absorp-
tion profile. The absorption of a drug may involve the disaggregation of a formulation,
the dissolution of the active molecule, the crossing of membranes along the G.I. tract (a
long and diversified tract from the oral cavity to the rectum) [17, 18, 19]; given the vast
heterogeneity of the gastrointestinal tract, there is clearly a very low probability that the
absorption profile of a compound will be best described as either a simple mono-
exponential or even bi-exponential function.

For this reason, we must conclude that in the vast majority of cases, there will be no
single parameter that can reliably measure the rate of absorption. The maximal drug con-
centration, has been widely used as an indicator of the rate of absorption, but it de-
pends more on the fraction absorbed than on the rate of absorption. Similarly, the
time of occurrence of the maximal concentration, depends in a complex way on both ab-
sorption and elimination rates, and is very ill determined when the plasma drug concen-
tration does not exhibit clearly defined peaks [20]. A typical example of a drug product
with poorly defined peaks is zeranol [21].

This obvious fact was recently “rediscovered” by Macheras and Argyrakis [22] who
proposed of abandoning the use of and “in bioequivalence studies for heteroge-
neous drugs”; I will show in section 17.4.2 that this distinction between heterogeneous
and non heterogeneous drugs is superfluous.

17.4. DETERMINATION OF BIOEQUIVALENCE

17.4.1. The present position of the FDA

The Center for Drug Evaluation and Research (CDER), FDA, is aware of the short-
comings of parameters like AUC, and for the evaluation of the equivalence of
two medicinal products [23]:

Both direct (e.g., rate constant, rate profile) and indirect (e.g., Cmax, Tmax,
mean absorption time, mean residence time, Cmax normalized to AUC)
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pharmacokinetic measures are limited in their ability to assess rate of ab-
sorption. This guidance, therefore, recommends a change in focus from
these direct or indirect measures of absorption rate to measures of systemic
exposure.

Surprisingly, although the CDER introduces three new parameters, namely Early Ex-
posure, measured by AUC from 0 to Peak Exposure, measured by and Total
Exposure, measured by AUC from 0 to these three “new” parameters are new only in
name, and are not much different from the old parameters AUC, whose short-
comings are well recognized.

The simple fact is that equality of AUC (either from 0 to or from 0 to and of
are necessary but not sufficient conditions for establishing bioequivalence [24], and

this fact does not disappear by changing the names of the parameters. We can easily think
of two plasma concentration curves with very different shapes but the same values of

and the same values of the respective integrals from 0 to and from 0 to [25];
those two preparations can be considered bioequivalent, (i.e., they have the same biologi-
cal efficacy) only if one makes the additional hypothesis that the effect of a drug is a lin-
ear function of its concentration and of the time that concentration is present. This is a
hypothesis implicitly made by Tozer et al. [26] when they introduced the term “expo-
sure”, and by the CDER when it proposed to use it. One cannot help thinking of the
words of Doctor Pangloss (Voltaire, Candide, Chapter One):

“Il est démontré, disait-il, que les choses ne peuvent être autrement: car tout
étant fait pour une fin, tout est nécessairement pour la meilleure fin.”

Unfortunately, in the world we live in, this hypothesis may be true for some drugs but
there is no scientific basis to accept it as a universal truth. Upon some reflection, we see
that it is no more valid to attempt to assess exposure on the basis of a small number of
parameters, than it is to use a single metric for assessing rate. However, for the determi-
nation of product bioequivalence, the primary issue is whether “exposure itself”, not just
total exposure, or peak exposure, or early exposure, is the same for two preparations.

17.4.2. The proposed solution

In 1992 I observed [27] that “to determine that a new formulation is bioequivalent to
an old one, it is certainly not necessary to estimate its rate and its extent of absorption,
[but] it should be sufficient to show that the two formulations have plasma concentration
functions sufficiently similar”. As a corollary, I suggested that rather than considering
similarity of a number of selected parameters, it would be preferable to use a metric as a
measure of the dissimilarity between two plasma concentration curves. When such a
metric is sufficiently small (as defined for that drug entity), the “rates” and “extent” of
absorption (as well as the “rates of elimination” and any other parameter you care to de-
fine) of those two formulations would be declared to be sufficiently close (i.e., bioe-
quivalent). This simple fact was implicitly recognized in one of the Guidelines [28], but
was not brought to its full logical consequences:

Bioequivalence testing aims to demonstrate that two medicinal products produce
plasma concentrations similar enough to conclude that the systemic effects
of the two products, in respect to efficacy (and possibly safety), are the
same.
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In very simple terms, for two formulations to be bioequivalent, their time-
concentration profiles must be “almost superimposable”, that is, the two curves must
have the same shape. The attractive feature of this approach is that it applies equally well
to homogeneous and to heterogeneous drugs [22], to drug with linear and with non-linear
elimination processes, to drugs with well defined and with a flat profile, and so
forth.

