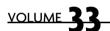
Profiles of Drug Substances, Excipients, and Related Methodology Volume 33

Profiles of DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY


CONTRIBUTING EDITORS

ABDULLAH A. AL-BADR GUNAWAN INDRAYANTO

FOUNDING EDITOR

KLAUS FLOREY

Profiles of DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY

Edited by

HARRY G. BRITTAIN Center for Pharmaceutical Physics, Milford, New Jersey 08848

VOLUME 33 AUTHORED BY RICHARD J. PRANKERD

CRITICAL COMPILATION OF ${}_{P}K_{A}$ VALUES FOR PHARMACEUTICAL SUBSTANCES

RICHARD J. PRANKERD, PhD

Victorian College of Pharmacy, A Faculty of Monash University Parkville VIC 3052, Australia

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 84 Theobald's Road, London WC1X 8RR, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands Linacre House, Jordan Hill, Oxford OX2 8DP, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2007

Copyright © 2007 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting, *Obtaining permission to use Elsevier material*.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

ISBN: 978-0-12-260833-9 ISSN: 0099-5428 (Series)

For information on all Elsevier Academic Press publications visit our website at books.elsevier.com

Printed and bound in USA 07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

CONTENTS

Foreword	vii
Acknowledgments	ix
Dedication	xi
Preface	xiii

Critical Compilation of pK_a Values for Pharmaceutical Substances

Richard J. Prankerd	
1. Introduction	1
2. Evaluation of Methods for pK_a Determination	7
3. pK_a Values from Computer Programs	24
4. Summary of the Data Compilation	26
References	28

Data Compilations

Appendix A

Main List

pK_a Values Found with Sign	nificant Data Quality Info	ormation—Mainly Primary	Literature 35
-------------------------------	----------------------------	-------------------------	---------------

Appendix B

Supplementary List

pK_a Values Found with Little or No Data Quality Information—Mainly Secondary Literature 425

Index

Alphabetical Index of	Drugs or Drug	Related Compounds	Found in pK_a Database Files	627
-----------------------	---------------	--------------------------	--------------------------------	-----

Subject Index

725

This page intentionally left blank

FOREWORD

It is against the backdrop of an ever increasing interest in the biological aspects of the pharmaceutical sciences that Richard Prankerd has undertaken the Herculean task of collating a database and reviewing the methodology and reliability of reported values for a fundamental physical chemical parameter that is often overlooked, or even taken for granted, in research studies and educational programs—this parameter is the almost ubiquitous pK_a . The theoretical and practical aspects of this important equilibrium constant have been the subject of significant reviews and treatises in the past. However, this is the first compilation in which the focus is a critical assessment of the reliability of reported pK_a values of compounds with particular relevance to the pharmaceutical and biomedical sciences.

Richard has systematically identified the relevant primary and secondary literature for nearly 3500 reported pK_a values for drugs and related or relevant compounds, and then assessed the reliability of these reported values using the IUPAC classification and guidelines.

This compendium provides an easy to read, excellent resource, and reference base for the pharmaceutical sciences and related disciplines that require a definitive source of information on drug-relevant pK_a values. In addition, a wellreferenced introductory section presents an insightful summary of the varied practical and theoretical issues that research scientists should recognize in order to maximize the reliability of pK_a measurements undertaken in their laboratories.

William N. Charman

This page intentionally left blank

ACKNOWLEDGMENTS

The author acknowledges generous financial support from SmithKline Beecham (courtesy of Dr. Donald C. Monkhouse), during the first data collection phase of this project. In recent years, I have been much encouraged by my colleagues at the Victorian College of Pharmacy (Monash University), and by Dr. Harry Brittain, the Editor of *Analytical Profiles*, to see this project to completion. I am grateful to all for their support. In particular, I would like to express my appreciation to Professor Bill Charman for his valuable suggestions after reading the chapter, and for his Foreword. I extend thanks to Drs. K. McIntosh, M. Campbell, and D. McLennan of the Centre for Drug Candidate Optimization, Faculty of Pharmacy, Monash University, for their ready assistance with *in silico* pK_a predictions.

This page intentionally left blank

DEDICATION

To my father, Kenneth Prankerd (1921–2006), who gave me his curiosity gene. To my mentor, Robert McKeown, who impressed upon me the need to be careful. This page intentionally left blank

PREFACE

A compilation of this nature inevitably rests on the efforts of others. Earlier compilations of drug p*K*a values have been assembled by Ritschel [1], Smith and Rawlins [2], Speight [3], Hoover [4], Newton and Kluza [5], Craig, Hansch, and coworkers [6], Williams [7], and Delgado and Remers [8]. Inevitably, the more recent of these compilations are the larger, but most contain about 500–700 listings.

However, size is not the only criterion, and it is certainly not the most important. The quality of literature information is vital to those who use it. The reliability of literature data must be known, in order to be most useful. In addition to the above drug-specific pKa compilations, there are also the more general, but significantly critical IUPAC compilations of pKa values in water for weak organic acids [9], and for weak organic bases [10], the originals of which were later supplemented [11, 12]. The main purpose of the present compilation is to apply to the drug sciences pKa literature the same principles of critical assessment that marked the IUPAC-sponsored general compilations.

As suggested by the dedication, I was encouraged in my student years to do things carefully. Rob McKeown would say to me something like "Fifty years from now, there will always be better theories to interpret your data. But if you have measured the data to the best that the technique will allow, the only way anyone can get better understanding is to develop newer and more reliable techniques to collect the data." This principle has been a prime motivation for attempting this compilation and critical evaluation of the drug-relevant pK_a literature.

In the northern summer of 1988, discretionary funding from SmithKline Beecham allowed me to make a start on this project by hiring Jimy Gillette, a senior pharmacy student at the University of Florida, to begin data collection. Since then, I have checked through the hundreds of citations collected by Jimy, and the many more citations that I subsequently collected myself.

It is inevitable that a compilation of this size (which cannot claim to be exhaustive) will have errors of omission and commission. These are the fault of the author only. Readers are encouraged to draw these to the attention of either the author or the editor, so that information in future editions or supplements can be made more reliable and more complete.

Richard Prankerd Victorian College of Pharmacy 381 Royal Parade VIC 3052 Australia richard.prankerd@vcp.monash.edu.au

REFERENCES

- W. Ritschel, pKa values and some clinical applications, in *Perspectives in Clinical Pharmacy* (eds. D. Francke and H. Whitney), 1st edn., Drug Intelligence Publications, Hamilton, IL, 1972, pp. 325–367.
- [2] S. Smith and M. Rawlins, Appendix C. Variability in human drug response, 1st edn., Butterworths, London, 1973, pp. 154–165.
- [3] T. Speight, Avery's Drug Treatment, 3rd edn., Publishing Sciences Group, Inc., Littleton, MA, 1987, pp. 1352–1380.
- [4] J. Hoover, Dispensing of Medication, 8th edn., Mack Publishing, Easton, PA, 1976, p. 230, 247, 418–426, 468–634.
- [5] D. Newton and R. Kluza, pKa values of medicinal compounds in pharmacy practice, *Drug Intell. Clin. Pharm*, 1978, **12**, 546–554.
- [6] P. Craig, Compendium of Drugs, in *Comprehensive Medicinal Chemistry* (eds. C. Hansch, P. Sammes and J. Taylor), 1st edn., Pergamon Press, New York, 1990, pp. 237–965.
- [7] D. Williams, Appendix A-1, in *Principles of Medicinal Chemistry* (eds. W. Foye, T. Lemke and D. Williams), 4th edn., Williams and Wilkins, Baltimore, MA, 1995, pp. 948–961.
- [8] J. Delgado, and W. Remers, pKas of drugs and reference compounds, in Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry (eds. J. Delgado and W. Remers), 8th edn., Lippincott-Raven, Philadelphia, PA, 2000.
- [9] G. Kortum, W. Vogel, and K. Andrussow, Dissociation Constants of Organic Acids in Aqueous Solution, 1st edn., Butterworth, London, 1961.
- [10] D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, 1st edn., Butterworths, London, 1965.
- [11] E. Serjeant and B. Dempsey, Ionisation Constants of Organic Acids in Aqueous Solution, 1st edn., Pergamon Press, Oxford, New York, 1979.
- [12] D. Perrin, Dissociation Constants of Weak Bases in Aqueous Solution, 1st edn., Butterworths, London, 1972.

Critical Compilation of pK_a Values for Pharmaceutical Substances

Richard J. Prankerd*

Contents	1. Introduction	1
	1.1. The IUPAC pK_a compilations	2
	1.2. Limitations of current pharmaceuticals pK_a compilations	4
	2. Evaluation of Methods for pK_a Determination	7
	2.1. Inherent precision	7
	2.2. Physicochemical factors controlling the accuracy and	
	precision of pK _a values	8
	2.3. Validation of data quality	23
	3. pK_a Values from Computer Programs	24
	4. Summary of the Data Compilation	26
	References	28

1. INTRODUCTION

There are numerous compilations of pK_a values" in the physical chemistry literature, including several for pharmaceutically relevant organic weak acids and bases [1–8]. These are complemented by further compilations of pharmaceutically relevant physicochemical data such as partition coefficients, solubilities, and reaction rate constants [6]. At the same time, other pharmaceutically interesting phenomena have not yet received the attention they deserve, such as the detailed substrate specificity and kinetics of endogenous enzyme systems (e.g., esterases and phosphatases), which are relevant to the rational design of prodrugs and the predictability of their bioconversion to active drug [13].

Along with solubilities, partition coefficients, and reaction rates, pK_a values are the most important physicochemical properties of drugs and the excipients used

© 2007 Elsevier Inc. All rights reserved.

^{*} Victorian College of Pharmacy, A Faculty of Monash University, Parkville VIC 3052, Australia

Profiles of Drug Substances, Excipients, and Related Methodology, Volume 33 ISSN 0099-5428, DOI: 10.1016/S0099-5428(07)33001-3

to formulate them into useful medicines. The determination of pK_a values is typically discussed either first or second (after solubility) in preformulation textbooks. The extent of ionization (overall state of charge) for a dissolved drug is a function of its intrinsic pK_a value(s) and the pH value of the solution [14]. The extent of ionization for a drug can control its solubility, dissolution rate, reaction kinetics, complexation with drug carriers (e.g., cyclodextrins), absorption across biological membranes, distribution to the site of action, renal elimination, metabolism, protein binding, or receptor interactions. Clearly, research in many aspects of the drug sciences requires knowledge and use of drug pK_a values. When an investigator chooses to make use of tabulated or compiled physicochemical constants, reliably assessed data is required to account best for physicochemical or biopharmaceutical results that are dependent on the relationship between pH and pK_a .

1.1. The IUPAC pK_a compilations

The critical assessment of data quality is one of the major features of the seminal group of pK_a compilations [9, 10] for weak organic acids and bases sponsored by the International Union of Pure and Applied Chemistry (IUPAC). These compilations feature assessment of data quality, based on aspects of pK_a measurement such as the mathematical definition chosen to calculate the value from the raw data, choice of the experimental method, and the degree to which technical refinements have been applied. The pK_a values are described in these compilations as "very reliable" (p K_a error $< \pm 0.005$), "reliable" (p K_a error ± 0.005 to ± 0.02), "approximate" (pK_a error ± 0.02 to ± 0.04), and "uncertain" (pK_a error > ± 0.04). These error criteria may seem overly restrictive to some readers. However, it must always be remembered that pK_a values are logarithmic representations of the acid dissociation constant K_{a} . These error criteria, when applied to the dissociation constants that they represent, are substantially larger than first appears. For example, a decrease in pH of 0.3 unit (which many would regard as small) actually represents a twofold increase in hydronium ion activity. This increase in a_{H^+} may double a reaction rate, and thereby halve the corresponding shelf life. A variation in assigned pK_a of 0.05 unit (trivial to many) represents a change in the extent of ionization for a weak acid or base of 10.9% at a fixed pH. The resulting change in polarity may influence solubility or partitioning properties to a similar extent, and which approaches comparison with the experimental errors in careful pharmacokinetic or biopharmaceutical work. Attention was drawn to this issue with respect to partitioning behavior [15] many years ago. The variation in pK_a of $< \pm 0.005$ which is required to qualify a result for status of "very reliable" corresponds to an uncertainty in the dissociation constant, K_{a} , of <1%, which seems reasonable for the most careful physicochemical work. It is most regrettable that very few authors in the pharmaceutical sciences [16] have ever seen fit to include comparisons of their data with the IUPAC reliability criteria.

Differences large enough to correspond to the "uncertain" classification may substantially alter aqueous solubilities or partition coefficients, and certainly can lead to gross errors in derived thermodynamic quantities where pK_a data are

measured as a function of temperature. In one example, pK_a errors of 0.05 at most led to the derivation of ΔH^o and ΔS^o values for ionization of 5, 5-diethylbarbituric acid [17] that varied with temperature in the wrong direction, compared to the best data [18] in the literature. In other words, the temperature dependences of these quantities were shown [19] to have the wrong sign, because of apparently quite small errors in the pK_a values. In the present compilation, the criterion for "uncertain" has been widened to a pK_a error > ± 0.06 . This is equivalent to variability in the dissociation constant of about 15%.

The IUPAC dissociation constant compilations [9–12] are not focused on drug substances, although they do include some pharmaceuticals, such as morphine and other opiates, acetanilide, some barbiturates, vitamins, antibiotics, and alkaloids. In a sense, this is a limitation of these compilations. A set of cross-referencing indexes to these compilations would be a useful tool.

The IUPAC compilations are entirely confined to pK_a values of weak organic acids and bases measured in aqueous solutions only. As those compilations predated the Yasuda-Shedlovsky [20, 21] extrapolation procedure, any pK_a values derived from simple extrapolation of organic cosolvent composition to 100% water would have to be assigned "uncertain" reliability. The world of drug sciences has not been able to avoid the use of aqueous-organic cosolvent mixtures for pK_a determination, as well as numerous other purposes. This is due to the low aqueous solubilities often seen for drug-like molecules, which are often a function of the lipophilicity range needed to ensure adequate passive transfer across biological membranes. The apparent pK_a values that result from measurements in aqueous-organic solvent mixtures are generally not able to be precisely converted to the values that would result in water alone, due to: (a) the nonlinearity of direct relationships between apparent pK_a and solvent composition, especially for bases at low organic cosolvent content; and (b) the lack of values obtained in solvent mixtures with a sufficient number of different compositions (however, see Section 2.2.4). Wider application (and possible further refinement) of the Yasuda-Shedlovsky extrapolation for correlating apparent pK_a values with solvent composition [20, 21] may go some way toward solving this problem, although the method at present does not consistently lead to precisely the same results for compounds with sufficient water solubility to be used as validation controls. Hence, a compilation of drug pK_a values must, at the least, draw attention to the use of different cosolvent combinations, where this has occurred.

It has also been noted [22] that the use of pK_a values measured in aqueous media (or extrapolated to the same through the Yasuda-Shedlovsky procedure) are not ideal in accounting for enzyme-substrate interactions, where binding to an active site involves ionizable functional groups. The active sites of enzymes and receptors, along with biological membranes, tend to be less polar in nature than water, and thus the relevant pK_a value is more likely to be one that pertains to a partially aqueous solvent. Theoretical treatments for this situation were described [23] long ago by Bjerrum, Wynne-Jones, and Kirkwood and Westheimer, and further applied in the exceedingly careful physicochemical work of Ives and his school [24–26]. Hence, the use of partially aqueous cosolvent mixtures has a physicochemical–pharmacological legitimacy, although one that has so far

received very little theoretical attention in the pharmaceutical literature compared to the mere convenience of keeping acidic or basic solutes in solution for the purpose of pK_a measurement. It must be noted, however, that pH meter calibration for use in partially aqueous solutions is more complex [20] than for purely aqueous solutions.

1.2. Limitations of current pharmaceuticals pK_a compilations

A major limitation of all current compilations of pharmaceutically relevant pK_a values is their incomplete coverage of the literature. First, there is a large number of new drugs (about 330) that has been commercialized since the early 1980s. Few of these have had pK_a values reported. Most compilations deal with older drugs, many of them no longer in therapeutic use. Rarely do any of the current compilations in the drug literature cite more than one value for each compound. For example, for glibenclamide, a secondary source cited only one of the three values reported in the original paper [27], without acknowledging the existence of the other two values. All three values were substantially different to each other, yet there was no apparent reason for citing one value over the others. Later work [28] suggested that one of the uncited values was the more accurate. Needless to say, it is recognized that a compilation goes out of date the moment that the first new piece of relevant data is entered into the literature.

A second limitation of existing compilations is overreliance on requoting the secondary literature, so that experimenters are unable to ascertain the quality of pK_a data that they wish to use. Also, there is the risk of errors creeping into data sets when they are copied and recopied. In the course of finding raw data for this compilation, it was often necessary to track sequentially through two or three secondary literature citations to find the original source, from which experimental validation information might be obtained. In one compilation, no literature references were given at all. Frequently, important details had been omitted in the transmission. For example, a p K_a value = 5.93 cited for atropine looked more like a pK_b value, until discovery of the primary reference [29] showed that the original data had been obtained from titrations in glacial acetic acid as solvent, rather than water. This vital fact was omitted in the secondary source. Occasionally, the pharmacology literature uses the symbol "pKa" to mean the negative log of the affinity of a drug for a receptor, which is not at all the same as the acid–base behavior of the compound. The secondary pK_a compilations have sometimes quoted these affinity values as if they referred to acid-base equilibria. For procaine, three different pK_a values for the tertiary amine were found in seven secondary sources [5, 6, 8, 30–33], none of which had cited a primary reference. In a few cases, different values from the same primary source were cited by two separate secondary sources. One reason for the omission of key details such as temperature is that some data was originally published in hard-to-access foreign language journals and any information at all is only readily available through Chemical Abstracts.

It was disappointing to find a few extremely old and inaccurate data quoted in very recent secondary compilations, for example, one textbook cited a value for

5,5-dimethylbarbituric acid that had been first published [34] over 100 years ago, but which has also been requoted in other secondary literature [35]. The value given $(pK_a = 7.1)$ is highly inaccurate and was superseded by a more reliable value ($pK_a = 8.51$) [36] over 25 years ago. Most compilations continue to list pK_a values for numerous other barbituric acid derivatives from a large study [37] published in 1940. That study had a flawed experimental design which resulted in low values for most compounds, when compared to validated, more recent studies [36, 38]. One published secondary compilation was acknowledged to be the result of a library data collection exercise given to undergraduate pharmacy students. The collected references were later checked randomly, but not exhaustively, by a graduate student. While that compilation is quite extensive (more than 700 total citations), \sim 68% were from the secondary literature. The compilation of the present database has as one of its objectives the citation of original sources wherever possible. Only one secondary source is regarded as sufficiently careful in its handling of the original data, and that is the series of compilations prepared under the auspices of IUPAC [9-12]. Even so, virtually all citations from the IUPAC compilations have been rechecked with the original literature, with one or two revisions necessary (e.g., see no. 1988 in the database).

A third limitation of all previous compilations is the failure to critically review data quality. It was regrettable to note a number of examples where the pK_b values for bases had been misquoted as if they were pK_a values due to failure to compare the numerical values with those expected for the functional groups to which they had been assigned. A further problem with reported pK_b values is that when secondary compilers did convert them to pK_a values (using $pK_a + pK_b = pK_w$) the value for pK_w at 25 °C (14.008) was always used, even when the temperature for the pK_b measurement ($\neq 25$ °C) was available. This avoidable error led to discrepancies of several tenths of a pK_a unit over the commonly employed temperature range (15–37 °C) for single measurements.

There is also the important issue of data consistency. Many drugs and excipients have had their pK_a values measured by different methods with very good agreement, provided that all experimental conditions were maintained constant. Examples included atenolol [9.60 \pm 0.04; potentiometric, partitioning ,and capillary electrophoresis (CE) studies in different laboratories], barbital (5,5-diethylbarbituric acid) (7.98 \pm 0.01; electrometric, potentiometric, and spectrophotometric studies in different laboratories), benzoic acid (4.205 ± 0.015 ; electrometric, potentiometric, spectrophotometric, and conductance measurements in many separate studies), ephedrine (9.63 \pm 0.05; five potentiometric or spectrophotometric studies in different laboratories), isonicotinic acid (p $K_1 = 1.77 \pm 0.07$, p $K_2 = 4.90 \pm 0.06$; five potentiometric or spectrophotometric studies in different laboratories), nicotinic acid (p K_1 = 2.07 ± 0.07, p K_2 = 4.79 ± 0.04; six potentiometric, spectrophotometric, or capillary zone electrophoresis studies in different laboratories), phenobarbital (5-ethyl-5-phenylbarbituric acid) (7.48 \pm 0.02; potentiometric and spectrophotometric studies from several workers in multiple laboratories), nimesulide (6.51 \pm 0.05; potentiometric and spectrophotometric studies in multiple laboratories), and chlorthalidone (9.35, potentiometric; 9.36, spectrophotometric/ solubility-pH). The recent comparative studies of Takacs-Novak, Avdeef, and

collaborators [20, 21, 39, 40] have gone some way toward increasing the stock of drug substances where agreement of replicated pK_a values to <0.05 has been found. Existing compilations of drug pK_a values almost invariably list only a single value for each compound. They do not comment on the conditions under which the value was obtained, or the quality of the data.

Conversely, there are many other drugs that have had their pK_a values reported more than once (in a few cases, eight or more times, e.g., ibuprofen, propranolol, and quinine), frequently by the same method, but often with discordant results. Examples include lidocaine (7.89 ± 0.07, from 6 independent potentiometric studies as long ago as 1948; but 7.18 from a recent conductance study), propranolol (11 studies giving values in the range 9.23–9.72), clofazimine (3 studies in the range 8.37–9.11), famotidine (6.76 by spectrophotometry, 6.89 by partitioning, and 6.98 by solubility–pH dependence), ibuprofen (8 studies giving values in the range 4.1–5.3), phenylbutazone (6 studies reporting values from 4.33 to 5.47), glibenclamide (5.3 by potentiometry, 6.3 by partitioning, and 6.8 by solubility–pH dependence), and also some of the fluoroquinolones. Some of these differences are due to differences in conditions, such as ionic strength or temperature, but others are experimental error. These variations are very rarely reported in previous secondary compilations.

Failure to take into account the effects of temperature, solvent composition, or ionic strength is usually responsible for differences between repeated measures of a drug p K_a value. This point was clearly made in a thorough report [41] on the p K_a values of numerous macrolide antibiotics. However, the large difference quoted above for lidocaine may be due to the failure of assumptions involved in an otherwise careful conductance study (p $K_a = 7.18$), the result of which is seriously at variance with six earlier potentiometric studies (p $K_a = 7.89 \pm 0.07$, I = 0.00-0.15 M). It has been expressly stated [42] that the normal conductance method is unsuitable for acids with $K_a < 10^{-5}$ (i.e., p $K_a > 5$).

Many of the drug pK_a values recorded in earlier volumes of the monograph series entitled *Analytical Profiles of Drug Substances* (now titled *Analytical Profiles of Drugs and Excipients*) were reported with little or no experimental detail. As well, there may be no primary references, an unsupported reference to secondary literature, or only a personal communication to identify the source of the data. Experimental details such as temperature, ionic strength, or solvent composition are critical for the assessment of data quality. These omissions are a matter of regret, especially where the pK_a value has been reported only once. Fortunately, more recent volumes in this series have begun to address these deficiencies. The same reservations regarding lack of experimental information also apply to the values listed in other earlier compilations.