As a matter of fact, the technique of using a “distance between curves” as a method
for deciding if two curves are similar enough is well known in mathematics. Given two
functions and we can define the function this function is zero when

and are identical, and is positive in all other cases; it is also symmetric, i.e., it
does not change if the two functions and are switched. Its integral from 0 to is
called the “distance of two functions in a Hilbert space” [29] and its properties are analo-
gous to the properties of the “Euclidean distance between points”.

Statisticians too have been interested in the problem of deciding whether two curves
come from the same distribution. The Kolmogorov-Smirnov “D” statistic [30, 31] has
been available to the applied statistician for years as well as the Chi-Square goodness-of-
fit procedure along with the Mann Whitney “U” statistic.

Recently Bartoszynski et al. [32] have described a procedure for the comparison of
the shape of dissolution curves to determine if they came from the same population of
curves; their method can easily be extended to the comparison of time-concentration
curves.
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18. CONCLUSION

Coming full circle, I return now to the definition of pharmacokinetics; have I helped
the reader better to understand how to study absorption, distribution, metabolism, and
elimination of drugs? I have introduced a number of definitions and properties of phar-
macokinetic parameters; are they of any use in understanding the real world we live in?
What is the real meaning of the equations I have written?

In literature —and “scientific literature” is “literature”—the authors must frequently
ask the readers for a willing suspension of disbelief [1] when they want a semblance of
truth sufficient to generate shadows of imagination. Each model used in pharmacokinet-
ics, or in any other experimental science, is a product of our imagination and must have a
semblance of truth.

How close is a model to the real world? Each model contains different levels of real-
ity. Let's go back for a moment to equation

describing a single compartment (see section 5.2). On the right-hand side there are a
negative and a positive term, rate of exit from, and rate of entry into, the compartment;
what I had in mind when I wrote that equation was the axiom of conservation of mass.
This is the first level of reality, that is, a reality that I accept unconditionally. Somebody
could object that another term is necessary because some energy can be transformed into
matter, or matter can be transformed into energy, but unless some very strong evidence
for that appears, I accept the conservation of mass as an absolute truth. But another level
of reality is present in the same equation; that other level of reality is represented by the
fact that for the rate of exit I wrote i.e., I supposed that rate to be proportional to
the amount of drug present. That is not an absolute level of reality, it is just a hypothesis:
the hypothesis is that I am dealing with a perfect compartment. The axiom is one level of
reality, the hypothesis is another level of reality, which is contingent to the result of my
experiment; the experiment may show that it was a good hypothesis, or it may show that
it was a bad hypothesis. I accept it as a contingency.

I can find many other levels of reality. When I solve equations, I get identities; those
identities are not just formal expressions, but are instruments to be used to check against
the results of the experiment. I move to the laboratory or the clinic and I check the ex-
perimental results and they should fit those identities — that is a third level of reality. I
don’t expect them to match exactly 100%; some random errors are possible. Those possi-
ble errors are not written explicitly into the differential equation, but they constitute a
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fourth level of reality; the errors should be random, i.e. they should have a certain distri-
bution; whatever distribution I expect is a fourth level of reality [2].

Science, like comedy, often demands that we look at familiar things in unfamiliar
ways. What may seem unfamiliar to some readers of this book is its intense use of
mathematics; what possible excuses may I adduce? I gave a partial answer to this ques-
tion in the preface, but for the real reason I cannot do any better than quote what Feyn-
man said in one of his lectures [3]:

But the real reason is that the subject is enjoyable, and although we human cut
nature up in different ways, and we have different courses in different de-
partments, such compartmentalization is really artificial, and we should take
our intellectual pleasures where we find them.
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A. CONVOLUTION

A.1. DISCRETE CONVOLUTION

A.1.1. Memoryless System

A memoryless system is a system where the effects are simultaneous with their
causes. In such a system the causes and effects are related in a one-to-one way that can be
expressed by a simple mapping:

If this system is also linear, we can write

where and are constant parameters characteristic of the system.
Equation (1) can be further simplified if the effects are measured as difference from

their rest values, i.e. if we assume that

in this case,

From now on, we consider only linear systems of the type described by equation (2),
i.e. such that to a null cause corresponds a null effect.