The overriding aim of the present database is an attempt to make available as many as possible of the original sources, conditions, and methods for pK_a values of pharmaceutical interest that are in the literature. Then the users of such data can judge for themselves, as much as is possible, the reliability of these numbers, without having to search out original publications, many of which are becoming increasingly difficult to access. It is surprising how many drug pK_a values rest on unconvincing experimental work. The present emphasis on high-throughput

screening for potential therapeutic candidates means that there is an increasing demand for fundamental physicochemical quantities. These quantities are needed for the optimization of drug-like properties in lead compounds. This demand is presently being filled at least partly by computerized (*in silico*) predictions. As the quality of the outputs from such predictive programs depend on the quality of the input data used for algorithm development or neural network training purposes, it is best to use input data that is as reliable as possible.

2. EVALUATION OF METHODS FOR pKa DETERMINATION

A number of methods have been used for the experimental measurement of pK_a values and closely associated quantities, such as pH. It is not the intent of this overview to describe in detail the theoretical and practical aspects of these methods, which have been satisfactorily described elsewhere [42–47]. Rather, the focus of the present work is to apply an understanding of these experimental methods to assessment of the quality of the resulting data. Research workers who make use of the data in this compilation can then have confidence that the values which they cite are as meaningful as possible.

2.1. Inherent precision

The pK_a compilations gathered under the auspices of the IUPAC sometimes reference experimental data of the highest quality. Measurement of such data employs sophisticated methods with the utmost refinements to both experimental techniques and calculational tools. Highly accurate methods are largely restricted to conductance methods [48, 49] (reliable to ± 0.0001 pK unit or better, for suitable compounds) and electrochemical cells (EMF method using hydrogen electrodes) without liquid junction potentials [50, 51] (reliable to ± 0.001 pK unit or better). These fundamental methods have been very rarely used to obtain ionization data for pharmaceutically relevant organic acids and bases. Most pK_a measurements on pharmaceutical substances are based on relationships between the measured solution pH and a measured physicochemical quantity such as added titrant concentration [47], solubility [47, 52, 53], spectrophotometric absorbance [54–57], partition coefficient, optical rotation, nuclear magnetic resonance data (chemical shifts, coupling constants), or fluorescence intensity. The use of pH values immediately limits the expected accuracy and precision of the measurements. As a reader of the published physical pharmacy literature and as a reviewer of submitted manuscripts, I am frequently amazed by the extent to which the limitations and pitfalls of pH measurements are ignored or forgotten. A cogent review [58] of the development of pH measurements up to the time of the work done at the former US National Bureau of Standards (NBS; now the National Institute of Science and Technology, NIST) has been given under the appropriate title of "Use and Abuse of pH Measurements."

The current definition of pH is clearly stated in a recent publication [59] from the IUPAC. This definition is largely based on work carried out in the 1950s and 1960s by Roger Bates and his collaborators at the NBS.

Although the definition of pH is well known [Eq. (1)], the limitations of this definition are not so widely recognized or applied in the daily practice of the pharmaceutical sciences:

$$pH = -\log a_{H^+} \tag{1}$$

where a_{H^+} is the hydronium ion (colloquially, hydrogen ion) activity. The hydronium ion activity is related to the hydronium ion concentration by a mean ionic activity coefficient, $f_{\pm r}$ Eq. (2):

$$a_{\rm H^+} = [{\rm H^+}] f_{\pm} \tag{2}$$

The accuracy and usefulness of these relationships is dependent on the mathematical definition of f_{\pm} . This coefficient is estimated from various modifications of the Debye-Hückel equation [23, 44, 45] [Eqs. (13–17); Section 2.2.5]. The definition given by Eq. (1) is certified by British Standard no. 2586 (a revision of Br. Std. no. 1647) to be accurate to ± 0.02 pH unit in the temperature region 0 to 95 °C. The British Standard [60] is stated [45] to be "consistent in nearly all respects with the NBS conventional scale...."

The imprecision of ± 0.02 in the definition of pH is made up of approximately equal contributions from two quite different sources. One source of uncertainty is the variability in the liquid junction potential [45, 59, 61] under different conditions of solution composition and dynamics. This is an intrinsic feature of the glass electrode–reference electrode combination used for pH measurements. This uncertainty does not arise in conductance measurements, and can be neglected in measurements of hydronium ion activity only by the use of reversible electrochemical (electrometric) cells that are constructed without liquid junction potentials. These approaches require considerable technical expertise and attention to detail in order to obtain results with maximal accuracy and precision.

The other source of uncertainty in the definition of pH arises from assumptions that must be made in the use of various modifications of the Debye-Hückel equation [44, 45, 59] which is used to estimate the mean ionic activity coefficient [Eqs. (13–17); Section 2.2.5]. The geometric mean ionic activity coefficient ($f_{\pm} = \sqrt{(f_{+}f_{-})}$) is used, as it is relatively easy to estimate with reasonable precision, whereas current methods for estimation of individual ionic activity coefficients still require significant computational effort, even for small inorganic ions [62]. The mean ionic activity coefficient [see Eqs. (13–17) in Section 2.2.5] is required to estimate hydronium ion concentrations are required, in turn, for calculations of the pK_a values.

2.2. Physicochemical factors controlling the accuracy and precision of pK_a values

Control of a number of physicochemical factors is critical to achieving maximal precision and accuracy in measured pK_a values. These include the choice of experimental method, pH meter calibration, temperature control, solvent composition, ionic strength, absence of atmospheric CO₂ contamination, estimation methods for activity coefficients, and chemical stability.

2.2.1. Choice of experimental method

Experimental methods differ in the quality of data which may reasonably be expected. The conductance method is potentially the most accurate and precise of all methods ($\pm 0.0001 \text{ pK}_a$ unit or better), as demonstrated by the series of extremely careful p K_a -temperature dependence studies [24–26] reported by Ives and coworkers on several alkyl substituted cyanoacetic and malonic acids. These papers are models of care and attention to detail. However, the conductance method is only really suitable [42] for acids and conjugate acids with pK_a values of <5, or for very weak acids or bases as their conjugates. Very recent papers from Apelblat and his group [63–65] provide good examples of the use of the conductance method for pharmaceuticals. The electromotive force (EMF) method using reversible electrometric cells without liquid junction potentials is almost as good as the conductance method, with accuracies of $\pm 0.001 \text{ pK}_a$ unit or better. A number of important pK_a -temperature dependence studies [18, 66, 67] from the former US NBS used this method, and thereby laid the experimental basis for currently used pH calibration standards. Some NBS data, primarily buffers with pharmaceutical relevance, are cited in the tables forming Appendices A and B.

Methods based on pH measurements are very widely used, although they can only give results that are theoretically accurate to ± 0.02 pK_a units at best. These are generally suitable for the needs of pharmaceutical sciences research.

The most common primary equations relating pK_a to pH and other solution properties are given in Eqs. (3–8):

Potentiometric titration (weak acids):

$$pK_{a} = pH + \log\left\{\frac{([Y] - [H^{+}] - [K^{+}] + [OH^{-}])}{([H^{+}] + [K^{+}] - [OH^{-}])}\right\} - \log y_{\pm(i)}$$
(3)

where [Y] is the total molar concentration of the protonated and deprotonated forms of the weak acid, [H⁺] and [OH⁻] are the molar concentrations of hydronium and hydroxyl ions [calculated from the measured pH value and the value for the water autoprotolysis constant (p K_w) at the temperature of measurement], [K⁺] is the concentration of potassium ions added as standard potassium hydroxide during the potentiometric titration, and $y_{\pm(i)}$ is the mean ionic activity coefficient, as defined in Eqs. (13–17). Potassium hydroxide has generally been preferred over sodium hydroxide as the titrant for weak acids, as glass electrodes have always had negligible potassium ion error, although the effects of sodium ion concentrations on electrode response at high pH have been reduced through use of better materials. Inclusion of the corrections for [H⁺], [OH⁻], and $y_{\pm(i)}$ are essential for the best results by this approach.

Potentiometric titration (weak bases):

$$pK_{a} = pH + \log\left\{\frac{([OH^{-}] + [X^{-}] - [H^{+}])}{([Y] - [OH^{-}] - [X^{-}] + [H^{+}])}\right\} + \log y_{\pm(i)}$$
(4)

where [Y] is the total concentration of the protonated and deprotonated forms of the weak base, $[X^-]$ is the concentration of counterions (usually chloride or

perchlorate) added as standard strong acid titrant during the potentiometric titration and the other quantities are as described above for weak acids, Eq. (3). Inclusion of the corrections for $[H^+]$, $[OH^-]$, and $y_{\pm(i)}$ are essential for the best results.

Complete solution of Eqs. (3) and (4) requires an iterative approach, as the [H⁺] and [OH⁻] terms cannot be precisely calculated without an accurate estimate for log $y_{\pm(i)}$, while assignment of the latter requires an accurate assessment of the total solution ionic strength, which includes contributions from the former terms. It is initially assumed that log $y_{\pm(i)} = 0$, allowing initial estimates to be made of the hydronium and hydroxyl ion concentrations. These are then used to calculate an initial estimate for the ionic strength, which is substituted into the appropriate form of the Debye-Hückel equation [Eqs. (13–17)], giving a new estimate of the value for log $y_{\pm(i)}$. The estimates are cycled iteratively until convergence takes place, typically requiring not more than five cycles for satisfactory results. It is important to evaluate all terms in order to obtain the most accurate final p K_a value.

Spectrophotometry:

$$pK' = pH + \log\left(\frac{[A_1 - A]}{[A - A_0]}\right) + \mathbf{A}|Z_+Z_-|\left(\frac{\sqrt{I}}{1 + \sqrt{I}}\right)$$
(5)

where pK' is the apparent pK_a value at a fixed ionic strength; A_0 , A_1 , and A are the spectrophotometric absorbances for precisely equimolar concentrations of the solute when fully protonated, fully deprotonated, and partially protonated (at the corresponding pH value), respectively; Z_+ and Z_- are the overall charges on the cation (hydronium ion or protonated base) and anion (deprotonated acid or hydroxyl ion), respectively; A is a constant dependent only on the temperature and dielectric constant of the solvent and I is the solution ionic strength; and

$$pK' = pK_a + bI \tag{6}$$

where the thermodynamic pK_a value is found by plotting the apparent values (pK') as a function of *I*. In this approach, the Guggenheim modification [Eq. (17)] of the Debye-Hückel equation has been incorporated into Eq. (6), as this is the most precise for a wide range of *I*, and is relatively easy to set up experimentally.

Solubility-pH dependence:

$$pK_{a} = pH - \log\left(\frac{S - S_{0}}{S_{0}}\right) (\text{weak acids})$$
(7)

where *S* is the solubility of the weak acid at a corresponding pH value, while S_0 is the intrinsic solubility of the protonated free acid:

$$pK_{a} = pH + \log\left(\frac{S - S_{0}}{S_{0}}\right) (\text{weak bases})$$
(8)

where *S* is the solubility of the weak base at a corresponding pH value, while S_0 is the intrinsic solubility of the deprotonated free base. The equations for

the solubility–pH dependence method, first proposed in 1945 by Krebs and Speakman [68] and later developed by Zimmermann [53], based on transformations amenable to linear least squares regression analysis, are very dependent on the accuracy of the experimental solubility-pH data, especially the S_0 value. It was later shown by Lewis [52] that the use of weighted linear least squares was successful in ameliorating the effects of a value for S_0 which lacks accuracy.

Equations (3–6) for the potentiometric and spectrophotometric methods will provide thermodynamic pK_a values. For the solubility–pH dependence method [Eqs. (7–8)], the values obtained are apparent values (pK_a'), which are relevant to the ionic strength (*I*) of the aqueous buffers used to fix the pH value for each solution. If the ionic strength of each buffer solution is controlled or assessed, then the apparent pK_a value can be corrected to a thermodynamic value, using an activity coefficient from one of the Debye-Hückel equations (Section 2.2.5). If the solubility–pH dependence is measured in several buffer systems, each with a different ionic strength, then the Guggenheim approach can be used to correct the result to zero ionic strength [Eq. (17)].

The most common methods used for pharmaceutical pK_a values are based on pH measurements, Eqs. (3-8). Thus, they cannot be interpreted with greater accuracy than ± 0.02 pK_a unit [see the definition in Section 2.1, Eq. (1)]. This level of precision and accuracy should always be the aim in determining pK_a values for inclusion in the drug sciences literature. Potentiometric titrations [Eqs. (3–4)] are often performed with this level of accuracy, primarily for compounds with either a single ionization step or for multiple ionizations with $>4 \log$ units between the pK_a values. The careful use of precise pH meters (e.g., the series of Beckman Research models, or the corresponding Radiometer, Orion, or Metrohm instruments) for the determination of pH data means that reproducibility for replicate measurements may be rather better than ± 0.02 . In the author's experience, these instruments may be calibrated with a reproducibility of ± 0.002 pH unit, which can be maintained (with proper temperature control and exclusion of CO_2) for at least 8 h. This does not imply accuracy of ± 0.002 pH unit, which is not possible according to the current definition of pH. Spectrophotometric [Eq. (5)] and solubility-pH dependence [Eqs. (7-8)] methods are potentially capable of similar accuracy, but often do not give results better than $\pm 0.05 \text{ pK}_{a}$ unit, due to the inevitable inclusion of additional sources of error from the absorbance or concentration measurements.

A difficulty in the use of glass pH electrodes, even in aqueous solutions, but especially in partly aqueous solutions, is that they are relatively slow to respond to changes in hydronium ion activity. Equilibration times of at least 1 min are generally needed for each data point in a titration that might have a total of more than 20 points. This has two consequences: (a) potentiometric titrations are relatively time consuming; and thus (b) workers can become too impatient to wait for the electrode response to fully stabilize, leading to further measurement errors. Automated measurement, such as with Sirius[®] autotitration equipment, is able to measure about 25 p K_a values per day. Faster alternatives to the pH electrode are needed to rapidly measure p K_a values.

Besides pH issues, the only other sources of experimental error in potentiometric titrations are inaccuracies in the concentrations of the reagents, which can be minimized by careful weighing of properly stored materials with the highest purity, and volumetric errors, which can be compensated (with errors not exceeding $\pm 0.1\%$) by use of properly calibrated A Grade glassware, micrometer syringes (e.g., Agla or Hamilton brands), or autotitrators (e.g., Metrohm). Where multiple overlapping ionization steps occur, the titration end points cannot be determined analytically and must be estimated by some type of nonlinear regression analysis, for example, the four ionization constants [69] for desferrioxamine. Inevitably, some loss of precision will occur in such data fitting.

It has been stated [42] that the spectrophotometric method (or other spectroscopic methods) can be as precise as the EMF method based on electrochemical cells without liquid junction potentials. However, for this to be true, the pH term in Eq. (5) must not be measured with a pH meter, but replaced by a similar term based on the hydronium ion activities, $a_{H_3O}^+$), from cells without liquid junction potential. This approach was used in earlier years, for example, the work of Robinson [70] (see Vanillin, no. 1492 in the database) and of Bates and Schwarzenbach [71] on phenols. For the usual spectrophotometric method based on conventional pH measurements, additional factors which control overall accuracy include:

- **a.** The differentiation between the spectra for the protonated and deprotonated forms. Where the protonated and deprotonated forms of the compound have very similar spectra, for example, aliphatic amines, the lack of dynamic range for *A* ensures there will be large errors in the measured absorbance ratios in Eq. (5)
- b. Temperature or pH differences between the solutions in the spectrometer cuvette and in measured pH sample. The availability of miniaturized pH and temperature probes means that all absorbance and pH measurements should be performed in the spectrophotometer cuvette where possible
- c. The potential for interference from a second ionization step (i.e., completeness of the isolation of spectra for the pure protonated and deprotonated forms from other ionization steps in the molecule). Orthogonal methods of data analysis have been applied in efforts to solve this problem. However, results suggest [72] that so far, the accuracy of the resulting pK_a values is not as good as desired. Another approach to this problem was employed in the spectrophotometric pK_a determinations for isonicotinic acid and 1,3-bis[(2-pyridyl)methyleneamino] guanidine [73] after a detailed analysis of the incurred errors.

It should be noted that the spectrophotometric method normally uses the changes in molecular absorbance with ionization (dA/dpH method) as the raw data for pK_a measurement. It is also possible to use changes in the maximum wavelength for absorption versus pH ($d\lambda/dpH$ method), although this has been very rarely done, due to the requirement for measurement of a significant change in the dependent variable (see Ibuprofen, no. 662 in Appendix A)

For the solubility-pH dependence method [Eqs. (7–8)], other factors controlling accuracy (apart from the pH measurement) include: (a) the completeness of equilibration for the saturated solutions; (b) the care taken in separating the undissolved solid from the saturated solutions; and (c) the accuracy of the assay method used for the quantitative analysis of the saturated solutions. Completeness of equilibration is shown by constant total solubility as a function of time. The variation in "constant" solubility should be as small as possible, preferably not more than $\pm 1\%$, for good quality work. Separation of the excess solid from the saturated solution may be performed either by filtration or centrifugation. Both methods have their disadvantages. Filtration is more difficult to perform at temperatures that are increasingly remote from ambient. Filters should be presaturated with the analyte to counter the possibility of errors from adsorption, especially for very dilute solutions of poorly water-soluble compounds in their neutral (free acid or free base) forms. Conversely, access to a centrifuge with stable control over the desired temperature range is not always possible. The choice of separation method is a matter of experience and preference, modulated by the specific compound or series of compounds. Assay methods for saturated solutions must be properly validated and as accurate as possible, especially for the solution that defines the value for S_0 , the solubility of the protonated free acid or deprotonated free base. This question has been addressed by Lewis [52].

Less commonly used measurement techniques include the pH dependence of partition coefficients [74], fluorescence spectra [75], nuclear magnetic resonance chemical shifts or coupling constants, HPLC or CE retention volumes [76, 77], and the dependence of reaction rates for ionizable substrates on pH (also called kinetic methods). Kinetic methods were amongst the earliest methods to be used for pK_a determination. In some cases, they may be the only feasible method, for example, extremely weak acids ($pK_a > 12$) without suitable absorption spectra. The difficulty with kinetic methods is that they may not actually measure the pK_a value for the substrate, but that of the reaction transition state. If the electronic configuration of the transition state is similar to that of the reactant (early transition state), then the kinetic pK_a may be quite close to the equilibrium value. However, if the transition state more nearly approximates the reaction products (late transition state), then the kinetic pK_a value may bear little resemblance to that for the reactant. This explanation might account for the lack of agreement between the first apparent kinetic (pK' = 4.0) and equilibrium (pK' = 8.6) pK_a values for hydrochlorothiazide at 60 °C [78]. Similar restrictions may be placed on the use of pK_a values from the pH dependence of fluorescence spectra, as these reflect the properties of the first excited state of the molecule rather than its ground state [75].

Any chemical property which has a sigmoidal pH-dependency could be used to measure apparent pK_a values, provided that the protonated and deprotonated forms have significantly different values for that property, Eq. (9):

$$pK' = pH + \log\left(\frac{[A_1 - A]}{[A - A_0]}\right)$$
(9)

where A_0 and A_1 represent the property for the protonated and deprotonated forms, respectively, while *A* represents the property for the partially protonated form at a specified pH value. Equation (9) is a simple restatement of the

Henderson-Hasselbalch equation. One such property is the retention time (or retention volume) of the compound on a reversed phase-high performance liquid chromatography (RP-HPLC) column, provided that a suitable means for detection of the compound exists. The retention time (volume) is a function of the pH of the buffered aqueous mobile phase and should be substantially smaller for the more polar ionized form, compared to the less polar unionized form. Judicious selection of the column packing type and column length needs to be exercised, as manipulation of retention times by the addition of organic mobile phase modifiers would make the resulting apparent pK_a values require further adjustment with a Yasuda-Shedlovsky correction (Section 2.2.4) to be applied for comparison with purely aqueous systems. Advantages of this approach to pK_a measurement, compared to more conventional methods (e.g., potentiometry, spectrophotometry, and solubility/pH techniques), are quite significant and include:

- a. The need to use only very small amounts of the compound
- b. The ability to use compounds that are not of high purity
- c. The ability to use compounds that are not especially stable

In combination with modern micro-pH flow cell electrodes (volume as low as 50 μ l of solution) placed close to the detector output of an HPLC system, pK_a values for multiple congeners can be assessed simultaneously, thus providing at least some way for experimentally coping with the vastly increased number of possible drug candidates arising from combinatorial chemistry libraries and highthroughput screening. This should allow diminished reliance on the admittedly less accurate linear free energy or artificial neural network (ANN) estimation methods for pK_a values of new compounds. As with all pK_a measurement techniques, the ability of the method to deal with compounds having multiple ionizing groups is a function of the separation in their pK_a values. It is unfortunate that one of the few reports of this method [79] gave pK_a values for standard substances (e.g., benzoic acid) that were significantly at variance with the best values in the literature, even after correcting for ionic strengths. Use could be made of the Yasuda-Shedlovsky procedure to account for the effects of partially aqueous mobile phases containing common organic modifiers such as methanol and acetonitrile. This requires careful calibration of the pH electrode [20].

A closely related approach uses CE coupled to mass spectrometry (MS) with volatile buffers as the carrier phase [76] or with high sensitivity amperometric detection [77]. CE methodology is favored for high-throughput pK_a screening, as it can elute a set number of compounds faster than a similar number of compounds on an HPLC column. By this means, the pK_a values for 50 compounds could be estimated in 150 min. The high sensitivity of MS detection is favored over UV (whether separation is by CE or HPLC) when the aqueous solubilities of the analytes are low. Furthermore, MS detection based on single ion currents can deal explicitly with problems such as rapid on-column degradation and incomplete peak resolution. A difficulty with mass spectral detection is that no explicit information is obtained regarding the site of ionization, for which UV detection has some advantage. Although mass spectra can be run in both positive and negative ion modes, signal response is not necessarily diagnostic of the site of

protonation or deprotonation. Errors have occasionally been made in this way (e.g., see furosemide, no. 583; phenylbutazone, no. 1011; and phenytoin, no. 1103, in Appendix A of the compilation).

Careful comparisons with CE-derived pK_a data from other methods indicated good agreement only in some cases (e.g., see compilation data for atenolol, clioquinol, codeine, enalapril, ibuprofen, lidocaine, and phenylbutazone). Poorer agreement was seen in other cases (e.g., bumetanide, clofazimine, haloperidol, lisinopril, and oxytetracycline). Also, the reproducibility of the CE method [76, 77] was not as good as desired for a method based on pH measurements, with standard deviations for replicate pK_a values in the range 0.07–0.22. Samples for high-throughput screening are typically in the form of DMSO solutions, so it might be thought that the presence of this solvent contributes to reduced reproducibility. However, present literature [76] suggests that this is not so. Part of the reduced reproducibility may be due to acid-base solutions in the laminar flow regions near capillary walls behaving differently to bulk solutions. The response behavior of electrochemical HPLC detectors is known to change in the presence of laminar flow, so it seems reasonable that other electrolyte solution properties may also change under similar circumstances. Nevertheless, rapid analysis times combined with reasonably consistent results makes these approaches the most useful for present high-throughput screening of weakly acidic or basic compounds; the results are generally more accurate than those obtained from *in silico* predictions.

2.2.2. Calibration of pH meters with pH standards

Errors in calibration of pH meters used in pK_a determinations are directly reflected in the final results, whereas errors in other aspects of pK_a measurements are less intrusive. Suitable analytical grade standards for pH meter calibration are listed in Chapter 4 of Bates [45] and in Appendix 12.3 of Robinson and Stokes [44]. These include aqueous solutions of potassium hydrogen tartrate (saturated at 25 °C; pH = 3.557 at 25 °C), potassium hydrogen phthalate (0.05 M; pH = 4.008 at 25 °C), sodium tetraborate (0.01 M; pH = 9.180 at 25 °C), and calcium hydroxide (saturated at 25 °C; pH = 12.454 at 25 °C). These compounds have had their standard pH values [pH(S) values] assigned from EMF measurements in cells without liquid junction potentials (hydrogen electrodes). Standard prepackaged pH meter calibration solutions (e.g., pH 4, 7, and 9) are suitable for routine work, provided they are stored properly and that their temperature dependences are taken into account by the investigator, Table 1.1.