A.1.2. Memory System

A memory system is a system whose state depends upon present and past causes. If
such system is linear, a cause at time may generate the sequence of effects,

If the above system is invariant, i.e. at a later time it behaves exactly the same way as
at the previous time, then a cause at time will generate the sequence of effects,
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Similarly a cause at time will generate the sequence of effects,

The linearity of the system implies that all those effects are additive, therefore a
sequence of causes

will generate the effects

This result can be summarized by the following statement:

If a memory system is linear and invariant, and a unit cause at time
generates the sequence of effects

then the sequence of causes

generates the sequence of effects

The above sequence is called the convolution of the sequences and

In short we can write

where

The sequence

is called the unit response of the system.

A.1.3. Numerical Convolution

Given the sequences and their convolution can be
computed numerically exactly as in the algebraic multiplication:
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A.1.4. Numerical Deconvolution

The deconvolution consists in determining the sequence given the sequences
and or determining the sequence given the sequences and The
deconvolution is computed as in the algebraic division:

A. 1.5. Example

Let and be non-negative independent integral-valued random variables with
probability distribution and The event has
probability The sum is a new random variable, and the event is the
sum of the mutually exclusive events

Therefore the distribution is given by

A.1.6. Summary

If the unit response of the system is given by the sequence then the
sequence has the effect given by:
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where

and so forth.

A.2. CONTINUOUS CONVOLUTION

A.2.1. Linear Invariant Systems

We have seen in chapter 10 that we can consider a particle in a living system and
suppose that that particle can be recognized in two different states of the system, where
by state we mean a particular location or a particular chemical form, or both. If one state
is the precursor of the other (not necessarily the immediate precursor), then we can study
the relationship among events (the particle is in the precursor state), event
(transiti on from precursor to successor state), and event (presence of the particle in the
successor state).

If we suppose now that depends only on the interval of time separating and
we can call the probability of at time the conditional probability that
a particle is in at time if it left in the interval and the probability of
at time As shown in section 10.1, with the above hypotheses the relationship among the
functions is

this is the well known convolution integral representing the relationship among the
variables of a linear, invariant system.

By linear system we mean that two different solutions of equation (5) can be added to
give a new solution; by invariant system we mean that a solution does not change if the
time origin is changed. These two properties, i.e. linearity and invariance, of equation (5),
are often called the principle of superposition. For a proof see section 10.1.

If we think of an experiment where a very large number of identical particles is used,
then the number of particles present in the precursor and in the successor states are good
estimates of functions and respectively. Function represents the probability
that a particle that left at time 0 will still be in at time therefore in a hypothetical



185CONVOLUTION

experiment where all identical particles left the precursor near time zero, the number of
particles found in the successor will be given by

A.2.2. Properties of the convolution

For short, we can write

It is easy to prove that the convolution integral is a linear operation, i.e. that if

then

It is also commutative,

associative,

and distributive with respect to addition,
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B. OPERATIONAL CALCULUS

B.1. CONVOLUTION ALGEBRA

Manipulation of the convolution integral is considerably simplified by the use of the
operational calculus as developed by Mikusinski [1]. An alternative approach to opera-
tional calculus was due to Erdelyi [2], and it was extended to two variables by Rescigno
[3].

If is the class of all real-valued, defined and continuous functions of the variable t
0, we shall use the symbol to represent the function of class while with we
represent the value of that function for a particular value t of the independent variable.

We define the operations of addition and multiplication of functions by

It is easy to verify that the addition is closed, i.e., the sum of two functions of class
is always a function of class     ; it is commutative, i.e.

and it is associative, i.e.

and an additive inverse, i.e.

The multiplication of functions too is closed, commutative and associative; in fact the
convolution of two functions of class C is a function of class C ; the commutativity of
the multiplication is proved by writing

to prove the associativity put

187

For any there exists an additive identity, i.e.
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then write

Finally it is easy to prove that multiplication is distributive with respect to addition,
i.e.