Rapid absorption of atmospheric CO_2 is a severe problem for solutions with pH > 9 and storage of these solutions in a CO_2 -free environment is imperative for accuracy in calibration. For careful work, high pH standard solutions may be obtained as certified IUPAC standards, or prepared in small volumes from dry chemicals, using the highest grade material available. Solutions must be made with highly purified distilled water that has been boiled to remove dissolved CO_2 , and then cooled under protection from the atmosphere. In the author's experience, the best quality water is prepared by refluxing Milli-Q or similar water with dilute alkaline permanganate for 30–40 min, followed by distillation in an all-glass still that is used only for water purification. Water prepared in this way has been

Temperature (°C)	Nominal pH 4 (red)	Nominal pH 7 (green)	Nominal pH 9 (yellow)
10	3.997	7.05	9.11
15	3.998	7.02	9.05
20	4.001	7.00	9.00
25	4.005	6.98	8.95
30	4.011	6.98	8.91
35	4.018	6.96	8.88
40	4.027	6.85	8.85

TABLE 1.1 Temperature dependence for the pH values of several standardsolutions a

^a IUPAC [59] has specified that primary pH standard solutions must have a temperature variance of <0.01 pH/°C.</p>

found to give (compared to the source water): (a) lowered total background ion current when used as mobile phase for an HPLC-MS system; (b) lowered total background redox current when used as mobile phase for an HPLC system with electrochemical detection; and (c) lowered residual enthalpy of dilution when assessed by isothermal titration microcalorimetry. It can be stored under argon in borosilicate glass containers, but must be degassed by argon sparging if more than 24 h post-distillation.

These precautions are essential for the preparation and storage of standard solutions with pH values >7, as repeated exposure to atmospheric CO₂ will result in significant pH changes in a relatively short time. For example, 0.01M sodium tetraborate (borax) solutions (pH = 9.180 at 25 °C) will decrease by 0.02 pH unit after about two weeks if briefly exposed (4–5 min) to the atmosphere every 3–4 days, but otherwise stored under CO₂-free nitrogen (or argon). A pH decrease of this magnitude invalidates the use of this solution as a calibration standard. pH standard solutions have low buffer capacities due to their low concentrations (which are needed to minimize ionic strength effects on thermodynamic activity coefficients). They must be checked frequently against fresh solutions to guard against shifts in pH and replaced as soon as changes are noted, for example, a significant change in the Nernst slope. Storage of high pH standard solutions is enhanced if sealed containers are used, combined with positive nitrogen pressure displacement to dispense the solution immediately before use.

2.2.3. Temperature effects

Temperature dependence equations for pK_a and pK_w values show the importance of good temperature control during pH meter calibration as well as in measurements. To a greater or lesser extent, all acid–base reactions vary with temperature. The effect of temperature changes for equilibrium reactions are closely described by the Valentiner-Lannung equation [80–82]:

$$pK_a = B + \frac{A}{T} + C\log T \tag{10}$$

where *A*, *B*, and *C* can be represented by thermodynamic functions [80–82], for example, as in Eq. (11). The Valentiner-Lannung equation is an expansion of the van't Hoff isochore and was originally proposed to account for the solubility-temperature dependence and solution thermodynamics of inert gases in water. It has also been used to describe the temperature dependence of reaction rates [83–85] and aqueous solubilities of sparingly water-soluble drugs [86–88]. A van't Hoff plot of pK_a versus 1/T is curved, due to a finite value for the heat capacity change (ΔC_p) for ionization and thus, all coefficients in the Valentiner-Lannung equation are significantly different to zero:

$$pK_{a} = \left[\frac{\Delta C_{p} - \Delta S^{o}}{R \ln 10}\right] + \frac{\Delta H^{o}}{RT \ln 10} - \frac{\Delta C_{p}}{R} \log T$$
(11)

where ΔH° is the standard enthalpy change for ionization, ΔS° is the standard entropy change for ionization, and $\Delta C_{\rm p}$ is the heat capacity change for ionization at constant pressure. The nonlinear van't Hoff nature of the pK_a-temperature relationship is not simply a consequence of the presence of ions in acid–base equilibria, for it is even shown by the solubilities of inert gases in water [80, 81]. Rather, it is a consequence of changes in hydrogen-bonded water structure, as well as changes in ion hydration that result from variations in the molecular charge densities that occur on proton transfer.

Equations (10) and (11) can also be expressed in exponential form, as well as in forms which use ΔG as the dependent variable rather than pK_a (from the van't Hoff isotherm, $\Delta G = -RT \ln K$). For equilibrium reactions in aqueous and other polar solutions, the ΔC_p value is expected to have a finite value, due to the significant changes in solvent structure which occur when ionization takes place. For some compounds, the ΔC_p value may have a large uncertainty and be not statistically different to zero, depending on the precision of the raw data (e.g., 5,5-di-isopropylbarbituric acid) [89]. In these cases, the pK_a -temperature dependence is satisfactorily described by the integrated van't Hoff equation [Eq. (10) without the *C* log *T* term]. This equation will give a linear van't Hoff plot of pK_a versus 1/T.

As well as the inherent effects of temperature on the ionization of weakly acidic and basic functional groups, precise calculation of pK_a values from potentiometric titration requires the autoprotolysis constant for water, pK_w . This quantity has been shown by careful measurements [90, 91] to be very temperature dependent, with values ranging from 14.943₅ at 0 °C to 13.017₁ at 60 °C and 12.264 at 100 °C [92–94].

The temperature variance of pK_w means that the pH scale also changes as a function of temperature. A solution with neutral pH is one where $a_{H_3O^+} = a_{OH}$. So ingrained is the idea that pH = 7.0 is "the" neutral pH value, that many laboratory workers are unaware that this is only true at 24 °C, the temperature at which pK_w has a value of exactly 14.00, according to the data reported by Harned and Robinson.

Temperature, °C (Kelvin)	р <i>К</i> _w	Temperature, °C (Kelvin)	р <i>К</i> _w	
0.0 (273.15)	14.9435 (14.952)	35.0 (308.15)	13.6801 (13.690)	
5.0 (278.15)	14.7338 (14.740)	40.0 (313.15)	13.5348 (13.545)	
10.0 (283.15)	14.5346 (14.541)	45.0 (318.15)	13.3960 (13.407)	
15.0 (288.15)	14.3463 (14.352)	50.0 (323.15)	13.2617 (13.276)	
20.0 (293.15)	14.1669 (14.173)	55.0 (328.15)	13.1369 (13.150)	
25.0 (298.15)	13.9965 (14.004)	60.0 (333.15)	13.0171 (13.031)	
30.0 (303.15)	13.8330 (13.842)			

TABLE 1.2 Values for pK_w as a function of temperature^{*a*}

^{*a*} The main values in Table 1.2 were taken from Harned and coworkers [90, 91] and Ramette [92]. The pK_w values in parentheses are values from the work of Covington [95].

At temperatures less than 24 °C, neutral pH is >7.0, while the converse is true at higher temperatures, for example, at 0 °C, neutral pH is 7.47, while at 60 °C, it is 6.51.

The effect of temperature on pK_a depends on the nature of the functional group. In particular, amine and imide pK_a values change significantly with temperature; typically $\Delta pK/\Delta T = 0.03 \text{ deg}^{-1}$ (amines) and 0.02 deg^{-1} (imides). Carboxylic acids display reduced dependence of pK_a on temperature ($\Delta pK/\Delta T = 0.003 \text{ deg}^{-1}$ at worst) [96] and may pass through a minimum in the accessible temperature region (0–100 °C). The second pK_a of phosphoric acid passes through a minimum in water at 45 °C. To reduce unwanted thermal effects on the measured pK_a values to a negligible level, the experimental temperature should be controlled to ± 0.01 °C, using a suitable thermostat. A recently calibrated thermometer (precision mercury-in-glass or platinum resistance) should be used for temperature measurement.

2.2.4. Solvent composition and polarity

Many drug substances are insufficiently water-soluble for their pK_a values to be determined with ease. This is especially so for potentiometric titration methods, where a drug concentration of 0.01 M is ideal (in terms of the magnitudes of resulting pH changes and the corrections needed for ionic strength effects, see Section 2.2.5), while 0.001 M represents an easily manageable lower limit. Below this limit, the pH changes that result from additions of titrant are so small as to be difficult to measure with precision, although automated instruments, such as the Sirius[®] autotitrators, have often been used at concentrations of <0.001 M. Although pK_a values for numerous poorly water-soluble drugs can be determined by either the spectrophotometric or solubility–pH dependence methods, some compounds do not have suitable chromophores, especially aliphatic amines. Investigators should make an effort to choose a method that will give the pK_a

value in water (or a closely allied relevant aqueous solvent, such as physiological saline), so that the measured value is as widely applicable as possible.

The solubility-pH dependence method should be used more often than it is, although it is not without its own difficulties. Its peculiar advantage, of course, is that the very low solubility which makes it difficult or impossible to assess a pK_a value by potentiometry or spectrophotometry is the very phenomenon that can be exploited in measuring the pK_a value, by studying the effects on solubility of pH changes. Provided that saturation of aqueous solutions over a wide range of pH can be achieved in reasonable time and a suitable method of quantitative analysis exists (with the required sensitivity and precision to measure the low solubility of the uncharged species, S_0), measurement of p K_a by this method is quite feasible. Workers should always check that saturation has in fact been achieved, by checking the measured concentration at 24 h intervals, until differences are purely statistical. The Noyes-Whitney equation for dissolution rates should remind workers that the poorer the aqueous solubility, the slower that saturation is attained. Other experimental issues include the propensity of many poorly water-soluble organic compounds to adsorb onto glass or plastic surfaces; and the difficulty of cleanly separating the saturated supernatant solution from the remaining undissolved solid. The experimenter must decide whether filtration or centrifugation is better, based on previous experience with similar compounds.

Where spectrophotometric or solubility methods are not feasible, organic cosolvents are often needed to obtain sufficiently high concentrations of the dissolved drug to get satisfactory titration curves. Some data in the older literature is of lesser reliability, due to precipitation of the less soluble neutral form of the analyte during titrations in aqueous media. Cosolvents that have been used in drug pK_a studies include methanol, ethanol, acetonitrile, *N*,*N*-dimethylforma-mide, *N*,*N*-dimethylacetamide, methylcellosolve, and 1,4-dioxane. Where this approach has been used in the past, it is imperative that investigators realize that the measured pH values and the reported pK_a values are "apparent" values, which may be very different to the thermodynamic values in water. The presence of organic cosolvents can have profound effects on pK_a values. For example, acetic acid (as a typical carboxylic acid) and aniline (as a typical aromatic amine) have the following pK_a' values at 25 °C, Table 1.3.

The sulfamic acid group of cyclamic acid behaves similarly to acetic acid, although the effect of ethanol on its apparent pK_a' values is not as extreme as is methanol on the carboxylic acid group. These values are only relevant to the conditions in which they were measured, unless valid interpolation or extrapolation methods can be used to estimate pK_a' values for different conditions. In particular, linear extrapolation of apparent pK_a' value to zero cosolvent content in older work is very error-prone. It is not generally appreciated that relationships between apparent pK_a' value and cosolvent content (or other functions of cosolvent content, such as dielectric constant), although linear over moderate to high concentrations of cosolvent, become progressively nonlinear in lower concentrations [45–47]. Worse, the solubility of the drug is at its lowest in solutions with low cosolvent content, and the level of error in apparent pK_a' measurements increases under the very conditions

Compound	Methano	Methanol (vol%; pKa′) [97]				
Acetic acid	0; 4.76	20; 5.00	40; 5.31	60; 5.76	80; 6.43	_
Anilinium ion	0; 4.60	20; 4.45	40; 4.30	60; 4.12	80; 4.00	-
	Ethanol ((vol%); pK _a ') [98]					
Cyclamic acid	0; 2.28	20; 2.48	40; 2.60	60; 2.90	80; 3.22	100; 3.45

TABLE 1.3 Effect of solvent composition on apparent pK_a' values

where the error in extrapolations has the greatest influence on the estimated value for an aqueous solution.

In general, deprotonation of acids (e.g., carboxylates, phenols, and imides) is more susceptible to the effects of solvent polarity change than for bases (e.g., amines, pyridines) in their conjugate forms (Table 1.3). Deprotonation of a typical acid in water or a solvent mixture involves dissociation of a neutral species into an anion and a cation, thus leading to a large change in solvation of the two ionized species that result, whereas deprotonation of the conjugate acid form of a base simply involves transfer of a positively charged proton from one neutral base (i.e., the analyte) to another (e.g., water). The net charge does not change (although the charge density does) and the changes in solvation through charge–dipole interactions are less.

In recent years, the extrapolation procedure developed separately by Yasuda and Shedlovsky has been reported [20, 21, 99] to provide pK_a values from partially aqueous solutions that can sometimes closely approximate the values found in purely aqueous solutions. The Yasuda-Shedlovsky equation [Eq. (12)] can be used to correlate apparent pK_a' values in different solvent polarities (p_sK_a) to approximate the aqueous pK_a value by extrapolation as a reciprocal function of the dielectric constant (ε) of each of the cosolvent mixtures:

$$p_{s}K_{a} + \log\left[H_{2}O\right] = \frac{A}{\varepsilon} + B \tag{12}$$

A plot of the Yasuda-Shedlovsky equation generally is a straight line. The fitted coefficients *A* and *B* are then used to estimate the pK_a value in a 100% aqueous solution, for which $[H_2O] = 55.5$ molal and $\varepsilon = 78.3$. Successful use of this approach in cosolvent mixtures requires a complex pH electrode calibration procedure [20].

While the Yasuda-Shedlovsky procedure can give quite satisfactory results, it is not infallible, even in the hands of experts. Appendix A, quinine (no. 1223) gives a clear illustration of the difficulty in obtaining extrapolated results with good accuracy when using different organic solvent–water mixtures to provide adequate solubility for potentiometric measurements. The values for pK_{a1} and pK_{a2} for quinine (using data from the same source) ranged from 3.85 to 4.32 and 8.15 to 8.58 (respectively) when extrapolated by the Yasuda-Shedlovsky procedure from diverse solvents. If data from the worst performing solvent (dimethylacetamide; $pK_{a1} = 3.85$, $pK_{a2} = 8.15$) is excluded, then the range of values for pK_{a2} becomes an

acceptable 0.07. However, the values for pK_{a1} still range from 4.07 to 4.32, and it is not immediately obvious why the extrapolated values always tend (at least in this case) to values lower than the best values in aqueous solution.

2.2.5. Ionic strength

The ionic strength of a solution generally alters the activity coefficients of all dissolved ionic species, thus influencing measured pK_a values. The Debye-Hückel equations [Eqs. (13–17)] are required to correct for solution ionic strength in order to obtain thermodynamic pK_a values:

Debye-Hückel equation:

$$-\log \gamma_{\pm} = A|z_{+}z_{-}|\frac{\sqrt{I}}{1 + Ba_{0}\sqrt{I}}$$

$$\tag{13}$$

Debye-Hückel limiting law:

$$-\log \gamma_{\pm} = A|z_{+}z_{-}|\sqrt{I} \tag{14}$$

Güntelberg modification:

$$-\log \gamma_{\pm} = A|z_{+}z_{-}|\frac{\sqrt{I}}{1+\sqrt{I}}$$
(15)

Davies modification:

$$-\log \gamma_{\pm} = A|z_{+}z_{-}|\frac{\sqrt{I}}{1+\sqrt{I}} - 0.10I$$
(16)

Guggenheim modification:

$$-\log \gamma_{\pm} = A|z_{+}z_{-}|\frac{\sqrt{I}}{1+\sqrt{I}} - \beta I$$
(17)

where *A* and *B* are constants that depend only on temperature and solvent dielectric constant, *I* is the ionic strength, a_0 is the so-called ion size parameter, β is an empirical constant, and z_+ , z_- are the charges on the species in the ionization equilibrium reaction. Attempts have been made to estimate values for the ion size parameter, a_0 , for several weak organic acids [100]. However, many studies make the assumption that the product Ba_0 in the Debye-Hückel equation [Eq. (13)] is equal to 1.00, and then apply either the Güntelberg or Guggenheim modifications. Elsewhere [47], it has been suggested that the product of Ba_0 should have a value of 1.6. The equations provide reasonable estimates for γ_{\pm} , provided that the ionic strength is not greater than a critical value. Extended forms of these equations, especially the Guggenheim modification, can be used for quite high ionic strengths (>1.0 M), especially where the β coefficient has been partitioned into separate ionic contributions.

The empirical constant β can be estimated from linear relationships between measured apparent p K_a' values and ionic strength. It is equated with 0.10 in the

Davies modification of the Debye-Hückel equation. However, this particular value was found to best account for the activity effects in solutions of multivalent metal cations such as calcium [44, 101]. Furthermore, it is only valid at 25 °C. It was subsequently increased to 0.15 for studies on the pK_a values of some phenols [70], where the larger value was found to give more consistent results [101]. It is debatable whether the value of 0.15 is applicable to solutions containing relatively large organic cations or anions such as ionized drug molecules. In some unpublished studies [102, 103] the value for β was found to be up to an order of magnitude greater than 0.15. Very recent studies on lactic acid ionization [104] demonstrated this point unequivocally.

2.2.6. Chemical stability

Stability of compounds during pK_a determinations can have deleterious effects on precision, through degradation reactions such as hydrolysis, oxidation, or photolysis. This is especially important during lengthy procedures, such as potentiometric titrations or equilibration for the solubility-pH dependence method. Oxidation and photolysis can often be excluded (or at least reduced to negligible proportions) by appropriate countermeasures, such as protection from light, degassing, use of inert gas sparging, inclusion of innocuous (inert) antioxidants, or chelating agents. However, hydrolysis of susceptible molecules is very difficult to stop in an aqueous environment. Although hydrolysis rates can be reduced by the use of organic cosolvents, the effect of such cosolvents on the pK_a values can be difficult to correct by extrapolation to zero cosolvent content. Conversely, spectrophotometric absorbance measurements can usually be completed fairly quickly after an aliquot of stock solution is diluted with the appropriate buffer. As the absorbance measurements can be followed for a period of time, and then extrapolated to zero time to correct for degradation during measurement, spectrophotometric methods may be preferred for moderately unstable compounds with pH-sensitive chromophores. This approach has been occasionally reported [105], with satisfactory results.

2.2.7. Exclusion of atmospheric CO₂

As carbonic acid is a weak acid with $pK_1 = 6.2$ [106], the presence of CO₂ in any pK_a measurement system may influence the results. If the pK_a value for the acid or conjugate acid is less than that of carbonic acid, little or no influence will occur. However, for ionizable systems where the pK_a value is greater than that of carbonic acid, the presence of dissolved CO₂ will have marked effects, giving apparent values that are lower than the true values. This is especially so where potentiometric titrations with sodium or potassium hydroxides are used. This is because the concentrations of protonated and deprotonated forms required for the Henderson-Hasselbalch equation [Eqs. (3), (4), and (9)] are calculated from the volumes of acid or base added to the titration system. The presence of dissolved CO₂ (in either the titrant or titrated solution) will alter the volume required. Spectrophotometric and other methods of pK_a measurement are free from the influences of dissolved CO₂, if the pH-dependent phenomenon is insensitive to its presence. Cases where this must be taken into account include drugs where the absorption spectra overlap

with those of carbonates/bicarbonates (check wavelengths). However, dissolved CO_2 does alter ionic strengths, and hence, activity coefficients. Methods for removing and excluding dissolved CO_2 are described in detail by Albert and Serjeant [46, 47] and must be followed rigorously in order to be satisfactory. During titrations, CO_2 must also be rigorously excluded by use of a nitrogen or argon gas blanket (or hydrogen, for hydrogen electrodes). Covington *et al.* [107] have shown that gently passing the blanket gas through rather than over the titration solution has a significant advantage in that even trace amounts of CO_2 are removed by the former procedure, but not by the latter. This is also recommended by Albert and Serjeant. Only by carefully checking standard compounds with accurately known pK_a values (= 7 or greater) can a system for measuring new pK_a values be reliably tested for this source of interference.

2.3. Validation of data quality

The above factors must all be optimized in order to obtain reliable pK_a values, within the constraints of data based on pH measurements (accuracy of ± 0.02 pK_a unit at best). One of the key methods for assuring the reliability of pK_a measurements [46, 47] is to include concurrent measurements on compounds with accurately known pK_a values, as well as the unknown compounds. These reference compounds should be easily obtainable in a high state of purity, either commercially or through recrystallization from common solvents such as distilled or Milli-Q water, high purity alcohols or their mixtures with water. It is preferable for the reference compounds to have had their pK_a value(s) determined by more than one experimental method. Suitable compounds include benzoic acid (p K_a = 4.205 ± 0.015 at 25 °C; available from British Drug Houses (United Kingdom) as compressed tablets of a high purity thermochemical standard) and 5,5-diethylbarbituric acid (p $K_{a1} = 7.980 \pm 0.002$ at 25 °C; this is easily recrystallized to high purity from ethanol-water, 40:60 v/v). Both of these compounds have reliably known pK_a values over a wide temperature range [9, 18]. In particular, the p K_a value for benzoic acid has been determined at 25 °C by conductance, electrometric, potentiometric, and spectrophotometric methods with agreement to $\pm 0.015 \text{ pK}_{a}$ unit for all four methods. The pK_{a1} value for 5,5-diethylbarbituric acid has been determined by electrometric, potentiometric and spectrophotometric methods with even better agreement. This reference compound has the further advantage that errors due to atmospheric CO_2 absorption (into either the reaction solution or standardized KOH titrant) will influence the results. It is a severe test for sloppy technique. The pK_a value for benzoic acid, conversely, is insensitive to the presence of CO_2 and so can test for other instrumental, technical, or procedural faults. Whether reported new pK_a data measurements include comparisons with known data is a significant component in determining their reliability or validity. Very few reported pK_a values in the drug sciences literature meet this criterion, despite the advice [46, 47] of Albert and Serjeant. This point has also recently been expressed elsewhere [108], but little notice has been taken so far, either by experimentalists or the editors who publish their results.

3. pK_a VALUES FROM COMPUTER PROGRAMS

The estimation of pK_a values through predictive relationships has a long history, commencing with the Brønsted catalytic law, through the formalism of the Hammett and Taft relationships and their derivatives, then finally to predictions based on the application of ANNs. The Hammett and Taft relationships are described as structure-reactivity or linear-free energy relationships (LFERs), and are usually valid for a specific set of related compounds called a *reaction series*. At very best, these relationships give predicted values with a mean accuracy of about ± 0.1 log unit. There are now numerous commercial computer programs that can estimate the pK_a values for virtually any given structure, using a variety of predictive algorithms in combination with ANNs. One widely used package is from ACDLabs (Toronto, Ontario, Canada).

A reasonable question is to enquire about the reliability of the results of such estimations. Table 1.4 compares estimated values from ACD/pKa (ver. 7) with the most reliable values for a variety of randomly chosen compounds from the data compilation of the present work. It is clear from the data in Table 1.4 that sometimes the ACD/pK_a package predicts a value that is very close to the best literature values. This is especially true for some smaller molecules, for example, 4-aminobenzoic acid or 5,5-diethylbarbituric acid. However, other predictions may be quite unreliable. It is of concern that some of the deviations in Table 1.4 are larger than the estimated error allowed by the package in specific cases, for example, ebifuramin, camptothecin, or citric acid.

It is expected that predictions from such computer packages can be improved, the more that the package is "trained" by inclusion of additional measured values in its internal database for closely related compounds, although "overtraining" has also been known to occur. However, even training may not be sufficient. For example, Table 1.4 gives a close prediction for 5,5-diethylbarbituric acid (7.95), and it was found that the internal database contained the best measured value (7.980) from the literature. The package also gave an excellent prediction for the related 5,5-diphenylbarbituric acid (7.32). On the other hand, the database contained a value for lidocaine (7.90) that was within the range of reliable measured values, yet the package estimated a value (7.53) that was significantly at variance. Furthermore, although the package was able to provide an excellent estimated value for 5,5-diethylbarbituric acid, it could not do so for the very closely related cyclopentane-1',5-spiro derivative (9.30, estimated; 8.83, measured). For this compound, the computed value was overestimated, when one would expect the opposite to be the case, given that changes in alkyl substitution generally do not alter pK_a values greatly. Similarly, for 5,5-dimethylbarbituric acid (7.95, estimated; 8.51, measured), the prediction was also inaccurate, but in the opposite direction.

It has been elsewhere suggested [109] that the predictive deficiencies of programs such as ACD/pK_a are due to their fragment-based approach. It was further suggested that an approach based on quantum mechanical methods would be more reliable. However, unpublished analysis (by the present author) of predicted values based on such quantum mechanical methods for a set of 40 carboxylic acids [109] indicated that many of them were still poorly estimated, with a mean deviation on the order of 0.3 log unit. The plot of predicted versus

Compound	Estimated pKa value(s)	Measured pK _a value(s)	Deviation(s) (estimated — measured)	Compound	Estimated pK _a value(s)	Measured pKa value(s)	Deviation(s) (estimated measured)
Acetaminophen	9.86 ± 0.13	9.63 ± 0.01	+0.23	Clioquinol	2.32 ± 0.30	2.96	-0.64
					7.23 ± 0.59	8.12	-0.89
Amantadine	10.76 ± 0.20	10.71 ± 0.01	+0.05	Clozapine	4.36 ± 0.30	3.58	+0.78
					6.19 ± 0.30	7.94	-1.75
4-Aminobenzoic acid	2.51 ± 0.10	2.501	+0.01	Cyclopentane-1',	9.30 ± 0.20	8.83 ± 0.03	+0.47
	4.86 ± 0.10	4.874	-0.01	5-spirobarbituric acid			
4-Aminosalicylic acid	2.21 ± 0.10	1.78	+0.43	Diazepam	3.40 ± 0.10	3.42	-0.02
2	3.58 ± 0.10	3.63	-0.05	-			
Ampicillin	2.44 ± 0.50	2.53 ± 0.004	-0.09	5,5-Diethylbarbituric acid	7.95 ± 0.20	7.98 ± 0.002	-0.03
•	6.76 ± 0.29	7.24 ± 0.02	-0.48	(barbitone)			
Aspartame	3.71 ± 0.10	3.19 ± 0.01	+0.52	5,5-Dimethylbarbituric acid	7.95 ± 0.20	8.51 ± 0.02	-0.56
	7.70 ± 0.39	7.87 ± 0.02	-0.17	,			
Atenolol	9.17	9.60 ± 0.04	-0.43	5,5-Diphenylbarbituric acid	7.32 ± 0.20	7.30 ± 0.02	+0.02
Benzocaine	2.51	2.50 ± 0.04	-0.01	Diphenoxylate	7.63 ± 0.40	7.1	+0.53
Brucine	8.27 ± 0.20	8.28	-0.01	Ebifuramin	1.85 ± 0.50	5.24 ± 0.04	-3.39
Camptothecin	3.31 ± 0.40	1.18	+2.13	Ephedrine	9.38 ± 0.10	9.64 ± 0.03	-0.26
	11.02 ± 0.20	10.83	+0.19	•			
Cefroxadine	2.57 ± 0.50	3.30 ± 0.02	-0.73	Epinephrine (adrenaline)	9.16 ± 0.20	8.71 ± 0.04	+0.45
					9.60 ± 0.10	9.78 ± 0.12	-0.18
Chloral hydrate	10.54 ± 0.41	10.04	+0.50	Ethionamide	4.34	4.37	-0.03
Chlorcyclizine	2.24 ± 0.50	2.12 ± 0.04	+0.12	Lidocaine	8.53 ± 0.25	7.90 ± 0.05	+0.63
	7.89 ± 0.42	7.65 ± 0.04	+0.24				
8-Chlorotheophylline	4.57 ± 0.70	5.28	-0.71	Nitrazepam	3.19 ± 0.10	2.92 ± 0.07	+0.27
1 2					11.4 ± 0.7	10.5 ± 0.1	+0.9
Chlorothiazide	5.95 ± 0.42	6.85	-0.90	Papaverine	6.32	6.38 ± 0.03	-0.06
	9.70 ± 0.20	9.45	+0.25	•			
Chlorzoxazone	9.44 ± 0.30	8.3	+1.14	Phenylbutazone	4.29 ± 0.60	4.53 ± 0.06	-0.24
Citric Acid	3.86 ± 0.23	3.128	+0.73	Propranolol	9.15	9.53 ± 0.04	-0.38
	4.63 ± 0.19	4.762	-0.13	*			
	5.48 ± 0.19	6.396	-0.916				
Clindamycin	8.74	7.77	0.97	Pyridoxine	8.37	8.95 ± 0.06	-0.58

TABLE 1.4 Estimated (ACD/ pK_a) versus measured pK_a values

observed pK_a values was linear with $R^2 = 0.9218$. Prediction of substituted aniline pK_a values was better with mean deviations on the order of 0.2 log unit. The linear predicted versus observed plot had $R^2 = 0.9739$. However, these predictions were for simple monofunctional acids or bases, not multifunctional drug substances.

The difficulty with all present computational models is that they attempt to predict pK_a values from the structural properties of a single thermodynamic *state*, that is, the molecular form of the acid or base. However, pK_a values, as conventionally defined, are in direct proportion to ΔG° , the free energy change for transition from the protonated state to the deprotonated state. For predictions of pK_a values for basic compounds such as amines, heteroaromatics, guanidines, amidines, and azomethines, the modeled structures are the electrically neutral deprotonated forms. For predictions of pK_a values for acidic compounds, such as carboxylic acids, phenols, imides and sulfonamides, the modeled structures are the neutral protonated forms. In both situations, the other state in the equilibrium reaction (the hydrated anion for acids; the hydrated cation for bases) is a priori assumed to be the same for all structures that have a specific functional group. Studies reported by McKeown et al. [89] have shown that this is not the case, at least for the 5,5-disubstituted barbituric acids. In particular, steric substituent effects *cannot* be assumed to be the same on both the protonated and deprotonated states, especially where charge separation occurs in the ionization of acids. Similarities in substitution effects on pK_a values suggest that the same conclusion applies [38] to several families of substituted mono- and dicarboxylic acids. Until predictive methods take into account the differential thermodynamic state origin of pK_a values, there will always be considerable uncertainty in the accuracies of the resulting computed values. This is irrespective of the methods and refinements of the computational procedure itself, whether by ANNs, molecular mechanics, semiempirical molecular orbital calculations or ab initio calculations.

Ultimately, the value of such *in silico* predicted pK_a data depends on the use(s) to be made of such numbers. They are generally satisfactory for use in a drug discovery program. If they are rough estimates of the extent of ionization needed to explain bioavailability or pharmacokinetic data, which also usually have experimental errors of more than a few percent, then these values will serve fairly well, although more accurate values would be an improvement. Conversely, if values are needed for use in conjunction with more precise physicochemical data, for example, solubilities or partition coefficients that can be measured with precision and accuracy in the 1–5% range, then deficiencies in the interpretation of such data are very likely to result from use of poorly defined pK_a values. And finally, values from such computational estimates are worthless when the objective is to further probe the relationships of molecular structure and physicochemical properties.

4. SUMMARY OF THE DATA COMPILATION

The database compilation following this introduction to some of the difficulties of pK_a measurement presents nearly 3500 pK_a values for drug and related substances that have been collected from the literature. A summary of the chief issues follows:

The reported pK_a measurements were assessed for the *quality of the data*, based on an examination of these factors:

- Experimental method
- Precision of temperature control
- Solvent composition
- pH meter calibration
- Exclusion of CO₂
- Use of thermodynamic activity corrections
- Validation of experimental results by comparison with gold standard compounds

For example, some experimental methods are more reliable than others. Methods based on conductance or electromotive cells without liquid junction potential are capable of very high accuracy and precision, although conductance methods are best applied to acids or conjugate acids with pK_a values in the range 2–5. Conversely, methods based on pH measurements are presently constrained to lower reliability (not better than ± 0.02), due to the limits of the theoretical definition of pH. Titrimetric methods involving pH measurement are usually more accurate and precise than pH-based methods using spectrometric, partitioning, or solubility methods for discrimination between the protonated and deprotonated species because of the greater reliability of properly calibrated volumetric glassware or modern autotitrators. Where key experimental details, such as those listed above, were not reported in the original literature, then the reader cannot assume that these were in fact performed. The resulting data must then be held to have lower reliability. One of the most important of these is the last, the use of comparisons with measurements for compounds of known reliability. It is a matter of concern that while we inculcate our students with the importance of carefully validating HPLC assays of samples in biological matrices with the appropriate controls, we do not do the same for physicochemical measurements, for which significantly higher precision should be achieved, when appropriate care is taken.

The experimental data in the compilation were assessed according to the criteria established in the 1960s by the IUPAC for its compilations of dissociation constants for weak organic acids and bases. These criteria and the codes that denote them in the compilations are given in Table 1.5. In the present work, the cutoff for "uncertain" was increased to $> \pm 0.06$ pK unit, corresponding to an uncertainty in the dissociation constant, K_{a} , equivalent to >15%.

Classification	Code	Criterion as error in pK_a	Uncertainty in K_{a}
Very reliable	VR	$<\pm 0.005$	$\equiv <1\%$
Reliable	R	± 0.005 to ± 0.02	$\equiv \sim 1\%$
Approximate	А	± 0.02 to ± 0.04	$\equiv \sim 5\%$
Uncertain	U	$>\pm0.04$	$\equiv >10\%$

TABLE 1.5 IUPAC reliability criteria for pK_a values of weak acids and bases

Measured pK_a values for many drugs have been reported in the literature more than once. In some cases, there is very good agreement between repeated measures, while in others, there is very poor agreement (see below). The following were ranked as "R" = "Reliable" or "A" = "Approximate" under the criteria in Table 1.5, and were obtained from measurements using different methods and in different laboratories:

- Benzoic acid $pK_a = 4.205 \pm 0.015 (n > 4)$
- 5,5-Diethylbarbituric acid p $K_a = 7.980 \pm 0.01$ (n = 3)
- Nimesulide $pK_a = 6.51 \pm 0.05 \ (n = 3)$
- Chlorthalidone p $K_a = 9.35 \pm 0.01 (n = 2)$

Replicated pK_a data for numerous other drugs were in very poor agreement with each other, and were ranked as "U" = "Uncertain" or occasionally as "VU":

- Carbenoxolone $pK_{a1} = 4.2-6.7 (n = 3)$
- Glibenclamide $pK_a = 5.3-6.8 (n = 3)$
- Ibuprofen $pK_a = 4.1-5.3 (n = 8)$
- Lidocaine $pK_a = 7.18 7.95 (n = 7)$
- Phenylbutazone p $K_a = 4.33-5.47$ (n = 8)
- Propranolol $pK_a = 9.23-9.72$ (*n* = 11)

Altogether, \sim 74% of the p*K*_a values in the pharmaceutical sciences literature were found to be of "Uncertain" quality, based on the modified IUPAC criteria, whereas only 0.1% qualified as "Very Reliable"; these were almost all pharmaceutically relevant buffers that had been selected by the (former) US NBS (now the NIST) for evaluation as pH standards. "Reliable" values made up 0.33% of the total, while "Approximate" values comprised ~25%.

The compilation is divided into two sections, the larger section (Appendix A) comprising those drug or drug-related pK_a values for which the measurements were sufficiently well described for the data to be assessed for reliability. These were almost entirely taken from the primary literature. The smaller section (Appendix B) comprised those pK_a values for which little reliability data could be assessed, and were mostly from the secondary literature. The compounds are listed alphabetically, largely by common, rather than systematic name. Users unfamiliar with common drug names can use the molecular formula index that follows the database.

REFERENCES

- W. Ritschel, pKa values and some clinical applications, in *Perspectives in Clinical Pharmacy* (eds. D. Francke and H. Whitney), 1st edn., Drug Intelligence Publications, Hamilton, IL, 1972, pp. 325–367.
- [2] S. Smith and M. Rawlins, Appendix C. Variability in human drug response, 1st edn., Butterworths, London, 1973, pp. 154–165.
- [3] T. Speight, Avery's Drug Treatment, 3rd edn., Publishing Sciences Group, Inc., Littleton, MA, 1987, pp. 1352–1380.
- [4] J. Hoover, Dispensing of Medication, 8th edn., Mack Publishing, Easton, PA, 1976, p. 230, 247, 418–426, 468–634.

- [5] D. Newton and R. Kluza, pKa values of medicinal compounds in pharmacy practice, *Drug Intell. Clin. Pharm.*, 1978, 12, 546–554.
- [6] P. Craig, Compendium of Drugs, in *Comprehensive Medicinal Chemistry* (eds. C. Hansch, P. Sammes and J. Taylor), 1st edn., Pergamon Press, New York, 1990, pp. 237–965.
- [7] D. Williams, Appendix A-1, in *Principles of Medicinal Chemistry* (eds. W. Foye, T. Lemke and D. Williams), 4th edn., Williams and Wilkins, Baltimore, MA, 1995, pp. 948–961.
- [8] J. Delgado and W. Remers, pKas of Drugs and Reference Compounds, in Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry (eds. J. Delgado and W. Remers), 8th edn., Lippincott-Raven, Philadelphia, PA, 2000.
- [9] G. Kortum, W. Vogel and K. Andrussow, *Dissociation Constants of Organic Acids in Aqueous Solution*, 1st edn., Butterworth, London, 1961.
- [10] D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, 1st edn., Butterworths, London, 1965.
- [11] E. Serjeant and B. Dempsey, Ionisation Constants of Organic Acids in Aqueous Solution, 1st edn., Pergamon Press, Oxford and New York, 1979.
- [12] D. Perrin, Dissociation Constants of Weak Bases in Aqueous Solution, 1st edn., Butterworths, London, 1972.
- [13] B. Liederer and R. Borchardt, Enzymes involved in the bioconversion of ester-based prodrugs, J. Pharm. Sci., 2005, 95(6), 1177–1195.
- [14] A. Albert and E. Serjeant, *Appendix V. The Determination of Ionization Constants*, 2nd edn., Chapman and Hall, London, 1971.
- [15] K. Murthy and G. Zografi, Oil-water partitioning of chlorpromazine and other phenothiazine derivatives using dodecane and n-octanol, J. Pharm. Sci., 1970, 59, 1281–1285.
- [16] P. Seiler, The simultaneous determination of partition coefficient and acidity constant of a substance, Eur. J. Med. Chem., 1974, 9(6), 663–665.
- [17] A. Briggs, J. Sawbridge, P. Tickle and J. Wilson, Thermodynamics of dissociation of some barbituric acids in aqueous solution, J. Chem. Soc. (B), 1969, 802–805.
- [18] G. Manov, K. Schuette and F. Kirk, Ionization constant of 5,5-diethylbarbituric acid from 0° to 60 °C, J. Res. Natl. Bur. Stand., 1952, 48(1), 84–91.
- [19] R. Prankerd, Some physical factors and drug activity—Physical properties and biological activity in certain barbituric acid structures, University of Otago, Dunedin, NZ, Master of Pharmacy Thesis, 1977.
- [20] A. Avdeef, K. Box, J. Comer, M. Gilges, M. Hadley, C. Hibbert, W. Patterson and K. Tam, PHmetric log P 11. pKa determination of water-insoluble drugs in organic solvent-water mixtures, *J. Pharm. Biomed. Anal.*, 1999, **20**, 631–641.
- [21] K. Takacs-Novak, K. Box and A. Avdeef, Potentiometric pKa determination of water-insoluble compounds: Validation study in methanol/water mixtures, Int. J. Pharm., 1997, 151, 235–248.
- [22] E. Canel, A. Gultepe, A. Dogan and E. Kihc, The determination of protonation constants of some amino acids and their esters by potentiometry in different media, J. Solution Chem., 2006, 35(1), 5–19.
- [23] E. King, Medium effects, Ch. 10 in Acid-Base Equilibria, Vol 4:15 in The International Encyclopaedia of Physical chemistry and Chemical Physics (eds. E. Guggenheim, J. Mayer, F. Tompkins and R. Robinson), 1st edn., MacMillan, New York, 1965, pp. 269–279.
- [24] F. Feates and D. Ives, The ionisation functions of cyanoacetic acid in relation to the structure of water and the hydration of ions and molecules, J. Chem. Soc., 1956, 2798–2812.
- [25] D. Ives and P. Marsden, The ionisation functions of diisopropylcyanoacetic acid in relation to hydration equilibria and the compensation law, J. Chem. Soc., 1965, 649–676.
- [26] D. Ives and P. Moseley, Derivation of thermodynamic functions of ionisation from acidic dissociation constants, JCS Farad. Trans. I, 1976, 72, 1132–1143.
- [27] P. Hadju, K. Kohler, F. Schmidt and H. Spingler, Physicalisch-chemische und analytische untersuchungen an HB 419, Arzneim.-Forsch., 1969, 19, 1381–1386.
- [28] M. Crooks and K. Brown, The binding of sulphonylureas to serum albumin, J. Pharm. Pharmacol., 1974, 26, 305–311.
- [29] T. Medwick, G. Kaplan and L. Weyer, Measurement of acidity and equilibria in glacial acetic acid with the glass calomel electrode system, J. Pharm. Sci., 1969, 58, 308–313.

- [30] A. Martin, Physical Pharmacy, 3rd 1st edn., Lea and Febiger, Philadelphia, PA, 1983.
- [31] L. Chatten, Pharmaceutical Chemistry, 1st edn., Marcel Dekker, New York, 1966.
- [32] A. Al-Badr and M. Tayel, Procaine hydrochloride, in *Analytical Profiles of Drug Substances and Excipients* (ed. H. Brittain), 1st edn., Academic Press, New York, 1999, pp. 395–458.
- [33] A. Moffat, Clarke's Isolation and Identification of Drugs, 2nd edn., The Pharmaceutical Press, London, 1986, p. 1223.
- [34] J. Wood, The acidic constants of some ureides and uric acid derivatives, J. Chem. Soc., 1906, 89, 1831–1839.
- [35] J. Kendall, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, in *International Critical Tables* (ed. E. Washburn), 1st edn., McGraw-Hill, New York, 1929, pp. 259–304.
- [36] R. McKeown, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1. 5,5-Dialkyl-, 5-alkenyl-5-alkyl-, 5-alkyl-5-aryl-, 5,5-dialkenyl-, 5,5-diaryl-, and 5,5-dihalogeno-barbituric acids, J. Chem. Soc. (Perkin II), 1980, 504–514.
- [37] M. Krahl, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, J. Phys. Chem., 1940, 44, 449–463.
- [38] R. McKeown and R. Prankerd, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 C. Part 3. 5,5-Alkylenebarbituric Acids. A Comparison with 5,5-Dialkylbarbituric Acids, and with Mono- and Di-Carboxylic Acids, J. Chem. Soc. (Perkin II), 1981, 481–487.
- [39] K. Takacs-Novak and A. Avdeef, Interlaboratory study of log P determination by shake-flask and potentiometric methods, J. Pharm. Biomed. Anal., 1996, 14, 1405–1413.
- [40] K. Tam and K. Takacs-Novac, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta, 2001, 434, 157–167.
- [41] J. McFarland, C. Berger, S. Froshauer, S. Hayashi, S. Hecker, B. Jaynes, M. Jefson, B. Kamicker, C. Lipinski, K. Lundy, C. Reese and C. Vu, Quantitative structure-activity relationships among macrolide antibacterial agents: *In vitro* and *in vivo* potency against Pasteurella multocida, *J. Med. Chem.*, 1997, 40, 1340–1346.
- [42] E. King, Acidity constants from optical and magnetic measurements, Ch. 5 in Acid-Base Equilibria, Vol 4:15 in The International Encyclopaedia of Physical Chemistry and Chemical Physics (eds. E. Guggenheim, J. Mayer, F. Tompkins and R. Robinson), 1st edn., MacMillan, New York, 1965, pp. 90–115.
- [43] J. Prue, Ionic Equilibria, 1st edn., MacMillan, New York, 1965.
- [44] R. Robinson and R. Stokes, *Electrolyte Solutions*, 2nd Revised edn., Butterworths, London, 1965.
- [45] R. Bates, Determination of pH: Theory and Practice, 2nd edn., Wiley, New York, 1973.
- [46] A. Albert and E. Serjeant, The Determination of Ionization Constants: A Laboratory Manual, 2nd edn., Chapman and Hall, London, 1971.
- [47] A. Albert and E. Serjeant, *The Determination of Ionization Constants: A Laboratory Manual*, 3rd edn., Chapman and Hall, London, 1984.
- [48] D. MacInnes and T. Shedlovsky, The determination of the ionization constant of acetic acid, at 25°, from conductance measurements, *JACS*, 1932, 54, 1429–1438.
- [49] E. King, Acidity constants from conductance measurements, Ch. 2 in Acid-Base Equilibria, Vol 4:15 in The International Encyclopaedia of Physical Chemistry and Chemical Physics (eds. E. Guggenheim, J. Mayer, F. Tompkins and R. Robinson), 1st edn., MacMillan, New York, 1965, pp. 23–41.
- [50] H. Harned and R. Ehlers, The dissociation constant of acetic acid from 0 to 35° centigrade, JACS, 1932, 54, 1350–1357.
- [51] E. King, Acidity constants from precise electromotive force measurements, Ch. 3 in Acid-Base Equilibria, Vol 4:15 in The International Encyclopedia of Physical Chemistry and Chemical Physics (eds. E. Guggenheim, J. Mayer, F. Tompkins and R. Robinson), 1st edn., MacMillan, New York, 1965, pp. 42–63.
- [52] G. Lewis, Determination of dissociation constants of sparingly soluble compounds from solubility data, Int. J. Pharm., 1984, 18, 207–212.
- [53] I. Zimmermann, Determination of pKa values from solubility data, Int. J. Pharm., 1983, 13(1), 57–65.