The functions of class with the two operations (1) and (2) therefore constitute a
commutative ring.

It is also useful to define the power of a function, thus

B.2. CONSTANT FUNCTION

From the above identities we get

and in general

for any positive integer n.
This last identity can be generalized to non-integer powers of n using the definition of

the Euler’s gamma integral,

which has the following important properties:
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Property (5) can be proved with an integration by parts,

Property (6) is proved by induction after showing that

To prove property (7) we first show that

with the integral extended to the domain Now with the substitutions
we get

with the integral extended to the domain It follows

Using property (7) we can write

thence property (8) follows immediately.
Now we can generalize the result of identity (3) by writing

for all positive values of This equality is to be regarded as a definition of the operator
This definition preserves the fundamental property of power, i. e.,

B.3. QUOTIENT OF FUNCTIONS
According to the theorem of Titchmarsh [4], the product is identically zero if

at least one of the two factors is identically zero.
Now we can define the quotient of two functions
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if and if a function exists such that

If the quotient of two functions exists, it is unique; in fact suppose that we can find a
second function such that

subtracting the last two identities one from the other,

for the distributive property,

but by hypothesis therefore from the theorem of Titchmarsh it follows that
and are identical.

Not for all pairs of functions does the quotient exists. To make this operation always
possible, with the only restriction that the divisor be different from zero, we define the
operator, represented by two functions separated by a bar, with the following defining
properties:

Definition (9) shows that the same operator can be written in different forms; for in-
stance and are the same operator because

Definitions (10) and (11) are formally identical with the addition and multiplication of
rational numbers; it is easy to verify that they are commutative, associative and distribu-
tive, as the addition and multiplication of functions of class .

Furthermore given any two operators and with we can
always find their quotient; in fact

as can be proved by using definition (9).
The operators thus defined with the three operations (9), (10), (11) constitute a field.

We can operate on them exactly as on ordinary fractions.
For example from the definition of equality,
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i.e. numerator and denominator of an operator can be divided by the same function, as in
the reduction of ordinary fractions.

From the definition of quotient,

where the left hand side is a function; the right hand side too is a function, but it can also
be looked at as an operator. It follows that any function can be looked at as an operator,
but not the other way around; in other words the ring of functions is embedded in the
field of operators.

B.4. NUMERICAL OPERATORS

Observe that

where a is a constant and are arbitrary functions; this operator, being independ-
ent of the function can be represented simply by the letter a, i.e. we put by definition

and call it the numerical operator.
It is easy to verify that

in fact, by definition,

An important property of the numerical operator 0 is

in fact

this is the only numerical operator that can be written with or without brackets.
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Sum, product, and quotient of numerical operators have exactly the same formal
properties as sum, product, and quotient of real numbers. In fact, the sum of two numeri-
cal operators is

their product is

their quotient is

B.5. DIFFERENTIAL OPERATOR

The inverse of the operator with is the operator Obviously
the product of an operator by its inverse is the numerical operator 1.

Because of identity

we can call the constant function integral operator. Call s its inverse; then

Now consider a function having a derivative we can write

or

divide both sides by

The derivative of a function can thus be expressed in terms of the original function, its
initial value, and the operator s. For this reason s can be called differential operator.

If does not have a derivative, then the expression
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is not equal to any function, but it is a well defined operator with a number of properties
formally similar to the properties of a derivative; we can conventionally call it “derivative
of

By induction we can prove that, if has higher derivatives, then

B.6. FUNCTIONAL CORRELATES

From the previous definition,

thence, multiplying both sides repeatedly by {1},

and in general,

From the identities

using (12) we get

thence

From the identities

we get
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Note that all expressions thus found represent the fact that the functions listed in them
are solutions of differential equations with given initial conditions. Thus from the differ-
ential equation

with initial conditions

we get

thence

For instance identity (17) corresponds to the differential equation

with initial conditions

similarly identity (13) simply means that is the particular integral of the differential
equation

with initial condition

identity (14) shows that is the particular integral of  the differential equation

with initial conditions

B.7. DISCONTINUOUS FUNCTIONS

So far we have considered operators defined in terms of functions of class . Now
consider the class of real functions defined for any such that
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is of class      plus those having a finite number of discontinuities in any finite interval of t
and such that

is finite in the whole domain of t.
Thus if is of class we can write

i.e. any function of class can be written as a ratio of two functions of class    ; in other
words the functions of class are embedded in the field of operators defined by func-
tions of class .