- [54] L. Hammett, A. Dingwall and L. Flexser, The application of colorimetry in the ultraviolet to the determination of the strength of acids and bases, *JACS*, 1934, 56, 2010.
- [55] L. Flexser, L. Hammett and A. Dingwall, The determination of ionization by ultraviolet spectrophotometry: Its validity and its application to the measurement of strength of very weak bases, *JACS*, 1935, 57, 2103–2115.
- [56] L. Flexser and L. Hammett, The determination of ionization by ultraviolet spectrophotometry— Correction, JACS, 1938, 60, 3097.
- [57] H. von Halban and G. Kortum, The dissociation constants of weak and moderately strong electrolytes. I The dissociation constant of α-dinitrophenol and the range and validity of the limitation formula of Debye and Huckel, *Z. fur. Physik. Chem.*, 1934, **170**, 351–379.
- [58] I. Feldman, Use and abuse of pH measurements, Anal. Chem., 1956, 28(12), 1859–1866.
- [59] Anonymous, Measurement of pH. Definitions, Standards and Procedures (IUPAC pH Recommendations 2002), Pure Appl. Chem., 2002, 74(11), 2169–2200.
- [60] Anonymous, Specification for pH Scale, British Standard 1647, British Standards Institution, London, 1961.
- [61] D. Ives and G. Janz, Reference Electrodes: Theory and Practice, 1st edn., Academic Press, New York, 1961.
- [62] C.-L. Lin and L.-S. Lee, A two-ionic-parameter approach for ion activity coefficients of aqueous electrolyte solutions, *Fluid Phase Equilib.*, 2003, 205, 69–88.
- [63] A. Apelblat, E. Manzurola and Z. Orekhova, Electrical conductance studies in aqueous solutions with ascorbate ions, J. Solution Chem., 2006, 35, 879–888.
- [64] Z. Orekhova, M. Ben-Hamo, E. Manzurola and A. Apelblat, Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid, J. Solution Chem., 2005, 34(6), 687–700.
- [65] Z. Orekhova, Y. Sambira, E. Manzurola and A. Apelblat, Electrical conductance and volumetric studies in aqueous solutions of DL-pyroglutamic acid, J. Solution Chem., 2005, 34(7), 853–867.
- [66] G. Manov, N. DeLollis and S. Acree, Ionization constant of boric acid and the pH of certain boraxchloride buffer solutions from 0° to 60° C, J. Res. Natl. Bur. Stand., 1944, 33, 287–306.
- [67] R. Bates and S. Acree, pH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0° to 60° C, J. Res. Natl. Bur. Stand., 1943, 30, 129–155.
- [68] H. Krebs and J. Speakman, Dissolution constant, solubility and the pH value of the solvent, J. Chem. Soc., 1945, 593–595.
- [69] P. Ihnat and D. Robinson, Potentiometric determination of the thermodynamic ionization constants of deferoxamine, J. Pharm. Sci., 1993, 82, 110–112.
- [70] R. Robinson and A. Kiang, The ionization constants of vanillin and two of its isomers, *Tr. Farad. Soc.*, 1955, **51**, 1398–1402.
- [71] R. Bates and G. Schwarzenbach, Die Bestimmung thermodynamischer Aciditatskonstanten, *Helv. Chim. Acta*, 1954, 37, 1069–1079.
- [72] A. Wahbe, F. El-Yazbi, M. Barary and S. Sabri, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, *Int. J. Pharm.*, 1993, 92(1), 15–22.
- [73] A. Asuero, M. Herrador and A. Camean, Spectrophotometric evaluation of acidity constants of diprotic acids: Errors involved as a consequence of an erroneous choice of the limit absorbances, *Anal. Lett.*, 1986, 19, 1867–1880.
- [74] N. Farraj, S. Davis, G. Parr and H. Stevens, Dissociation and partitioning of progabide and its degradation product, *Int. J. Pharm.*, 1988, 46, 231–239.
- [75] R. Kelly and S. Schulman, Proton transfer kinetics of electronically excited acids and bases, in *Molecular Luminescence Spectroscopy—Methods and Applications: Part* 2 (ed. S. Schulman), 1st edn., Wiley-Interscience, New York, 1988, pp. 461–510.
- [76] H. Wan, A. Holmen, Y. Wang, W. Lindberg, M. Englund, M. Nagard and R. Thompson, Highthroughput screening of pKa values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, *Rapid Commun. Mass Spectrom.*, 2003, 17, 2639–2648.
- [77] Q. Hu, G. Hu, T. Zhou and Y. Fang, Determination of dissociation constants of anthrocycline by capillary zone electrophoresis with amperometric detection, *J. Pharm. Biomed. Anal.*, 2003, 31, 679–684.

- [78] K. Connors, Hydrochlorothiazide, in *Chemical Stability of Pharmaceuticals—A Handbook for Pharmacists* (eds. K. Connors, G. Amidon and V. Stella), 2nd edn., Wiley-Interscience, New York, 1986, pp. 478–482.
- [79] S. Unger, J. Cook and J. Hollenberg, Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed phase high pressure liquid chromatography, *J. Pharm. Sci.*, 1978, 67, 1364–1367.
- [80] S. Valentiner, The solubility of the noble gases in water, Z. fur. Physik., 1927, 42, 253–264.
- [81] A. Lannung, The solubilities of helium, neon and argon in water and some organic solvents, JACS, 1930, 52, 67–80.
- [82] D. Everett and W. Wynne-Jones, Thermodynamics of acid-base equilibria, *Trans. Farad. Soc.*, 1939, 35, 1380–1401.
- [83] M. Blandamer, R. Robertson and J. Scott, An examination of the parameters describing the dependence of rate constants on temperature for solvolysis of various organic esters in water and aqueous mixtures, *Can. J. Chem.*, 1980, 58, 772–776.
- [84] M. Blandamer, R. Robertson, J. Scott and A. Vrielink, Evidence for the incursion of intermediates in the hydrolysis of tertiary, secondary and primary substrates, *JACS*, 1980, **102**, 2585–2592.
- [85] M. Blandamer, J. Burgess, P. Duce, R. Robertson and J. Scott, A re-examination of the effects of added solvent on the activation parameters for solvolysis of *t*-butyl chloride in water, *JCS Farad. Trans. I*, 1981, 77, 1999–2008.
- [86] D. Grant, M. Mehdizadeh, A.-L. Chow and J. Fairbrother, Non-linear van't Hoff solubilitytemperature plots and their pharmaceutical interpretation, *Int. J. Pharm.*, 1984, 18, 25–38.
- [87] R. Prankerd and R. McKeown, Physico-chemical properties of barbituric acid derivatives. Part I. Solubility-temperature dependence for 5,5-disubstituted barbituric acids in aqueous solutions, *Int. J. Pharm.*, 1990, 62(1), 37–52.
- [88] R. Prankerd, Solid state properties of drugs. Part I. Estimation of heat capacities for fusion and thermodynamic functions for solution from aqueous solubility-temperature dependence measurements, *Int. J. Pharm.*, 1992, 84(3), 233–244.
- [89] R. McKeown, R. Prankerd and O. Wong, The Development of Drugs and Modern Medicines— The Beckett Symposium Proceedings, London, 1986, pp. 80–89.
- [90] H. Harned and W. Hamer, The ionization constant of water and the dissociation of water in potassium chloride solutions from electromotive forces of cells without liquid junction, *JACS*, 1933, 55, 2194–2205.
- [91] H. Harned and R. Robinson, Temperature variation of the ionization constants of weak electrolytes, *Trans. Farad. Soc.*, 1940, 36, 973–978.
- [92] R. Ramette, On deducing the pK-temperature equation, J. Chem. Educ., 1977, 54(5), 280-283.
- [93] R. Robinson and R. Stokes, Appendix 12.2. Electrolyte Solutions, 2nd Revised edn., Butterworths, London, 1971, p. 544.
- [94] H. Harned and B. Owen, The Physical Chemistry of Electrolyte Solutions, in *The Physical Chemistry of Electrolyte Solutions* (eds. H. Harned and B. Owen), 3rd edn., Reinhold, New York, 1958, Ch. 15.
- [95] A. Covington, M. Ferra and R. Robinson, Ionic product and enthalpy of ionization of water from electromotive force measurements, J. Chem. Soc. Farad. Trans. I, 1977, 73, 1721–1730.
- [96] L. Eberson, Acidity and hydrogen bonding of carboxyl groups, in *The Chemistry of Carboxylic Acids and Esters* (ed. S. Patai), 1st edn., Interscience Publishers, New York, 1969.
- [97] R. Robinson and R. Stokes, Appendix 12.1. Electrolyte Solutions, 2nd Revised edn., Butterworths, London, 1971.
- [98] J. Talmage, L. Chafetz and M. Elefant, Observation on the instability of cyclamate in hydroalcoholic solution, J. Pharm. Sci., 1968, 57, 1073–1074.
- [99] D. Newton, W. Murray and M. Lovell, pKa determination of benzhydrylpiperazine antihistamines in aqueous and aqueous methanol solutions, J. Pharm. Sci., 1982, 71(12), 1363–1366.
- [100] J. Rubino, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, *Int. J. Pharm.*, 1988, 42, 181–191.
- [101] C. Davies, Ion Association, 1st edn., Butterworths, London, 1962.

- [102] R. Prankerd, Phenylbutazone. 4th Year Project Report, B. Pharm, University of Otago, Dunedin, New Zealand, 1974.
- [103] R. Prankerd, A study of some physical properties and their relationships with the biological activities of barbituric acids, Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 1985.
- [104] J. Partanen, P. Juusola and P. Minkkinen, Determination of stoichiometric dissociation constants of lactic acid in aqueous salt solutions at 291.15 and 298.15 K, *Fluid Phase Equilib.*, 2003, 204, 245–266.
- [105] L. Al-Razzak, A. Benedetti, W. Waugh and V. Stella, Chemical stability of pentostatin (NSC-218321), a cytotoxic and immunosuppressive agent, *Pharm. Res.*, 1990, 7, 452–460.
- [106] C. T. Flear, S. W. Roberts, S. Hayes, J. C. Stoddart and A. K. Covington, pK1' and bicarbonate concentration in plasma, *Clin. Chem.*, 1987, 33(1), 13–20.
- [107] A. Covington, R. Robinson and M. Sarbar, Determination of carbonate in the presence of hydroxide. Part 2. Evidence for the existence of a novel species from first-derivative potentiometric titration curves, *Anal. Chim. Acta*, 1981, **130**, 93–102.
- [108] S. Singh, N. Sharda and L. Mahajan, Spectrophotometric determination of pKa of nimesulide, *Int. J. Pharm.*, 1999, **176**, 261–264.
- [109] U. Chaudry and P. Popelier, Estimation of pKa using quantum topological molecular similarity descriptors: Application to carboxylic acids, anilines and phenols, J. Org. Chem., 2004, 69(2), 233–241.

This page intentionally left blank

APPENDIX A

APPENDIX A. MAIN LIST

 pK_a values found with significant data quality information—mainly primary literature

Reliability assessment (data quality) is based on information in the original source describing the method used (including evidence for calibration of pH meters; exclusion of CO_2 in determining pK_a values above 6.5), whether pK_a values for standard compounds were measured, presence of organic cosolvents, the presence or absence of corrections for $[H^+]$, $[OH^-]$ in potentiometric titrations, and use of mean ionic activity coefficients in the calculations. Considerable effort has been made to locate the original source for each measured pK_a value. Where only secondary sources have been located, data reliability cannot be assessed with confidence.

A small number of journal or other serial titles have been abbreviated in the tables. These include Analytical Profiles of Drug Substances (APDS) (this abbreviation is also used for the longer and more detailed recent titles of this series); *J. Am. Chem. Soc.* (JACS); *J. Chem. Soc.* (JCS); *J. Org. Chem.* (JOC); *J. Pharmacol. Expt. Ther.* (JPET); *J. Pharm. Pharmacol.* (JPP). Further abbreviations are found at the beginning of Appendix B.

(
0	•

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)	
			See comments	(⁺ H or ⁻ H)		Solvent t (°C) Ionic strength (I) or analyte concentration (c) in molar (M) units	Data reliability cutoff points	R: Reliable = $\pm <0.02$ A: Approx = ± 0.02 to ± 0.06 U: Uncertain = $\pm >0.06$
							of the pK _a values have been (temperature, ionic strength been reported, or the value v program, a value is automati	cutoffs apply when all other aspects considered. Where key variables and solvent composition) have not vas obtained from a computer cally assessed as U: Uncertain. A few s VR: Very Reliable, while a few
1	Acetaminophen (paracetamol) (C ₈ H ₉ NO ₂) HONHAc	9.63 ± 0.01	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl) N ₂ atmosphere	 Takacs-Novak K and Avdeef A determination by shake-flask <i>J. Pharm. Biomed. Anal.</i>, 14, 14 "Titration in aqueous medium: Typically, 10 ml of 0.5 to 10 mM preacidified to pH 1.8–2.0 wi alkalimetrically to some app The titrations were carried or strength using NaCl, and uninitial estimates of pK_a value difference plots (n_H vs. pH) a nonlinear least-squares procemolecule a minimum of three separate titrations were perfalong with the standard devi" "Titrations in solvent mixtures: A series of semi-aqueous soluti 3–60% (w/w) methanol were psK_a values (the apparent ior solvent) were obtained, and was applied to estimate the a 	, Interlaboratory study of log P and potentiometric methods, 105-1413 (1996). A solutions of the samples were th 0.5 M HCl, and were then titrated ropriate high pH (maximum 12.0). ut at 25.0 \pm 0.1 °C, at constant ionic der an inert gas atmosphere. The s were obtained from Bjerrum and then were refined by a weighted edure (Avdeef, 1992, 1993). For each e and occasionally five or more prmed and the average pK _a values ations were calculated." ons of the samples, containing titrated. From these titrations, the ization constants in methanol-water the Yasuda-Shedlovsky procedure the Yasuda-Shedlovsky procedure tail. The four-parameter procedure was

2 Acetaminophen (paracetamol) (C₈H₉NO₂)

 9.67 ± 0.08 U

 9.55 ± 0.03

 9.35 ± 0.03

9.75 (0.06)

U

U

U

-H

-H

-H

Spectro

Spectro

Spectro

t = 25

t = 25

H₂O

 $(\lambda = 259 \text{ nm})$ t = 20

-H

но		—NHAc
\backslash	_/	

Acetaminophen (paracetamol)

Acetaminophen (paracetamol)

Acetaminophen (paracetamol)

 H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl) $N_2 \text{ atmosphere}$ Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, *Int. J. Pharm.*, 151, 235–248 (1997). "Titration in aqueous medium:

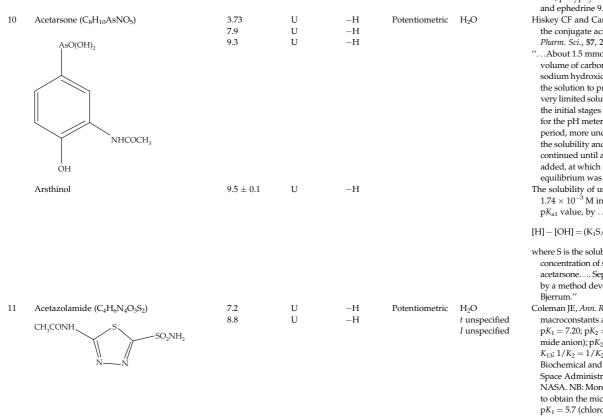
Ten ml of 1 mM or 5 mM aqueous solutions of the samples were pre-acidified to pH 1.8–2.0 with 0.5 M HCl, and were then titrated alkalimetrically to some appropriate high pH (maximum 12.5). The titrations were carried out at 25.0 \pm 0.1 °C, at I = 0.1 M ionic strength using NaCl, and under N₂ atmosphere. The initial estimates of pK_a values were obtained by difference plots (n_H vs. pH, where n_H is the average number of bound protons) and were then refined by a weighted non linear least-squares procedure (Avdeef, 1992, 1993). For each molecule a minimum of three and occasionally five or more separate titrations were performed and the average pK_a values along with the standard deviations were calculated."

"Titrations in solvent mixtures: A series of 1 mM or 5 mM semiaqueous solutions of the samples, containing 3–70 wt% methanol were titrated under the same conditions as in aqueous titrations. For all the molecules of the validation set (group 1) measurements were carried out at six different R values ranging from 15 to 64 wt%. Titrations at each methanol/water mixture were repeated three times, and then the average of the $p_s K_a$ values was calculated (Table 2). The Yasuda-Shedlovsky procedure was applied to estimate the aqueous pK_a values (Avdeef, et al., Anal. Chem., **65**, 42–49, (1993))."

NB: $pK_a=9.67\pm0.08$ by extrapolation from 15.7–60.1%w/w aqueous MeOH. See other Avdeef papers in this reference for calibration procedure.

- Dobas I, Sterba V and Vecera M, Kinetics and mechanism of diazo coupling. X. The coupling kinetics of para-substituted phenol, *Collection of Czechoslovak Chem. Communications*, 34(12), 3746–3754 (1969). Cited in Fairbrother JE, Acetaminophen, APDS, 3, 1974, 27.
- Talukdar PB, Banerjee S and Sengupta SK, Intramolecular hydrogen bonding in 2-(substituted amino-) methyl-4-acetamidophenol, *J. Indian Chem. Soc.*, 47(3) 267–272 (1970). Cited in Fairbrother JE, Acetaminophen, APDS, 3, 1974, 27.
- Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis.
 Determination of dissociation constants, *Int. J. Pharm.*, 92(1) 15–22 (1993); Wahbi AM, El-Yazbi FA, Hewala II and Awad AA, Use of

(continued)


37

3

4

Appendix A	(continued)
------------	-------------

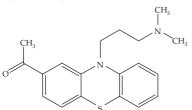
38 38	No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
	6	Acetaminophen (paracetamol)	9.75	U	-H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	ratios of orthogonal function coefficients for the determination of dissociation constants, <i>Pharmazie</i> , 48 , 422–425 (1993). NB: pH values were measured at 20 °C but it was not clear if the spectral data were obtained at this temperature. No details given for pH meter calibration or corrections for ionic strength. The orthogonal method is intended to correct for the effects of spectra which overlap for the protonated and deprotonated forms of the ionizing species. The error given for the pK_a value (in parentheses) is the "overall relative standard deviation", but this term is not defined. An alternative graphical method gave $pK_a = 9.65$. Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a literature value of 9.56 (Box K, Bevan C, Comer J, Hill A, Allen R and Reynolds D, <i>Anal. Chem.</i> , 75 , represented the standard beta the standard beta contrastice to the standard beta beta contrastice to the standard beta beta contrastice to the standard beta beta beta beta beta beta beta beta
	7	Acetaminophen (paracetamol)	GLpK _a : 9.45 ± 0.01 A&S:	U	-H	Spectro	H_2O t = 25 I = 0.15 (KCl)	883–892 (2003)), and a predicted value (ACD Labs) of 9.86. Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i> , 434, 157–167 (2001).
			9.58 ± 0.15	U	-H		Ar atmosphere	NB: See Clioquinol for details.
	8	Acetanilide (C ₈ H ₉ NO)	0.5	U	+H	Potentiometric	H_2O $t = 25 \pm 2$	Hall NF, The strength of organic bases in glacial acetic acid solution, <i>JACS</i> , 52 , 5115–5128 (1930). Cited in Perrin DD, Dissociation Constants of Organic Bases in Aqueous Solution, 1965, Butterworths, Lond (1965) No. 389. Ref. H11. Other values, also uncertain (U), are reported in Perrin.
	9	Acetanilide (Antifebrin)	1.4	U	+H	Potentiometric	H ₂ O t = 25	Evstratova KI, Goncharova NA and Solomko VIa, Dissociation constants of weak organic bases in acetone, <i>Farmatsiya</i> (Moscow), 17(4), 33–36 (1968). Abstract: The pK _a and pK _b values for some pharmaceutically important organic bases in water and 90% acetone solns. were calculated from emf. data measured in the Izmailov's arrangement (cf. I., CA 54: 114f). The results are (base, pK _a in H ₂ O, pK _a in aqueous acetone, pK _b in H ₂ O, and pK _b in aqueous acetone given): MeNH ₂ 10.6, 10.4, 3.4, 9.9; Et ₂ NH 10.7, 9.4, 3.3, 10.9; Et ₃ N 10.7, 11.4, 3.3, 9.2; antifebrin 1.4, 4.4, 12.6, 15.9; phenacetin approx. 2.2, 3.5, ~11.8, 16.8; novocaine 8.88; 9.6, 5.15, 10.7; spasmolytine 7.7, 8.7, 6.3, 11.6; benzacine 7.8, 7.2, 6.2, 13.1; chloridine 5.6, 7.0, 8.4, 13.3; diethazine 7.0, 8.5, 7.0, 11.8; amizil 8.5, 8.2, 5.5, 12.2; sarcolysine II ~2.5, 5.9, ~11.5, 14.1; apressine 7.1, 4.7, 6.9, 15.6; promedol 8.4, 3.4, 5.6, 16.9;

dimedrol 8.2, 9.1, 5.8, 11.2; antipyrine ~2.2, 4.4, ~11.8, 15.9; bendazol 4.2, 4.4, 9.8, 15.9; Pyramidone 4.84, 4.9, 9.16, 15.4; acriquine 6.5, 8.9, 7.5, 11.4; Dionine 7.9, 9.0, 6.1, 11.3; caffeine 0.61, 4.4, 13.39, 15.9; methylcaffeine ~2.6, 4.0, ~11.4, 16.3; urotropine 4.9, 6.7, 9.1, 13.6; theophylline ~2.6, 4.4, ~11.5, 16.0; theobromine 0.11, 3.8, 13.89, 16.5; pyridine 5.31, 4.5. 8.69, 15.8; atropine 9.65, 9.9, 4.35, 10.4; pachycarpine 11.76, 5.5, 2.24, 14.8; salsoline 8.83, 10.1, 5.17, 10.2; salsolidine 9.11, 9.7, 4.89, 10.6; papaverine 5.9, 6.2, 8.1, 14.1; morphine 7.87, 8.7, 6.13, 11.6; codeine 7.95, 7.8, 60.5, 12.5; quinine 8.0, 9.3, 6.0, 11.0; platyphylline 8.1, 9.5, 5.95, 10.8; pilocarpine 6.85, 7.4, 7.15, 12.9; and ephedrine 9.66, 10.4, 4.34, 9.9.

- Hiskey CF and Cantwell FF, Ultraviolet spectrum correlations with the conjugate acid-base species of acetarsone and arsthinol, J. Pharm. Sci., 57, 2105–2111 (1968).
- "...About 1.5 mmoles of the compound was suspended in a known volume of carbon dioxide-free water and titrated with ... 0.1 N sodium hydroxide.... a vigorous stream of nitrogen was blown into the solution to prevent carbon dioxide uptake.... Acetarsone has a very limited solubility in water Consequently, it was necessary in the initial stages of the titration to wait after each addition of alkali for the pH meter to drift to its final steady state values. During this period, more undissociated acetarsone went into solution until both the solubility and ionization equilibria were satisfied. This situation continued until about 80% of the first equivalent of alkali had been added, at which point all the dissolved acid was in solution and equilibrium was established quickly....
- The solubility of undissociated acetarsone was determined \dots to be 1.74×10^{-3} M in 0.1 N HCl. This value was used in estimating the pK_{a1} value, by \dots fitting the potentiometric \dots data to:

 $[H] - [OH] = (K_1S/H) - CB and [H] - [OH] = {mK_1/([H] + K_1)} - CB$

- where S is the solubility of undissociated acetarsone, CB is the added concentration of strong base and m is the formal concentration of acetarsone... Separation of the pK_{a2} and pK_{a3} values was performed by a method developed by Linderstrom-Lang and modified by Bjerrum."
- Coleman JE, Ann. Rev. Pharmacol., **15**, 238–240 (1975). NB: Reported the macroconstants and microconstants for acetazolamide by titration. $pK_1 = 7.20$; $pK_2 = 8.8$; $pK_{12} = 7.46$ (sulfa anion); $pK_{13} = 7.55$ (acetamide anion); $pK_{24} = 8.54$ (dianion); $pK_{34} = 8.45$ (dianion); $K_1 = K_{12} + K_{13}$; $1/K_2 = 1/K_{24} + 1/K_{34}$. Ref: Lindskog S. In CO₂: Chemical, Biochemical and Physiological Aspects. National Aeronautics and Space Administration, Special Pub. #SP-188, 157. Washington, DC, NASA. NB: More information is needed than a titration can provide to obtain the microconstants. Also gave chloroacetazolamide, $pK_1 = 5.7$ (chloroacetamide), $pK_2 = 8.4$ (sulfonamide).


Appendix A (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
12	Acetic acid (C ₂ H ₄ O ₂) CH ₃ COOH	4.756	R	-Н	Conductance Electrometric	$\begin{array}{l} H_2O \\ t = 25.0 \pm 0.1 \\ I = 0.000 \end{array}$	MacInnes D and Shedlovsky T, The determination of the ionization constant of acetic acid, at 25 °C, from conductance measurements, <i>JACS</i> , 54, 1429–1438 (1932); Harned H and Ehlers R, The dissociation constant of acetic acid from 0 to 35° centigrade, <i>JACS</i> , 54, 1350–1357 (1932).
13	N-Acetylaminosalicylic acid (C9H9NO4)	2.7 12.9	U U	-H -H	¹³ C-NMR/pH	H ₂ O t unspecified I unspecified	 Allgayer H, Sonnenbichler J, Kruis W, Paumgartner G, Determination of the pK_a values of 5-aminosalicylic acid and <i>N</i>-acetylaminosalicylic acid and comparison of the pH dependen lipid-water partition coefficients of sulphasalazine and its metabolites, <i>ArzneimForsch.</i>, 35(9), 1457–1459 (1985) "Extrapolated from d₄ methanol/H₂O mixtures or d₇ dimethylformamide/H₂O mixtures By a series of ¹³C-NMR spectra at different pH (from pH 1.0 to 14 in one unit steps) the chemical shifts were recorded. The turning points gave the pK values of the different substituents of 5-ASA and AcASA, respectively the resonance of the substituted carbon atoms and the corresponding o- and p- positions were mainly shifted Thus, the following pK values were obtained: 5-ASA -COOH group: 3.0; -NH₃⁺: 6.0; -OH: 13.9; AcASA-COOH: 2.7; -OH:12.9."
14	α -Acetylmethadol (levomethadyl acetate) (C ₂₃ H ₃₁ NO ₂) CH ₃ COO H ₃ C C_6H_5 CH ₃ CH ₃ COO CH ₃ CH ₃ COO C ₆ H ₅ N(CH ₃) ₂	8.3	U	+H	Potentiometric	H ₂ O <i>I</i> = 0.1 (NaCl)	Schanker LS, Shore PA, Brodie BB and Hagben CAM, Absorption of drugs from the stomach. I. The rat, <i>JPET</i> , 120 , 528–539 (1957).
15	6-Acetylmorphine (C ₁₉ H ₂₁ NO ₄) CH ₃	8.19 9.55	U U	+H -H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) under Ar	 Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol- chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates <i>J. Med. Chem.</i>, 39, 4377–4381 (1996). NB: See Morphine for details.

OCOCH₃

но

16 Acetylpromazine (acepromazine) 9.3 (C19H22N2OS)

17 Aconitine (C34H47NO11)

U

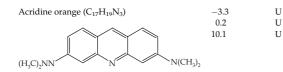
+H

+H

+H

+H

+H


soly-pH

Spectro

OH OCH. OCH₂ -C Me `OH ١N HO 01 CH. ÓCH, OCH,

18 Acridine derivatives

H₂O

H₂O

 $t = 25.0 \pm 0.01$

N₂ atmosphere

I undefined

c = 0.004 to 0.01

titration of alkaloids, Biochem. Z., 162, 289-353 (1925). Cited in Perrin Bases no. 2857 K47. Used the indicator method, where the pH of a solution of known molar ratio of protonated and deprotonated forms of the test substance is quantified by the color of a visual indicator of known pKa value. Several different indicators are proposed, including methyl red, dimethyl yellow, methyl orange, or bromophenol blue. Applicable only where the compound is a univalent alkaloidal base, with $K_{\rm b} > 5 \times 10^{-7}$. Data given for the following bases: pyridine, piperidine, pyrrole, quinoline, isoquinoline, piperazine, benzocaine, novocaine, coniine, piperine, arecoline, nicotine, atropine, tropacocaine, pseudotropine, cocaine, ecgonine, anhydroecgonine, benzoylecgonine, sparteine, pelletierine, quinine, quinidine, cinchonine, cinchonidine, cupreine, hydroquinine, strychnine, morphine, brucine, cytisine, papaverine, narcotine, narceine, thebaine, codeine, dionine, apomorphine, hydrastine, hydrastinine, berberine, pilocarpine, isopilocarpine, aconitine, colchicine, emetine, solanine, physostigmine, and cevadine.

Liu S and Hurwitz A, The effect of micelle formation on solubility

and pKa determination of acetylpromazine maleate, J. Colloid

NB: I was undefined, but was kept low through adjustment of pH

Kolthoff IM, The dissociation constants, solubility product and

Interface Sci., 60, 410-413 (1977).

with additions of HCl or NaOH only.

H₂O T = roomtemperature (RT) I unspecified

Schulman SG, Naik DV, Capomacchia AC and Roy T, Electronic spectra and electronic structures of some antimicrobials derived from proflavine, J. Pharm. Sci., 64, 982-986 (1975).

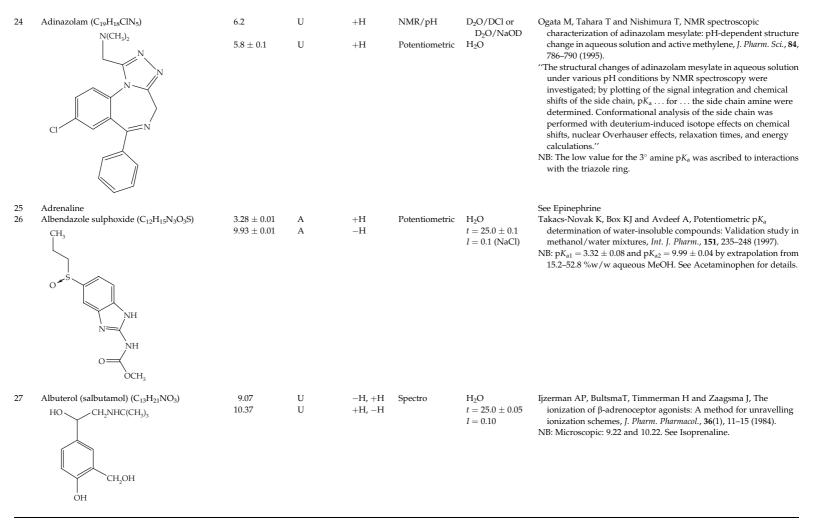
"The shifts in the absorption and fluorescence spectra of 3-aminoacridine, proflavine, acridine orange, and acridine yellow were employed to show that the singly charged cations, the predominant species at biological pH, exist in the ground state in the amino form. In the lowest excited singlet state, however, the monocations of the diaminoacridines have the imino structure, a conclusion supported by the relative ground and excited state pKa values of the reactions of the monocation with H⁺. The ground state amino structure has its positive charge concentrated at the heterocyclic nitrogen atom, a fact that is of primary importance in determining the geometry of binding to DNA."

Appendix A (a	continued)
---------------	------------

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
	Acridine yellow (C ₁₅ H ₁₅ N ₃) H ₃ C H ₂ N NH ₂	-3.0 0.5 8.9	U U U	+H +H +H			 NB: No details were given of the pH meter calibration. Fluorometric measurements were used to assess the pK_a* values for the first excited state. Used previously described spectrophotometric titration procedures: Cappomacchia A, Casper J and Schulman SG, <i>J. Pharm. Sci.</i>, 63, 1272–1276 (1974). Acridine yellow = 2,7-dimethyl-3,6-diaminoacridine; Proflavine = 3,6-diaminoacridine
	Proflavine (C ₁₃ H ₁₁ N ₃) H ₂ N NH ₂	-2.7 0.3 9.5	บ บ บ	+H +H +H			
	3-Aminoacridine (C ₁₃ H ₁₀ N ₂)	-1.4 8.0	U U	+H +H			
19	Acridine derivatives				Spectro	H ₂ O t = RT I unspecified	Cappomacchia A, Casper J and Schulman SG, Valence tautomerism of singly protonated 9-aminoacridine and its implications for intercalative interactions with nucleic acids, J. Pharm. Sci., 63 ,

1272-1276 (1974).

	2-aminoacridine (C ₁₃ H ₁₀ N ₂)	1.1 5.9 -	U U	+H +H -H		
	9-aminoacridine (C ₁₃ H ₁₀ N ₂)	8.5 10.0 15.9	บ บ บ	+H +H -H		
20	Acyclovir (C ₈ H ₁₁ N ₅ O ₃) NH H_2N N N N N N N N	$\begin{array}{c} 2.41 \pm 0.27 \\ 9.06 \pm 0.88 \end{array}$	U U	+H -H	partition	H_2O t = RT I = 0.35
	4-Deoxyacyclovir ($C_8H_{13}N_5O_2$) N^2 -Acetylacyclovir ($C_{10}H_{13}N_5O_4$)	$\begin{array}{c} 3.63 \pm 0.09 \\ 8.54 \pm 0.03 \end{array}$	U U	+H -H	partition Spectro	H_2O t = RT I = 0.25


By measurements of fluorescence/pH, the excited state pK_a^* values are:

	+H	+H	-H	
2-aminoacridine	-5.8	_	12.4	
9-aminoacridine	-6.8	-	13.2	

Kristl A, Mrhar A and Kozjek F and Ionization properties of acyclovir and deoxyacyclovir, *Int. J. Pharm.*, 57, 229–234 (1989); *ibid.* 99, 79–82 (1993).

"The ionization constant of N2-acetylacyclovir was determined and compared with those reported for acyclovir and desciclovir (deoxyacyclovir) with the aim of locating basic and acidic moieties in the molecules. For acyclovir, introducing a 2-hydroxyethoxymethyl group at position 9 of guanine lowered the basic strength of the molecule, whereas the acidic ionization constant remained unchanged. For desciclovir, basic strength was increased and acidic character was lost. For N2-acetylacyclovir, only acidic properties were present. Introduction of an acetyl group into the acyclovir molecule at the 2-NH₂ position hindered the basic character. It was concluded that the weak basic properties of this series are attributed to the imidazole moiety with the contribution of the 2-NH₂ group, while the acidic moiety is at the oxygen atom."

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
21	Acyclovir	2.34 9.23	U U	+H -H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, J. Med. Chem., 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
		2.16	U	+H	Potentiometric	H ₂ O	Balon K, Riebesehl BU, Muller BW, Drug liposome partitioning as a
		9.04	U	-H		t = 37 I = 0.15 (KCl)	tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999).
22	Adenine (C ₅ H ₅ N ₅) NH_2 1 NG_6 2 NG_6 NH_2 NH	$\begin{array}{c} 4.2 \pm 0.1 \\ 10.1 \pm 0.2 \end{array}$	U U	+H (N1) -H (N9)	¹⁵ N-NMR	H ₂ O <i>t</i> undefined <i>I</i> undefined	 Gonnella NC, Nakanishi H, Holtwick JB, Horowitz DS, Kanamori K Leonard NJ and Roberts JD, Studies of tautomers and protonation of adenine and its derivatives by nitrogen-15 nuclear magnetic resonance spectroscopy, <i>JACS</i>, 105, 2050–2055 (1983). NB: Apparent pK_a values were reported for two adenine derivatives in 66% aqueous DMF: 2-butyladenine, 4.3, 11.3; 8-butyladenine, 3.8, 11.7.
23	Adenosine $(C_{10}H_{13}N_5O_4)$	12.35 ± 0.03	Α	-H	calorimetric titration	H ₂ O t = 25 I = 0.00	 Izatt RM, Hansen LD, Rytting JH and Christensen JJ, Proton ionization from adenosine, <i>JACS</i>, 87, 2760–2761 (1965). NB: Adenosine (0.01 M) (and several related compounds) were titrated with 0.6 M NaOH in a precision titration calorimeter. I was extrapolated to zero. The result was assigned to an average for ionization of the 2' and 3' hydroxyl groups of the ribose.

45

(continued)

Appendix A (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
28	Alprenolol (C ₁₅ H ₂₃ NO ₂) HO CH ₂ NHCH(CH ₃) ₂ O CH ₂ CH=CH ₂	9.6	U	+H	Potentiometric		 Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C and Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta-adrenoceptor blocking agents, <i>Farmaco</i>, 45, 647–663 (1990); Mannhold R, Dross KP and Reffer RF, Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches, <i>Quant-Struct-Act. Relat.</i>, 9, 21–28 (1990). Cited in: Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004) (refs 275, 277).
29	Amantadine (C ₁₀ H ₁₇ N)	10.71 ± 0.01 10.14 ± 0.02	A	+H +H	Potentiometric	H_2O t = 20.0 I = 0.000 t = 37.0	Perrin DD, Hawkins I, The dissociation constant of the 1-aminoadamantane cation, <i>Experientia</i> , 28 , 880 (1972). "Solutions 0.005 M in 1-aminoadamantane hydrochloride were titrated potentiometrically with 1M carbonate-free potassium hydroxide under nitrogen, using the procedure of Albert and Serjeant ⁶ . The ionic strengths of the solutions were varied from 0.005 to 0.105 by adding potassium nitrate. Free hydroxyl ion concentrations were calculated from the measured pH values, using the ionic product of water and Davies equation ⁷ to approximate the required activity coefficients at the specified ionic strengths. At each temperature and ionic strength, 9 points were taken covering the range from 1/10 to 9/10 neutralization, and the pK_a' values calculated for these points were averaged. The maximum range in any set was within ± 0.05 pH unit. The resulting 'practical' pK_a values for 20° and 37° are given in the Table.

Extrapolation to zero ionic strength afforded thermodynamic pK_a
values of 10.71 ± 0.01 at 20° and 10.14 ± 0.02 at 37° ."

10.77

 $t = 37^{\circ}$ 10.12 10.21 10.23 10.26

 $t = 20^{\circ}$ 10.74

NB: Differs in some details from the account presented in APDS 12 (below), but is clearly the original work. A good model to follow.

10.79

10.80

10.84

10.30 10.34

10.92

30	Amantadine	10.71 ± 0.01	А	+H	Potentiometric	H_2O t = 20.0 I = 0.0	Kirschbaum J and Amantadine, <i>APDS</i> , 12 , 1983, 1–31. "Solutions of recrystallized amantadine were titrated potentiometrically with 0.1M carbonate-free potassium hydroxide
		$\begin{array}{c} 10.58 \pm 0.02 \\ 10.14 \pm 0.02 \end{array}$	A A			t = 25 t = 37	 at various temperatures and concentrations (95). Extrapolation to zero ionic strength gave pK_a values of 10.71 ± 0.01 at 20°, 10.58 ± 0.02 at 25° and 10.14 ± 0.02 at 37°. A linear plot gave -d(pK_a)/dT = 0.034. These pK_a results are similar to such alkyl analogues as 2-amino-2-methylpropane (pK_a = 10.68 at 25°) and 3-amino-3-ethylpentane (pK_a = 10.59), and support the conclusion (96) that there is little strain in this alicyclic molecule. 95. Perrin DD and Hawkins I, The dissociation constant of the 1-aminoadamantane cation, <i>Experientia</i>, 28, 880 (1972). 96. Korolev BA, Khardin AP, Radchenko SS, Novakov IA and Orlinson BS, Basicity and structure of mono- and diamino derivatives of adamantine, <i>Zhurnal Organicheskoi Khimii</i>, 14(8), 1632–1634 (1978). CA 89:196776n." NB: The value at 25°C was obtained by interpolation
31	Amdinocillin (mecillinam) (C ₁₅ H ₂₃ N ₃ O ₃ S)	2.65	U	-H	Potentiometric	H ₂ O	Bundgaard H, Aminolysis of the 6 - β -amidinopenicillanic acid
	N-CH=N-S-CH ₃	8.79	U	+H		t = 35 I = 1.0	mecillinam. Imidazolone formation and intramolecular participation of the amidino side chain, <i>Acta Pharm. Suec.</i> , 14 (3), 267–278 (1977).
		3					"The kinetics of reaction of mecillinam (I), with various primary amines in aqueous solution at 35 °C, were investigated The reactions with the amines are shown to be strongly facilitated by participation of the amidino side chain function (pK_a 8.8) in both its protonated and free base form."
32	Amiloride (C ₆ H ₈ ClN ₇ O) R_2 N CONHC(=NH)NH ₂				Potentiometric	H_2O t = 24 I unspecified	 Bock MG, Schlegel HB and Smith GM, Theoretical estimation of pK_a values of pyrazinylguanidine derivatives, <i>JOC</i>, 46(9), 1925–1927 (1981). Cited in Mazzo DJ, Amiloride hydrochloride, <i>APDS</i>, 15, 1986, 1–34.
	R ₁ N NH ₂						"The dissociation constant of amiloride from aqueous titration (18) indicates that amiloride is a moderately strong organic base with a p K_a of approximately 8.7 at 25 °C (amidino nitrogen). The p K_a of amiloride has also been determined using gas-phase proton affinities, enthalpies of solution and semi-empirical calculations (25, 26). These theoretically derived p K_a values agree
	R ₁ R ₂					^a solvent was 30% aqueous EtOH	 well with the experimentally determined value of pK_a = 8.7." 18. Rogers DH, Dept. Pharmaceutical Research and Development, Merck Sharp and Dohme Research Labs., West Point PA, internal communication
	NH ₂ Cl	8.70	U	+H			25. Aue DH, Webb HM, Bowers MT, Liotta CL and Alexander CJ and
	NH ₂ H	9.30	U	+H			Hopkins HP, Jr., A quantitative comparison of gas- and solution- phase basicities of substituted pyridines, <i>JACS</i> , 98 (3), 854–856 (1976)

	((1)
Appendix A	(continuea)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
	NH ₂ S-Ph	9.00	U	+H			26. Bock MG, et al., JOC, (1981) (above)
	N(CH ₃) ₂ Cl	8.76	U	+H			NB: No further experimental details given.
	NH ₂ F	9.00	U	+H			
	NH ₂ SCF ₃	8.22	U	+H			
	CH ₃ O Cl	8.25	U	+H			
	SCH ₃ Cl	8.05	U	+H			
	H Cl	7.10	U	+H			
	OH Cl	5.45	U	+H			
	SH Cl	4.00	U	+H			
	Cl Cl	6.60^{a}	U	+H			
33	Amiloride	8.67	U	+H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K a Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46(4), 558–570 (200 NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
		8.35	U	+H	Potentiometric	H_2O t = 25 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioni as a tool for the prediction of human passive intestinal absorpti <i>Pharm. Res.</i> , 16, 882–888 (1999).
34	Amino acid esters				Potentiometric	H_2O	Canel E, Gultepe A, Dogan A, Kihc E, The determination of
01	L-cysteine methyl ester	6.38 ± 0.02	U	+H	1 oterhiometrie	$t = 25.0 \pm 0.1$	protonation constants of some amino acids and their esters by
	e cystelle litettyr ester	9.17 ± 0.02	U	+H		I = 0.1 (NaCl)	potentiometry in different media, J. Solution Chem., 35(1), 5–19 (20
	L-cysteine ethyl ester	6.54 ± 0.03	Ŭ	+H		N_2 atmosphere	" the purity of substances used was measured by potentiometri
	e cystelle cutyl estel	9.36 ± 0.03	U	+H		112 unitosphere	titrations A 0.10 mol. L^{-1} hydrochloric acid solution was
	L-tyrosine methyl ester	7.04 ± 0.02	U	+H			prepared in water and standardized against sodium carbonate.
	e tyrosine meutyrester	9.73 ± 0.03	U	+H			Several 0.10 mol. L^{-1} sodium hydroxide solutions were prepared
	L-tyrosine ethyl ester	7.05 ± 0.02	Ŭ	+H			30, 50 and $70%$ (v/v) aqueous ethanol solutions and stored in gl
	E-tyrosine entyrester	9.71 ± 0.02	U	+H			bottles protected against the atmosphere. The base solutions we
	L-tryptophan methyl ester	7.10 ± 0.02	U	+H			standardized by titration with hydrochloric acid. All
	e dyptophan neutyrester	10.06 ± 0.05	Ŭ	+H			potentiometric measurements were performed at (25.0 ± 0.1)
	L-tryptophan ethyl ester	7.10 ± 0.05	U	+H			under a nitrogen atmosphere. An Orion 940A Model pH-ionme
	e tryptophan entyrester	10.79 ± 0.02	Ŭ	+H			fitted with a combination pH electrode containing a filling solut
	L-lysine methyl ester	6.98 ± 0.04	U	+H			of 0.10 mol.L^{-1} NaCl was used for measuring the cell emf values
	2 ijonie metryr coter	9.99 ± 0.05	U	+H			The potentiometric cell was calibrated before each experiment s
	L-lysine ethyl ester	9.99 ± 0.03 7.18 ± 0.04	U	+H			that the hydrogen ion concentration rather than the activity was
	E tyonic cutyr coter	10.32 ± 0.04	U	+H			measured. For all the solvent mixtures examined, reproducible
		10.32 ± 0.04	U	+11			ineasured. For an the solvent mixtures examined, reproducible

U

U

 4.96 ± 0.02

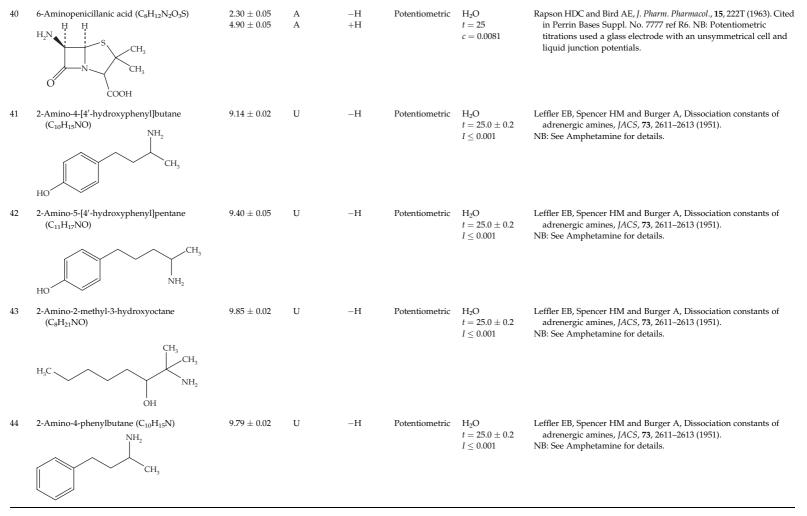
 7.10 ± 0.04

+H

+H

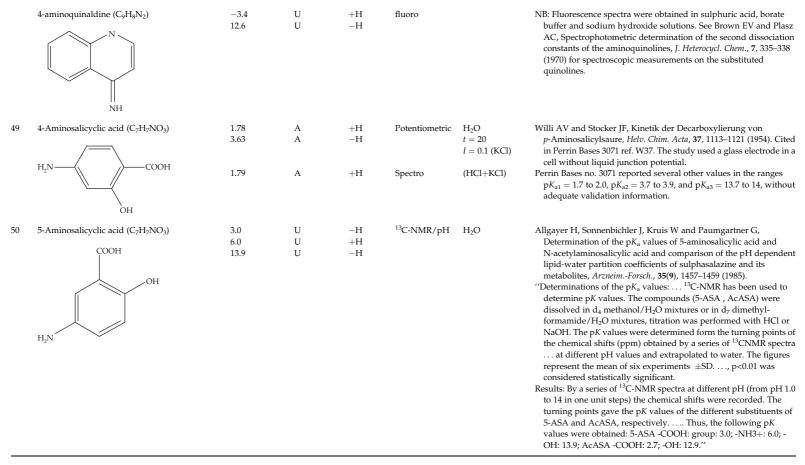
L-histidine methyl ester

values of autoprotolysis constants (Kapp) were calculated from several series of [H+] and [OH–] measurements at 0.10 mol.L $^{-1}$ NaCl."