As an example of a function of class consider the jump function (see Fig. 1)

Define the translation operator

for any function we have

for the definition of this integral vanishes for therefore
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and finally,

This result shows that the operator shifts a function by a quantity along the t
axis and makes it zero for t     thence its name.

Thejump function can thus be written in operational form,

Many other functions can be written in operational form using the translation opera-
tor. For instance the gate Junction (see Fig. 2)

can be written
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A single sinusoidal pulse (see Fig. 3)

can be written

B.8. CONTINUOUS DERIVATIVE OF AN OPERATOR

Consider an operator depending upon the parameter if we can write

where p is an operator not depending upon and is a function such that
exists and is continuous for and for a certain domain of then we can write

called the continuous derivative of the operator
The continuous derivative thus defined is unique. In fact, suppose that can be

represented by (19) and also by

in this case we have

Now chose a function such that

with and functions of class   . It follows,
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finally dividing both sides by we obtain

Consider now the translation operator we have seen that it can be written in the
form

but does not have a continuous partial derivative with respect to therefore we
cannot use definition (19) in this case. Define the two functions

and

and observe that

The translation operator can alternatively be written in the form

and now definition (20) can be used; thence

Other properties of the translation operator are

The only ordinary function with these three properties is the exponential function;
therefore we can write
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B.9. INTEGRAL OF AN OPERATOR

Consider an operator depending upon the parameter if we can write

where p is an operator not depending on and is a function such that

exists for and for a certain domain of then we can write

called the integral of the operator
The integral so defined is unique. In fact, suppose that can be represented in two

different ways, for instance

we can choose a function such that

with and functions of class . It follows

integrating both sides with respect to and changing the order of integration,

finally dividing both sides by we obtain

For any numerical operator we can write

or

where
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According to the definition of integral of an operator,

but

therefore

With the notation

we can write

formally identical with the definition of Laplace transform; but it must be clear that in the
Laplace transform s is a complex variable, while here s is the differential operator.

B.10. ALGEBRAIC DERIVATIVE

Define the operation D on a function by

D is not an operator because the ratio does depend upon This operation has

the properties

= 0 everywhere else.
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the first property is obvious; to prove the second write

To prove the third property write

The operation D on an operator is defined by

it has the properties

analogous to the properties of the operation D on a function, and easy to verify.
For a numerical operator,

in fact

thence

For the differential operator,
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in fact

Using repeatedly property (21),

For the translation operator,

If R(s) is a rational expression in s and in the translation operator for the proper-
ties just shown the operator DR(s) can be computed by formal differentiation of R(s) with
respect to s, as though s were a variable. This fact can be expressed by the formula

For instance from identity (17) we get

from (18) we get

Many other functional correlates can be found by applying the operation D several
times.

B.11. OPERATION

The operation on a function is defined by the formula

this operation has the properties
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The first property is obvious; to prove the second property write

The third property is an immediate consequence of the second.
The operation on an operator is defined by

it has the properties

analogous to the properties of the operation on a function, and easy to verify.
For a numerical operator,

in fact

For the differential operator,

in fact

and from identity (16) the above proposition follows.
Using property (23) repeatedly,
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and in general,

For the translation operator,

If R(s) is a rational expression in s and in the translation operator then is
equal to the same expression with s substituted by This fact can be expressed by
the formula

For instance from identities (17) and (18) we get

Many other functional correlates can be found by applying the operation several
times.

B.12. FUNCTIONS APPROXIMATING SOME OPERATORS

Define

thence

If is small we can write
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which is exactly correct for and for therefore

This function is also called the Dirac delta function or the unit impulse function.
Define now the trapezoidal function (see Fig. 4)

thence

and if and are small, i.e. ignoring the interval
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Furthermore

thence

In a similar way we can approximate the operators then if too is
very small, we get the functions approximating the operators

B.13. ELEMENTARY TRANSFORMATIONS

Given the operator

with we can write

where  is a polynomial in s of degree less than the degree of q(s).
Suppose now that the operator can be written as a sum of operators of

the forms

where  are numerical operators, and are integers. We first prove a
Lemma and a Theorem.
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B.13.1. Lemma.

if

then

and vice versa.
In fact, multiplying both sides of (27) by

thence

which implies the identities (28). On the other hand, if the identities (28) hold, equation
(29) is valid for any value of t, and multiplying both sides by we obtain identity (27).