NB: See Water, below. For all compounds in this report, the reliability was assigned as "uncertain". This was because there was generally not good agreement with literature values for the unesterified amino acids themselves.

	30% Et	он (U)	50% Et	он (U)	70% EtOH (U)		
Cpd	р <i>К</i> 1	pK ₂	р <i>К</i> 1	pK ₂	р <i>К</i> 1	pK ₂	
Cys-Me	9.23 ± 0.05	6.09 ± 0.03	9.34 ± 0.01	5.88 ± 0.02	10.82 ± 0.02	4.24 ± 0.02	
Cys-Et	9.37 ± 0.02	6.17 ± 0.02	9.48 ± 0.03	5.97 ± 0.02	11.13 ± 0.04	4.23 ± 0.02	
Tyr-Me	10.10 ± 0.02	6.73 ± 0.01	10.49 ± 0.05	6.42 ± 0.01	10.62 ± 0.02	6.17 ± 0.03	
Tyr-Et	10.13 ± 0.04	6.75 ± 0.02	10.52 ± 0.01	6.45 ± 0.01	10.63 ± 0.02	6.19 ± 0.04	
Try-Me	11.27 ± 0.02	6.78 ± 0.05	11.56 ± 0.04	6.51 ± 0.05	11.39 ± 0.07	6.29 ± 0.02	
Try-Et	11.28 ± 0.02	6.98 ± 0.02	11.70 ± 0.03	6.80 ± 0.01	11.77 ± 0.08	6.45 ± 0.05	
Lys-Me	9.80 ± 0.03	6.90 ± 0.02	9.52 ± 0.01	6.63 ± 0.03	9.12 ± 0.02	6.46 ± 0.02	
Lys-Et	9.70 ± 0.02	6.81 ± 0.02	9.45 ± 0.03	6.60 ± 0.04	9.00 ± 0.03	6.35 ± 0.04	
His-Me	6.72 ± 0.02	4.78 ± 0.02	6.54 ± 0.03	4.61 ± 0.01	6.34 ± 0.02	4.39 ± 0.04	

35	4-Aminobenzoic acid (C ₇ H ₇ NO ₂) H ₂ N-COOH	2.501 4.874	R R	+H -H	Potentiometric	H_2O t = 25 I = 0.005 to 0.03	Deviney ML, Anderson RC and Felsing WA, Application of the glass electrode to the determination of thermodynamic ionization constants of <i>p</i> -aminobenzoic acid, <i>JACS</i> , 79 , 2371–2373 (1957). Cited in Perrin Bases no. 3010, ref. D31. The study used a glass electrode without liquid junction potential, and simple linear extrapolation to zero ionic strength. Numerous other values cited as well.
36	4-Aminobenzoic acid	2.42	А	+H	Potentiometric, Conductance	H_2O t = 25	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type
		4.68	U	-H	Potentiometric	<i>I</i> = 0.05	compounds, <i>JACS</i> , 64 , 2905–2917 (1942). "The acid constants were determined from the pK _a values obtained from 0.05N NaOH electrometric titration curves (hydrogen electrode). Experimentally it was impossible to measure all the compounds by this method, since some were extremely insoluble (<i>sic</i>) in water, and because of their high molecular weights, the pK _a values were not significant. For the very insoluble (<i>sic</i>) sulfanilamides it was possible to use 50% ethanol as the solvent It was found that compounds in the sulphanilamide series, which were measurable in water, when measured in 50% ethanol gave a smooth curve of pK _a (H20) versus pK _a (50% EIGH). (NB: covering a pK _a range from ~2.8 to ~10.6). From this curve, it was possible to determine the acid constants for compounds in the same series Titration of acids weaker than (K _a = 2 × 10 ⁻¹¹) did not give curves


Appendix A (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
							sufficiently different from a blank titration to be reliable The basic groups were all weak and the results of 0.05-N HCl titrations were not significant unless the compounds were quite water soluble. Sulfanilamide, metanilamide and p-aminobenzoic acid were carefully studied by this method, using a hydrogen electrode. The base constants of sulphanilamide and p-aminobenzoic acid were also determined from conductance measurements on their hydrochlorides. These results agreed ver well with the water titration values." NB: the basic groups for poorly water soluble compounds were obtained by a similar method to that used for the corresponding acid groups, except that titrations used perchloric acid in glacial acetic acid.
37	4-Aminobenzoic acid	$\begin{array}{c} 2.41 \pm 0.04 \\ 4.87 \pm 0.02 \end{array}$	A A	+H -H	Potentiometric, Spectro	H_2O t = 25 I = 0.00	Van de Graaf B, Hoefnagel AJ and Wepster BM, Substituent effects 7. Microscopic dissociation constants of 4-amino- and 4- (dimethylamino)benzoic acid, <i>JOC</i> , 46 (4), 653–7 (1981). NB: The method gave a pK_a value for benzoic acid of 4.21 (comparable to the best in the literature) and hence the method was well validated. Results at low ionic strengths (0.04 to 0.06) were corrected to zero ionic strength.
38	4-Aminobenzoic acid	2.504	А	+H	Spectro	H_2O t = 25 I = 0.00	Klotz IM and Gruen DM, The isoelectric nature of sulfanilamide an p-aminobenzoic acid, <i>JACS</i> , 67 , 843–6 (1945). NB: Also reported pK_a values for dimethylsulfanilamide (2.058), diethylsulfanilamide (1.535), methyl <i>p</i> -aminobenzoate (2.404), ethyl <i>p</i> -aminobenzoate (2.366).
		2.45 4.85	A A	+H -H	Spectro	H_2O t = 25	NB: Robinson RA, Biggs AI, Ionization constants of p-aminobenzoi acid in aqueous solution at 25°, Aust. J. Chem., 10 , 128–134 (1957)
						I = 0.00	Also reported benzoic acid (4.203); methyl p-aminobenzoate (2.465); ethyl p-aminobenzoate (2.508); n-propyl p-aminobenzoat (2.487); and n-butyl p-aminobenzoate (2.472).
39	4-Aminobenzoic acid	2.46	U	+H		H_2O t = 50 I = 0.20	Otomo M, Fukui K and Kodama K, Heterocyclic azomethine compounds and their reduction products as analytical reagents. I Reaction of 1-picolylideneamino-2-naphthol with zinc(II), Bull. Chem. Soc. Jpn., 47(2), 455–457 (1974).

Appendix A (continued)

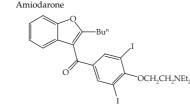
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
45	2-Amino-5-phenylpentane (C ₁₁ H ₁₇ N)	9.99 ± 0.05	U	-Н	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details.
46	Aminopyrine (aminophenazone) (C ₁₃ H ₁₇ N ₃ O) O O O O O O O O	5.0	U	+H	partition	H ₂ O	Shore PA, Brodie BB and Hogben CAM, The gastric secretion of drugs: A pH-partition hypothesis, <i>JPET</i> , 119 , 361–369 (1957).
47	Aminopyrine (aminophenazone)	5.06 ± 0.01	А	+H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14, 1405–1413 (1996). NB: See Acetaminophen for further details.
48	2-Aminoquinoline (C ₉ H ₈ N ₂)	-5.7 12.7	U U	+H -H	fluoro	H ₂ O t = RT I undefined	Kovi PJ, Capomachia AC, Schulman SG, Electronic spectra of 2-aminoquinoline and 4-aminoquinaldine: evidence for the cyclic amidine structures of the singly protonated cations, <i>Anal. Chem.</i> ,
		-9.08 7.34	U U	+H -H	Spectro		44, 1611–1615 (1972). "Electronic absorption, fluorescence, and IR spectroscopies have been employed to show that the singly protonated (at heterocyclic nitrogen) species derived from 2-aminoquinoline (I) and 4-aminoquinaldine (II) have the protonated amidine electronic structures in ground and lowest electronically excited singlet states. The neutral and doubly protonated compounds, however, appear to be well behaved arylamines and arylammonium ions, respectively, in ground and lowest excited singlet states. The anomalous pK_a values corresponding to ground and excited state prototropic equilibria of the I and II are attributed to the relative contributions of the basicity and acidity of the amidine species and those of the acidity and basicity of the arylamine and arylammonium ion species to the overall free energy of prototropic exchange."

(continued)

Appendix A	(continued)
------------	-------------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
51	Amiodarone (C ₂₅ H ₂₉ I ₂ NO ₃) $\downarrow \downarrow $	8.7 ± 0.2	U	+H	partition	H ₂ O t = 25.0 I = 0.15 (KCl)	 Krämer SD, Gautier J-C and Saudemon P, Considerations on the potentiometric log P determination, <i>Pharm. Res.</i>, 15(8), 1310–1313 (1998). "To determine aqueous pK_a values, titrations of 4 to 100 µmol compound in 20 ml 0.15M KCl, 20 ml methanol/ 0.15M KCl mixtures and in 20 to 90 ml of the biphasic system n-octanol/ 0.15 M KCl were performed on the PCA 101 titrator at 25 °C for amiodarone, metoprolol and ramipril and at 37 °C for atendol. The pK_a values of metoprolol, atendolol, and ramipril were determined in 0.15M KCl. For the extrapolation of the aqueous pK_a of amiodarone, we used the Yasuda-Shedlovsky plot (4). Apparent pK_a values (+ log [H₂O]) in the methanol/0.15M KCl mixtures at ratios between 47 and 71% (w/w) methanol were plotted against the inverse dielectric constant and the pK_a of the molecule in 100% aqueous solution was extrapolated by linear regression."
52	Amiodarone $ \begin{array}{c} & (\downarrow \downarrow$	8.7 ± 0.5	U	+H	surface potential vs pH	H_2O $t = 20 \pm 0.5$ I = 0.15 (NaCl)	Ferreira J, Brasseur R, Chatelain P and Ruysschaest J, Properties of amiodarone monolayer spread at the air-water interface, <i>J. Pharm. Pharmacol.</i> , 38(2) , 561–566 (1986). " the extrapolated pK ₁ and pK _a values at $\alpha = 0$ are identical (8.7 \pm 0.5). There are several reported pK _a values for amiodarone: 5.6, 7 (Andreason <i>et al.</i> 1981), 7.4 (Canada <i>et al.</i> , 1981) and 6.56 (Bonati <i>et al.</i> , 1984). The dispersion of the results and the low pK _a value obtained for a ternary amine might reflect the difficulties encountered in the determination of the aqueous dissociation constants of amiodarone, because of its low water solubility using classical potentiometric or UV spectrophotometric methods. This is also illustrated by the recent determination of a pK _a value of 9.12 (Gachon, 1981). The determinations. It is also closer to the expected value for any ternary amine several characteristics of amiodarone were determined at the air-water interface using the unique property of the compound to form a stable monolayer. These characteristics are the area occupied per molecule in the close-packed state (0.44 nme ² /molecule) and the pK _i (8.7). This approach combined with a semi-empirical conformation analysis gave a molecular picture of the amiodarone conformation and orientation at the air-water interface."

Alpha	р <i>К</i> і	p <i>K</i> a	
0.05	8.56	8.17	
0.10	8.66	7.94	
0.20	8.70	7.49	
0.30	8.74	7.20	
0.40	8.67	6.90	
0.50	8.76	6.80	


Andreason F, Agerback H, Bjerregaard P and Gotysch H, Eur. J. Clin. Pharmacol., **19**, 293–299 (1981).

Canada AT, Lesko LJ and Hafferjee CI, Curr. Ther. Res., 30, 968–974 (1981).

Gachon R, Sanofi-Research. Internal Scientific and Technical Report. (1981).

Plomp TA, Amiodarone, APDS, 20, 1-120 (1991).

"The apparent dissociation constant (pK_a) was determined spectrophotometrically by Bonati et al. (4) and found to be 6.56 ± 0.06 at 25 °C. This ... was substantially higher than the previous ... pK_a of 5.6 (5,7). Our pK_a measurements of solutions of 4 batches of amiodarone hydrochloride reference substance using the spectrophotometric method of Clarke et al. (8) showed a mean pK_a value of 6.64 ± 0.28 ... the pK_a value of solutions of 3 different reference batches of desethylamiodarone hydrochloride showed a mean value of 5.58 \pm 0.35. The pK_a value of both compounds was assessed by UV titration at λ_{max} of aqueous solutions containing 10 μ g/ml of the drugs respectively.... A range of pH 1.4 – 3.5 was obtained by addition of various volumes of 0.1M HCl, pH 5.5-8.8 by various volumes of phosphate/sodium hydroxide and borate/ sodium hydroxide buffers, while values to pH 11.4 were reached by addition of various volumes of 0.1M sodium hydroxide. All solutions were prepared ... by diluting methanolic stock solution of the drugs (10 mg/ml) ... to concentrations of 10 µg/ml. The pH values were checked at 20 °C using a standard pH meter.... The dissociation constant was determined according to the (standard spectrophotometric) equation.... In the dissociation constant experiments we also found that the UV absorption curves of amiodarone and desethylamiodarone recorded at the different pHs showed characteristic bathochromic shifts of the maximum absorbance (λ_{max}) from pH 5.5 to 8.8. A shift of λ_{max} from 242 nm to 252 nm and from 242 nm to 250 nm were observed respectively for amiodarone and desethylamiodarone with in both cases a decrease of the specific extinction. These findings were in good agreement with previously reported observations (4,7).

VU

 6.64 ± 0.28

+H

Spectro

(242 nm)

H₂O

t = 20.0

Append	ix A ([continued]

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
	Amiodarone, desethyl (desethylamiodarone) $(C_{23}H_{25}I_2NO_3)$ $\downarrow \qquad \qquad$	5.58 ± 0.35	VU	+H			 Bonati M, Gaspari F, D'Aranno V, Benfenati E, Neyroz P, Galletti and Tognoni G, Physicochemical and analytical characteristics o amiodarone, J. Pharm. Sci., 73(1), 829–830 (1984). Crispin S, Alexis J and Mouffe P, Methode de controle pour le chlorhydrate d'amiodarone - L3428 Qualité P. Report D.T. 8.029 S.A.Labaz 1980. Moffat AC, Jackson JV, Moss MS and Widdop B, Clarke's Isolatio and Identification of Drugs, 2nd ed., Pharmaceutical Press, London, pp. 344–345 (1986)."
54	Amiodarone $\begin{aligned} & \qquad $	6.56 ± 0.06	U	+H	Spectro	H2O t = 25.0 I controlled with NaCl Nonlinear fitting; triplicate	Bonati M, Gaspari F, D'Aranno V, Benfenati E, Neyroz P, Galletti I and Tognoni G, Physicochemical and analytical characteristics o amiodarone, <i>J. Pharm. Sci.</i> , 73 (1), 829–830 (1984). "According to a long-used method (Senstrom W and Goldsmith N <i>J. Phys. Chem.</i> , 30, 1683, 1926) the pK _a values were determined by UV titration (at λ_{max}) of aqueous solutions containing known amounts of amiodarone. A range of pH 1–5 was achieved by addition of hydrochloric acid, pH 5.8–9.2, by 0.05M borate phosphate, while higher values were obtained by addition of sodium hydroxide solutions. Sodium chloride was used to adjus the ionic strength. All solutions were prepared immediately befor use and all pH values were checked at 25 °C using a standard pH-meter. In the temperature range of 20–30 °C there was no substantial effect on the true pH of the solutions, but only 3–4 h after preparation we found a 10% decrease in amiodarone concentration at pH values >7.0. The extinction coefficient was related to different hydrogen ion concentrations to check the λ_{mi} shift. The dissociation constant (K _a) was determined according to the equation $E = (A_{H}[H+] + A_B x K_a)/([H+] + K_a)$ where AH an AB are the extinction coefficients when amiodarone exists under acidic and basic conditions, respectively."

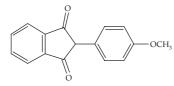
55	Amiodarone	8.73 ± 0.07	U	+H	Potentiometric	H_2O t = 25 I = 0.15 (KCl)	Sirius Technical Application Notes, vol. 2 , p. 114 (1995). Sirius Analytical Instruments Ltd., Forest Row and East Sussex, RH18 5DW, UK. NB: Extrapolated to 0% MeOH by Yasuda-Shedlovsky procedure from data in 49.7–75.5% aqueous MeOH. [Cited by Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref 278].
56	Amitriptyline (C ₂₀ H ₂₃ N) $(C_{20}H_{23}N)$ $(C_{20}H_{23}N)$ $(C_{20}H_{23}N)$	9.4	U	+H	soly	H_2O $t = 24 \pm 1$	 Green AL, Ionization constants and water solubilities of some aminoalkylphenothiazine tranquillizers and related compounds, <i>J. Pharm. Pharmacol.</i>, 19, 10–16 (1967). Cited in Blessel KW, Rudy BC, Senkowski BZ, Amitriptyline hydrochloride, <i>APDS</i>, 3, 1974, 127–148; N&K. "The dissociation constant for amitriptyline was determined using a graphical method involving the pH dependence of the water solubility. The value for the pK_a determined by this method was 9.4." NB: Solubilities in 0.01M NaOH or 0.01M buffers were measured by a combination of spectrophotometric and turbidimetric methods.
57	Amitriptyline	9.48 ± 0.1	U	+H	Potentiometric	H_2O t = 25 I undefined Ar atmosphere	Seiler P, Simultaneous determination of partition coefficient and acidity constant of a substance, <i>Eur. J. Med. Chem.</i> , 9, 663–665 (1974). Cited in: Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47, 1242–1250 (2004); (ref. 279). NB: Titrations were performed by autotitrator in the presence of high purity dodecane, to allow simultaneous measurement of the log P value. The pH meter was calibrated against three standard solutions.
58	Amitriptylline	9.49	U	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46 (4), 558–570 (2003). From extrapolation of aqueous-methanol mixtures to 0% methanol.
59	Amitriptyline	9.4	U	+H	Potentiometric	EtOH/H ₂ O	 Thoma K and Albert K, Fast method for the potentiometric determination of pK_a values in solvent mixtures, <i>Arch. Pharm. Weinheim</i>, 314, 1053–1055 (1981). "The potentiometric determination of the dissociation constants of amitriptyline HCl, doxepin HCl, imipramine HCl, and noxiptiline HCl in ethyl alcohol and water systems is described."
60	Ammonia NH ₃	9.28	U	+H	Conductance ($K_{\rm b} = 1.9 \times 10^{-5}$)	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, <i>International Critical Tables</i> , Vol. 6 , McGraw-Hill, NY 259–304 (1929). NB: Other pK_a values: $t = 0, 8.9; t = 5, 8.9; t = 10, 9.0; t = 15, 8.04$; and $t = 20, 8.08$.

ued)

СП	_
~	
- 00	

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)				
61	Amoxicillin (C ₁₆ H ₁₉ N ₃ O ₅ S) P -OHPh H_2 O O O O O O O O O O	2.4 7.4 9.6	บ บ บ	-H +H,-H -H,+		H ₂ O <i>t</i> = 22	Bird AE, Amoxicillin, <i>APDS</i> , 23 , NB: Cited Marshall AC, persona				
62	Amoxicillin	2.60 7.31 9.53	U U U	-H +H,-H -H,+H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Laz Artursson P, Absorption class molecular surface properties, NB: From extrapolation of aqu methanol.	ification of J. Med. Che	oral dr m., 46 (4	ugs bas), 558–5	ed on 570 (2003)
63	Amoxicillin	2.87 7.28 9.65	U U U	-H +H,-H -H,+H	kinetic	H_2O t = 35 I = 0.5 (KCl)	Zia H, Shalchian N and Borhani aqueous solutions, <i>Can. J. Pha</i> Bird AE, Amoxicillin, <i>APDS</i> , 2	rm. Sci., 12 ,			
64	Amoxicillin	9.63 2.67 7.11 9.55	U U U U	-11,+11 -H +H,-H -H,+H	Potentiometric Potentiometric Spectro	$H_{2}O$ t = 37 I = 0.5 (KCl)	Tsuji A, Nakashima E, Hamano properties of amphoteric β -lac 1059–1066 (1978). Cited in Bird (1994). NB: Also reported the	S and Yam tam antibi d AE, Amo	otics, J. xicillin,	Pharm.	Sci., 67 ,
							37	°C		35 °C	
							Compound pK _{a1} pK	a2 pKa3	pK _{a1}	pK _{a2}	pK _{a3}
							Ampicillin 2.67 6.9 Cyclacillin 2.64 7.1 Amoxicillin 2.67 7.1 Epicillin – –	18 –	- 2.63 2.77	- 7.16 7.17	- 9.55 -
65	Amoxicillin	2.63 7.55	U U	-H +H,-H	Potentio, Spectro	H ₂ O t = 23	Bundgaard H, Polymerization o mechanism of dimerization ar				

(1977); see also next entry. Cited in Bird AE, Amoxicillin, APDS, 23, 1–54 (1994).