B.13.2. Theorem

If

then for any number x (real or complex) such that

it is

and vice versa.
In fact this hypothesis is true if and only if the identity

is true; for the Lemma this implies, and is implied by, the identities
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and so forth; they are the necessary and sufficient conditions for (30) being an identity,
q.e.d.

We now return to the rational operator

contains a real zero with multiplicity i.e. it contains times the factor we
can write

where

furthermore the new rational function

contains in the denominator the factor only times, and the same decomposi-
tion can be repeated until the polynomial does not contain any more real zeros. For
the theorem just proved we can find the operators making the same computa-
tions on the operator as though s were a variable.

If and are complex conjugate zeros of multiplicity v of the polynomial
then we can write

where

with  and If the polynomial
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and the same considerations as for the real zeros hold.

B.14. INITIAL VALUE THEOREM

For any function of class , if has a limit for then

In fact, using the results of B.9,

and

since s and are independent, we can change the order of the limit process, therefore

q.e.d.

B.15. FINAL VALUE THEOREM

If is a function of class and it has a limit for then

In fact, from (32),

since s and are independent, we can change the order of the limit process, therefore

but

and combining (34) with (35) we get (33), q.e.d.
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B.15.1. Corollary 1.

If is a function of class then

In fact if in (33) we substitute dt to and use (12), we get (36), q.e.d.

B.15.2. Corollary 2.

If is a function of class then

In fact

and using the properties of the algebraic derivative,

now using formula (36) we obtain formula (37).
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C. BOOLEAN ALGEBRA

There are two elements in the Boolean algebra, 0 and 1, and two operations, addition
and multiplication.

The two operations are defined by the following identities:

Addition

Multiplication

Properties of the two operations:

Both addition and multiplication are commutative,

and associative,

and multiplication is distributive with respect to addition:

211
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D. MATRIX ALGEBRA

D.1. MATRICES

A rectangular array of homogeneous quantities is called a matrix; symbol

where there are rows and columns.
Two matrices are equal if their elements are equal one by one.
If two matrices have the same number of rows and of columns, their sum is defined

by

it is easy to verify that the sum of matrices has the properties of commutativity and asso-
ciativity, i.e.,

Given two matrices such that the number of columns of the first is equal to the num-
ber of rows of the second, their product is given by

213
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where has dimension has dimension and their product had dimension
Observe that the product of matrices is not always commutative; for instance

but

it is easy to verify that, for any matrix

provided and have the appropriate size.
The null matrix of order is

it is easy to verify that, for any matrix

provided and have the appropriate size. We have already seen above that
does not necessarily imply that or

D.2. DETERMINANT OF A MATRIX.

Given a square matrix, i.e. a matrix of dimension choose n elements, one from
each row and one from each column, and form their product; to this product give a or a

The product of matrices, though, is distributive over addition.
Given a number and a m × n matrix with elements the product is the

matrix with elements obviously the product of a number by a matrix is commuta-
tive.

The identity matrix of order is
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– sign according to whether the number of inversions in its columns is even or odd; the
sum of all such products is called the determinant of the matrix; symbol

Examples:

It is easy to verify that if two rows are equal, the determinant is zero.
The determinant obtained from by deleting from it the same number of rows

and columns is called a minor of if the rows and columns deleted had the same
ordinal position, the resulting determinant is called a principal minor. We call cofactor of
the element of symbol the quantity

where the symbol means the minor of obtained by deleting row and col-
umn

A simple algorithm to compute the value of a determinant is

where i is any integer from 1 to To prove this proposition observe that the cofactor
above contains one element from each row and each column of except row and col-
umn with a sign + or – according to the number of inversions of rows and columns;
therefore the sum includes all possible products of the elements of with their proper
sign.

Another important formula that will be useful in the computation of determinants is

To prove it observe that this sum is equal to a determinant where row i is equal to row l.
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D.3. RANK OF A MATRIX

The rank of a matrix is the largest order of a non-zero determinant contained in the
matrix. For instance, the matrix

has rank two because its determinant is zero, but the determinant

formed by the first two rows and two columns is different from zero; matrix

has rank one because all three determinants of order two it contains, i.e.

are equal to zero.
A square matrix whose determinant is zero is called singular, an non-singular

matrix has rank by definition.

D.4. INVERSE OF A MATRIX

To any non-singular matrix corresponds an inverse such that

For instance,
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The inverse of the product of two matrices is equal to the product of their inverses in
the inverted order, i.e.,

in fact

Given a matrix the element of its inverse is given by

in fact the element of row i and column  j of the product is

and the sum on the right-hand side is equal to 1 when due to identity (1), and is
equal to 0 when due to identity (2).

D.5. SIMILAR MATRICES

If is a square matrix and

then and are called similar.
Think about as an operation transforming vector into vector

multiply both sides of this equation on the left by the non-singular matrix (if it has an
inverse it must be non-singular):

the left hand side does not change if we insert in it the product

this last equation proves that matrix transforms vector into vector
But these last two vectors represent vectors and in different coordinates; therefore
similar matrices represent the same transformation in different coordinates.
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D.6. EIGENVALUES AND EIGENVECTORS

Given the square matrix the equation

where is a vector and a scalar, has only the obvious solution unless matrix
is singular, i.e.

This last equation is called the characteristic equation of matrix The values of
that satisfy equation (3) are called the eigenvalues of the vectors that satisfy equa-

tion (3) in correspondence to each eigenvalue are called the eigenvectors of
Given matrix

its characteristic equation is

i.e.,

there are two eigenvalues, –3 and +1. To the eigenvalue –3 corresponds equation

thence the eigenvector

To the eigenvalue +1 corresponds equation

thence the eigenvector
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D.7. DIAGONALIZATION OF A MATRIX

Suppose that matrix of dimension has n distinct eigenvalues with
the corresponding eigenvectors Equation

i.e.,

hold.
With the eigenvalues form the matrix

it follows,

i.e.,

where

is a diagonal matrix formed with the eigenvalues of
If we multiply both sides of this equation by on either side,

An immediate consequence of these two equations is that similar matrices have the
same eigenvalues (but not the same eigenvectors). In fact, given

it follows

where matrices and are formed with the eigenvectors of and are one the
inverse of the other.
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D.8. MULTIPLE EIGENVALUES

The statement of the previous section is not valid if the eigenvalues are not all dis-
tinct. Consider matrix

its characteristic equation is

and its eigenvalues are

If the two eigenvalues are identical and we cannot put matrix in
diagonal form as shown in equation (4), because there is no matrix P such that

In fact, for any matrix it is always

What we can do, though, is to find a matrix such that

where this last matrix is called a Jordan matrix. If we write

from equation (5) we get
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the first two equations have always a solution in and as long as is an eigenvalue
of they can be written in the form

and show that the first column of is an eigenvector of the last two equations can be
written in the form

and show that there is always a solution for and we can summarize these results
by writing

where  and are the first and second column, respectively, of

D.9. COMPLEX EIGENVALUES

The statement of section D.7 is not valid if the eigenvalues are not all real. Consider
matrix

if its eigenvalues are complex conjugate. In this case we cannot put
matrix in diagonal form with real eigenvalues as shown in equation (4).

We can find a matrix such that

where

in fact matrices

have exactly the same eigenvalues.
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D.10. EXPONENTIAL OF A MATRIX

In analogy with the series

we define the exponential of a matrix with the series

It is easy to prove the following properties:

D.11. HAMILTON-CAYLEY THEOREM

We have seen in section D.6 that equation (3) is called the characteristic equation of
matrix The Hamilton-Cayley theorem states that every square matrix satisfies its own
characteristic equation. In other words, if

then

The proof is quite simple. Form the matrix whose element of row  and column
is the cofactor of element of row and column of matrix these two matrices
are one the inverse of the other (see section D.4) except for a factor there-
fore

This expression shows that is a factor of q.e.d.
A scalar polynomial is called an annihilating polynomial of a square matrix if

For instance, given matrix

the polynomial
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formed by the determinant

is an annihilating polynomial of

D.12. PERSYMMETRIC MATRICES

A square matrix such that each line perpendicular to the principal diagonal has all its
elements alike is called a persymmetric matrix. In a   persymmetric matrix

there are evidently at most 2n – 1 distinct elements, i.e., those of the principal diagonal
and one adjacent minor diagonal.

From its definition, it follows that in a persymmetric matrix the element of row   and
column j is equal to the element of row and column where  is any positive
integer smaller than
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