66	Amoxicillin	2.61 7.30 9.45	บ บ บ	-H +H,-H -H,+H	Potentio, Spectro	H_2O t = 35 I = 1.0 (KCl)	m ar (1 N	 Bundgaard H, Polymerization of penicillins. II. Kinetics and mechanism of dimerization and self-catalyzed hydrolysis of amoxicillin in aqueous solution. <i>Acta Pharm. Suecica</i>, 14, 47 (1977). Cited in Bird AE, Amoxicillin, APDS, 23, 1–54 (1994). NB: The four microdissociation constants in aqueous KCl (for the four forms in which the carboxy group is ionised and 			rdrolysis of <i>ica</i> , 14 , 47–66 I–54 (1994). ous KCl (<i>I</i> = 1.0)
						-	T (°C)	pK _a NH ₂ (OH)	$pK_a NH_2 (O^-)$	р <i>К</i> а ОН (NH ₃ ⁺)	pK _a OH (NH ₂)
						_	23 35	7.58 7.33	8.49 8.24	8.70 8.51	9.61 9.49
67	Amphetamine (C ₉ H ₁₃ N)	9.94	Α	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	ar At "The po pi re (9) di of m al fr sc af W	nphetamines an <i>nal. Chem.</i> , 54 , 12 e apparent disso lated compound tentiometric motor of the tention of tention	d related symp 179–1191 (1971) ociation constan ds were determ ethods describe ost of the comp irst time; a few ' values for the have not alway or conceptual e ve have spared is study; every mental error. Fo ical grade puri trated with carl oH meter whose th 2 different b both amine salt as, done on diff). Ints (pKa') of the a sined by spectross ed by Albert and bounds in this stu- have been repor- same compound ys been in very g rrors can account no effort to achie effort was made r example, the co ty, dissolved in c boonate-free potas	ines, J. Assoc. Off. imphetamine- copic and Serjeant (1). The idy are being ted previously ls reported by yood agreement; if for these we a high degree to eliminate or ompounds were iarbon dioxide- sium hydroxide ecked before and nd 10.00) ere titrated and
68	Amphetamine	9.77 ± 0.05	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $l \le 0.001$	Leff ac "Th by cc oł	ler EB, Spencer lrenergic amine e apparent disso measuring the ncentrations of otained by addir	HM and Burge s, JACS, 73 , 261 ociation constar pH of a solution the amine and ng to a solution	nts of the amines on containing equ its salt. These so	were determined uivalent lutions were lculated amount

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
69	Amphetamine, 4-hydroxy (C ₉ H ₁₃ NO) $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ CH ₃ HO	9.70 10.53	A U	+H -H	Potentiometric Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.01	The concentrations ranged from $0.0003 - 0.001$ molal in salt and free base at the half-neutralization point. The pH values were measured with a hydrogen electrode or a pH meter. With the several compounds which were determined in both ways, good agreement was found " NB: The hydrogen electrode was held at $25.0 \pm 0.2^{\circ}$ C; it was calibrated daily against saturated potassium hydrogen tartrate (pH = 3.57 ± 0.02 at 25° C). The pH meter was a Beckman Model G. pH values were corrected for varying solution temperatures by a procedure of Hall and Sprinkle (<i>JACS</i> , 54 , 346 (1932)), where amine pH values change by -0.02 /deg, for amine with pK_b in the range 4–6. No exclusion of CO ₂ reported for pH meter. Despite the efforts made, the data reported in this paper cannot be assessed as anything but U = uncertain, due to acceptance of the $pK_a = pH$ of half-neutralization approximation Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Of Anal. Chem.</i> , 54 , 1179–1191 (1971). "Our spectroscopically determined pK_a 's (phenols) are in good agreement with those reported by others (12, 13). However, the potentiometric methods coupled with the Noyes method (16) of calculation for overlapping constants gave results for the phenol pK_a' that were lower by 0.1 and 0.2 unit for (4-hydroxyamphetamine) and (4-hydroxymethamphetamine), respectively, and very imprecise results for (synephrine). Consequently, the pK_a' values for these compounds were determined by the same procedures used by Kappe and Armstrong (13) (spectroscopic value used to determine amine value from titration curve)." 12. Lewis GP, The importance of ionization in the activity of sympathomimetic amines, <i>Br. J. Pharmacol.</i> , 9 , 488–493 (1954). 13. Kappe T and Armstrong MD, Ultraviolet absorption spectra ar apparent acidic dissociation constants of some phenolic amines, <i>J. Med. Chem.</i> , 8 , 368–374 (1965). 16. Britton HTS, <i>Hydrogen lons</i> , D van Nostrand, Princeton, NJ (195

70	Amphetamine, 3-methoxy ($C_{10}H_{15}NO$) CH_3 NH_2 OCH_3	9.86	Α	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i>, 54, 1179–1191 (1971). NB: See Amphetamine for further details.
71	Amphetamine, 4-methoxy (C ₁₀ H ₁₅ NO) CH ₃ O	9.99	А	+H	Potentiometric	H_2O t = 25.0 ± 0.5 I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i>, 54, 1179–1191 (1971). NB: See Amphetamine for further details.
72	Ampicillin (C ₁₆ H ₁₉ N ₃ O ₄ S) NH_2 Ph O O O O O O O O	$\begin{array}{c} 2.53 \pm 0.04 \\ 7.24 \pm 0.02 \end{array}$	A A	-H +H		H ₂ O	Ivashkiv E, Ampicillin, <i>APDS</i> , 2 , 1–61 (1973). "Rapson and Bird reported ionization constants for ampicillin to be: $pK_1 = 2.53 \pm 0.004$ and $pK_2 = 7.24 \pm 0.02$. Jacobsen and Russo- Alesi calculated pK_2 for ampicillin trihydrate to be 7.24. Hou and Poole reported $pK_1 = 2.66 \pm 0.03$ and $pK_2 = 7.24 \pm 0.03$. Rapson HDC and Bird AE, <i>J. Pharm. Pharmacol.</i> , Suppl.15, 222T (1963). Jacobson H and Russo-Alesi F, The Squibb Institute for Medical Research, private communication (1969). Hou JP and Poole JW, <i>J. Pharm. Sci.</i> , 58 , 1510–1515 (1969)." NB: See
73	COOH	$\begin{array}{c} 2.65 \pm 0.05 \\ 7.25 \pm 0.03 \end{array}$	A A	-H +H	Potentiometric	$\begin{array}{l} H_2O\\ t=25.0\pm0.1\\ I=0.00\\ N_2 \text{ atmosphere} \end{array}$	next entry. Hou JP and Poole JW, The aminoacid nature of ampicillin and related penicillins, <i>J. Pharm. Sci.</i> , 58 , 1510–1515 (1969). NB: Careful work, with N_2 atmosphere and KOH titrant prepared and stored carbonate-free according to Albert and Serjeant. Activity coefficients applied.
74	Ampicillin	2.67 6.95	U U	-H +H	Potentiometric Potentiometric	H_2O t = 37 I = 0.5 (KCl)	Tsuji A, Nakashima E, Hamano S and Yamana T, Physicochemical properties of amphoteric β-lactam antibiotics, <i>J. Pharm. Sci.</i> , 67, 1059–1066 (1978). Cited in Bird AE, Amoxicillin, <i>APDS</i> , 23, 1–54 (1994).
75	Ampicillin	$\begin{array}{c} 2.53 \pm 0.04 \\ 7.25 \pm 0.03 \end{array}$	A A	-H +H	Potentiometric	H_2O t = 25 c = 0.079	Rapson HDC, Bird AE, J. Pharm. Pharmacol., Suppl.15, 222T (1963). Cited in Perrin Bases Suppl. No. 7778. Ref. R6. NB: The study used pH measurements with a glass electrode and junction potentials.
76	Ampicillin	2.5 7.04 2.41 6.94	U A U A	-H +H -H +H	CE/pH (+ve ion mode) CE/pH (-ve ion mode)	H_{2O} t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 2.44 and 6.76.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
77	n-Amylpenilloic acid ($C_{13}H_{24}N_2O_3S$) $CH_3(CH_2)_4$ H H H H H H H H	1.48 5.16	U U	-H +H		H ₂ O t = 5	Woodward RB, Neuberger A and Trenner NR, <i>in</i> Clarke H, Johnson JR and Robinson Sir R, (eds.), The Chemistry of Penicillin, Princeton University Press, Princeton, NJ 415–422 (1949) .
78	n-Amylpenilloic acid	1.44 4.85	U U	−H +H		$\begin{array}{l} H_2O\\ t=25 \end{array}$	Woodward RB, Neuberger A and Trenner NR, <i>in</i> Clarke H, Johnson JR and Robinson Sir R (eds.), The Chemistry of Penicillin, Princeton University Press, Princeton, NJ (1949) 415–422.
79	Anagrelide (C ₁₀ H ₇ Cl ₂ N ₃ O) $\downarrow \qquad \qquad$	2.87 10	U U	+H -H	CE/pH	H_2O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 2.43 and 11.79.
80	Anhydrochlortetracycline (C ₂₂ H ₂₁ ClN ₂ O ₇) Cl CH_3 H_3C N CH_3 H H H H H H H H H H	3.28 5.37 -	บ บ บ	-H -H +H	Potentiometric	H_2O $t = 30.0 \pm 0.2$ I = 0.01 (KCl) N_2 atmosphere	 Doluisio JT and Martin AN, Metal complexation of the tetracycline hydrochlorides, <i>J. Med. Chem.</i>, 6, 16–20 (1963). NB: Metal-free solutions of the tetracycline were titrated with standard NaOH solution and the pH measured. No details were given of the pH meter calibration. Metal stability constants were determined from identical titrations in the presence of varying concentrations of nickel(II), zinc(II) or copper(II) ions.

81 Anisindione (C₁₆H₁₂O₃)

-H

U

4.13

Spectro

 $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)

H₂O

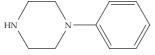
Stella VJ and Gish R, Kinetics and mechanism of ionization of the carbon acids 4'-substituted 2-phenyl-1,3-indandiones, J. Pharm. Sci., 68(8), 1047–1049 (1979).

"The ionization kinetics of 1,3-diketone carbon acids are slow relative to those of classical acids and bases. The ionization kinetics of three 4'-substituted 2-phenyl-1,3-indandiones, 4'-chloro-4'methoxy-, and 2-phenyl-1,3-indandione itself, were studied at 25° and ionic strength 0.1 using stopped–flow spectrophotometry and a pH jump technique."

Table I. Macroscopic Ionization Constants for Anisindione, Phenindione, and Clorindione determined spectrophotometrically at $25\pm0.1^\circ$ and $\mu=0.1$ with sodium chloride.

		_	Literature
Compound	λ (nm)	р <i>К</i> а	pK _a values
Anisindione	330	4.13	4.09, 4.25, 5.6
Phenindione	326	4.09	4.10, 4.13, 5.4
Clorindione	284	3.59	3.54, 3.72, 4.8

NB: This data is in close agreement with data reported previously for 1 aqueous methanol solutions: Linabergs Y, Neiland, O, Veis A,


Latu AN and Vanag G, Acidity and enolization of 2-aryl-1,3indandiones. Dokl. Akad. SSSR, 154, 1385-8 (1964); Eng. Trans., 154, 184 (1968). Numerous other indandione pK_a values were also reported. Apomorphine (C₁₇H₁₇NO₂) 7.0, 7.2 U +HMuhtadi FJ and Hifnawy MS, Apomorphine hydrochloride, APDS, 8.9 U -H20, 121-171 (1991). OH Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, Biochem. Z., 162, 289-353 (1925). CH₀O H ĊH. Apomorphine 7.20 U +HSpectro H₂O Kolthoff IM, The dissociation constants, solubility product and 8.92 U -Ht = 15titration of alkaloids, Biochem. Z., 162, 289-353 (1925). Cited in c = 0.0005 to Perrin Bases 2860 ref. K47. NB: See Aconitine for details. 0.002

(continued)

82

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
84	Apomorphine	7.0	U	+H			Foye 1; also Clarke p. 357.
85	Aprindine (C ₂₂ H ₃₀ N ₂)	$\begin{array}{c} 8.9 \\ 3.79 \pm 0.02 \\ 9.43 \pm 0.01 \end{array}$	U U U	-H +H +H	Potentiometric	40% EtOH t = 25.0	Mannhold R, Rodenkirchen R and Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i> , 34 , 407–409
		4.53 10.16	U U	+H +H		H ₂ O	(1984). NB: pK_a values were determined by potentiometric microtitration. Ethanol-water (40:60) as solvent and drug concentrations of 0.6 mmol/l were used according to the low solubility and availability of the test compounds. pK_a taken as the apparent pH of half-neutralization. Mean of three determinations These values were converted to apparent values in water by adding 0.74, based on the differences in the pK_a values for mebeverine and tiapamil, both of which were sufficiently soluble for direct titration in water.
86	Arecaidine (C ₇ H ₁₁ NO ₂)	9.07	A	+H	Potentiometric	H ₂ O <i>t</i> = 25	Chilton J and Stenlake JB, Dissociation constants of some compound: related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, J. Pharm. Pharmacol., 7, 1004–1011 (1955). Cited in Perrin 2862 ref. C27.
87	Arecaidine methyl ester (C ₈ H ₁₃ NO ₂)	7.64	А	+H	Potentiometric	H ₂ O <i>t</i> = 25	Chilton J and Stenlake JB, Dissociation constants of some compounds related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, J. Pharm. Pharmacol., 7, 1004–1011 (1955). Cited in Perrin 2862 ref C27.
88	Arecoline (C ₈ H ₁₃ NO ₂)	7.61	U	+H	Potentiometric	H ₂ O <i>t</i> = 35	Burgen ASV, Comparative activity of arecoline and arecoline <i>N</i> -metho salt, <i>J. Pharm. Pharmacol.</i> , 16 , 638 (1964).

89	Arecoline	7.41	U	+H	Potentiometric	H ₂ O	Muller F, Z. Elektrochem., 30, 587 (1924). Cited in Perrin Bases 2864
						t = 17.5	ref. M60. NB: Study used measurements of pH using hydrogen
							electrodes in an asymmetric cell with liquid junction potentials.
90	1-Arylpiperazine derivatives	9.02 (20)	U	+H	Spectro	$H_2O t = 20$	Caccia S, Fong MH and Urso R, Ionization constants and partition
	1-Phenylpiperazine (C ₁₀ H ₁₄ N ₂)	8.29 (37)	U	+H	$(\lambda = 250 \text{ to})$	t = 37	coefficients of 1-arylpiperazine derivatives, J. Pharm. Pharmacol.,
					280 nm)	I uncorrected	37, 567–570 (1985).

Waller 1, 2. Elektrochem., 30, 307 (1724). Cited in Fernin bases 2004
ref. M60. NB: Study used measurements of pH using hydrogen
electrodes in an asymmetric cell with liquid junction potentials.
Caccia S, Fong MH and Urso R, Ionization constants and partition
coefficients of 1-arylpiperazine derivatives, J. Pharm. Pharmacol.,
37, 567–570 (1985).
"The comparative ionization constant and lipophilicity, as
determined by n-octanol aqueous buffer partition, of 14
1-arylninerazines were investigated The ionization constant

1-arylpiperazines were investigated.... The ionization constant varied little across the entire series..."

N-aryl substituent	nK	р <i>К</i> _{а37}	∆pK _a ∕ ∆t	N-aryl substituent	р <i>К</i> _{а20}	nK	∆pK _a ∕ ∆t
it all yt substituent	Pr a20	Pra3/	Д	A uryt substituent	Pr a20	Pra3/	40
Phenyl	9.02	8.29	0.73	2-Methoxyphenyl	9.37	8.91	0.46
2-Pyrimidinyl	8.88	8.75	0.13	2-Methylphenyl	9.28	9.14	0.14
5-Fluoro-	8.91	8.50	0.41	2-Chlorophenyl	9.13	8.94	0.19
2-pyrimidinyl							
2-Thiazolyl	8.39	7.94	0.45	3-Chlorophenyl	8.85	8.64	0.21
2-Pyridyl	8.90	8.59	0.31	4-Chlorophenyl	8.90	8.49	0.41
2-Quinolinyl	8.82	8.76	0.07	3-Trifluoromethylphenyl	8.85	8.66	0.19
1,2-Benzisothiazol- 3-yl	ND	8.68	ND	4-Fluorophenyl	8.98	8.55	0.43

NB:

(1) The range of pK_a values for each temperature is not really as small as the authors claimed. Further, the temperature dependences $(\Delta p K_a / \Delta t)$ are interesting, in that the compounds fall into three distinct groups, based on the N-aryl substituent: high (phenyl); medium (5-fluoro-2-pyrimidinyl; 2-thiazolyl; 2-pyridyl; 2-methoxyphenyl; 4-chlorophenyl; 4-fluorophenyl); and low (2-pyrimidinyl; 2-quinolinyl; 2-methylphenyl; 2-chlorophenyl; 3-chlorophenyl; 3-trifluoromethylphenyl). (2) Each compound should have another pK_a value (+H) in the

region 1–3, due to protonation of the aromatic amine nitrogen.

Appendix .	A (cont	inued)
------------	---------	--------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
91	Ascorbic acid ($C_6H_8O_6$) OH OH HO OH	$\begin{array}{c} 4.05 \pm 0.01 \\ 11.62 \pm 0.04 \end{array}$	A U	-H -H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, J. Pharm. Biomed. Anal., 14, 1405–1413 (1996). NB: See Acetaminophen for further details.
92	Ascorbic acid	$\begin{array}{l} {\rm GLp}K_{\rm a}{\rm :} \\ {\rm 4.03}\pm 0.01 \\ {\rm 10.95}\pm 0.02 \\ {\rm A\&S:} \\ {\rm 4.03}\pm 0.02 \\ {\rm 11.2}\pm 0.15 \end{array}$	A U U U	H H H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometri determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details.
93	Ascorbic acid	4.25 11.79	A U U	-H -H -H -H	Conductance method not given	$\begin{array}{l} H_2O \\ t = 25.00 \pm 0.01 \\ I = 0.00 \end{array}$	 Apelblat A, Manzurola E and Orekhova Z, Electrical conductance studies in aqueous solutions with ascorbate ions, <i>J. Solution Chem</i>. 35, 879–888 (2006). NB: Obtained from measurements on dilute solutions of the sodium, magnesium, calcium and ferrous salts of

values: t = 30.00, 4.29; t = 37.00, 4.28 and t = 40.00, 4.27. Also cited numerous literature values, with the observation that the values

were "not particularly close to each other." Lavrenov SN and Preobrazhenskaya MN, L-Ascorbic acid: Properties and ways of modification, *Pharmaceutical Chemistry Journal*, **39**(5) 251–264 (2005); Translated from: *Khimiko-Farmatsevticheskii Zhurnal*, Vol. **39**(5), 26–39 (2005). NB: Cited Seib PA, Tolbert BM. Ascorbic acid: Chemistry, metabolism and uses, Adv. in Chemistry Series, ACS, Washington DC (1982).

94	Aspartame (C ₁₄ H ₁₈ N ₂ O ₅) HOOC H_2N H_2N O C_6H_5	$\begin{array}{rrrr} 3.19 \ \pm \ 0.01 \\ 7.87 \ \pm \ 0.02 \end{array}$	A A	-H +H	Potentiometric	H ₂ O t = 25.0 I = 0.100 (NaCl)	Skwierczynski RD and Connors KA, Demethylation kinetics of aspartame and L-phenylalanine methyl ester in aqueous solution, <i>Pharm. Res.</i> , 10(8) , 1174–1180 (1993). NB: L-phenylalanine methyl ester; $pK_a = 7.11 \pm 0.02$.
95	Aspirin (C ₉ H ₈ O ₄)	3.565	Α	-H	Spectro	H ₂ O t = 17 I = 0.00	 Edwards LJ, The hydrolysis of aspirin, <i>Trans. Farad. Soc.</i>, 46, 723–735 (1950). NB: A very detailed account, using a spectrophotometric method based on the method of Flexser, Hammett and Dingwall (1935). pH values were calculated for acetic acid-acetate buffers using the electrometric data of Harned and Ehlers. Activity coefficient corrections used the full Debye-Huckel equation.
96	Aspirin	3.47 ± 0.01	А	-H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a = 3.50 \pm 0.01$ at I = 0.15 M (KCl).
		3.41	А	-H	Potentiometric	H_2O t = 37 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999). NB: Also reported the following values: Allopurinol, 9.00; Moxonidine, 7.36; Nizatidine; 2.44, 6.75; Olanzapine, 5.44, 7.80; Paromomycin, 5.99, 7.05, 7.57, 8.23, 8.90; Rifabutine, 6.90, 9.37 and Terbinafine, 7.05.
97	Aspirin Balana angla I	8.00	11	-H	Potentiometric	DMF	Kildsig DO, Denbo R and Peck GE, Structural differences in solutions
	Polymorph I Polymorph II	8.99 9.19	U U	–н –Н			derived from polymorphic modifications of aspirin, <i>J. Pharm. Pharmacol.</i> , 23 , 374–376 (1971).
							"Differences in the structure of solutions derived from 2 polymorphic modifications of aspirin were demonstrated through differences in apparent pK_a values. Polymorph I was prepared by slow crystallization at room temperature from a saturated solution of aspirin in 95% ethanol. Polymorph II was prepared by crystallization from a saturated solution of aspirin in n-hexane at room temperature. The apparent pK_a 's were determined in dimethylformamide using tetrabutyl-ammonium hydroxide (in methanol-benzene solvent) as the titrant. The pK_a differences were ascribed to differences in intra- and intermolecular hydrogen bonding of the solute."

Conditions Ionization t°C; / or c M Name pK_a value(s) Data quality Method Comments and Reference(s) No. type NB: These data are very curious. It is difficult to imagine the hydrogen bonding interactions described for DMF solutions (and the consequent apparent pKa differences) persisting in an aqueous environment. If these polymorphic differences persisted in DMF solution, then NMR and infrared solution spectra would be expected to confirm the data. 98 Astemizole (C28H31FN4O) 4.85 U -HCE/pH H₂O Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB U 8.69 +H(+ve ion mode) t = 25and Thompson RA, High-throughput screening of pKa values of I = 0.025pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, Rapid Commun. Mass Spectrom., 17, 2639-2648 (2003). NB: Reported predicted values (ACD Labs) of 6.8 and 9.03. 9.60 U Schurmann W and Turner P. Membrane model of the human oral 99 Atenolol (C14H22N2O3) +HPotentiometric H₂O t = 21 - 24 (RT) mucosa as derived from buccal absorption performance and HO CH₂NHCH(CH₃)₂ physicochemical properties of the beta-blocking drugs atenolol and propranolol, J. Pharm. Pharmacol., 30, 137-147 (1978). "The pK_a was taken as the midpoint of the buffering plateau of the titration curve. The titration curves were established at room temperature from the measurement of the pH of a series of test tubes containing a constant volume of drug solution to which increasing volumes of titrant had been added. The pH-

independent water solubility of the free base, So, was determined ... from the pH and the final concentration of a drug solution that had been titrated with NaOH until precipitation became visible, according to So = $S/(1 + 10^{pKa - pHlim})$ where S is the drug concentration and the pHlim the pH at the titration point when solute crystallization is imminent. ... The buccal absorption characteristics and physicochemical properties of the betaadrenoceptor blocking agents propranolol hydrochloride (I) and atenolol (II) were investigated The dissociation constants, solubilities of free base, and n-heptane partition coefficients show that I in its unionized form is much more lipophilic than II, both drugs being bases with a similar pK_a . Buccal absorption was studied under conditions of varying drug concentration, contact time, and pH, and controlled through the use of a nonabsorbable marker. The absorption findings are in general agreement with the pH partition theory. A new compartmental diffusional model that

100	Atenolol	9.58 ± 0.01	А	+H	Potentiometric	H_2O t = 25.0 I = 0.15
		9.25	U	+H	Potentiometric	(NaCl) H ₂ O t = 37 I = 0.15 (KCl)
101	Atenolol	9.56 ± 0.00	А	+H	partition	H_2O t = 25.0 I = 0.15 (KCl)
		9.54 ± 0.01	А	+H	Potentiometric	H_{2O} t = 25.0 I = 0.15 (KCl)
102	Atenolol	9.64	А	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025
103	Atorvastatin (C ₃₃ H ₃₅ FN ₂ O ₅) $ \begin{array}{c} & & \\ & & $	4.46	U	-H	soly	H ₂ O t = 30 l uncontrolled

includes membrane storage and a hypothetical aqueous pH buffering surface system allowed a more exhaustive interpretation to be made.... With human oral mucosa the intrinsic pH was near 6.7, and the buffering capacity of the system about 2.86...."

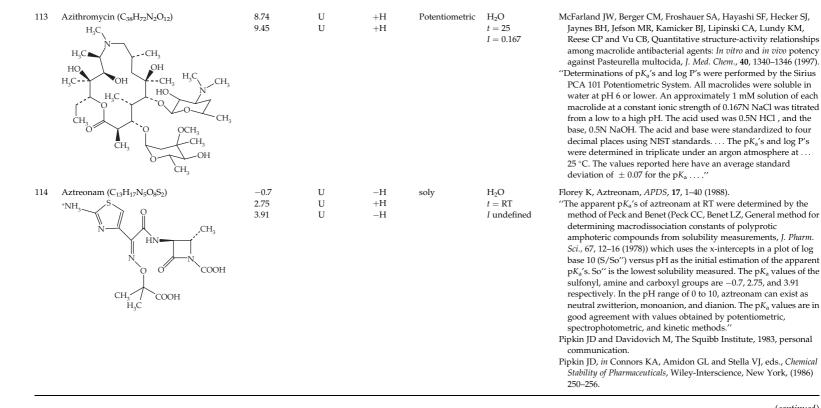
Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, *J. Pharm. Biomed. Anal.*, **14**, 1405–1413 (1996). NB: See Acetaminophen for further details.

Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, *Pharm. Res.*, 16, 882–888 (1999).

Krämer SD, Gautier J-C and Saudemon P, Considerations on the potentiometric log P determination, *Pharm. Res.*, **15(8)**, 1310–1313 (1998). NB: $pK_a(37 \ ^\circ C) = 9.26 \pm 0.00$. See Amiodarone for details

Sirius Technical Application Notes, vol. 2, pp. 67–68 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 0.47–0.95 mM.

Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, *Rapid Commun. Mass Spectrom.*, **17**, 2639– 2648 (2003). NB: Reported a predicted value (ACD Labs) of 9.17.


Kearney AS, Crawford LF, Mehta SC, Radebaugh GW, Interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxy-acid forms of the HMG-CoA reductase inhibitor, CI-981, *Pharm. Res.*, **10**, 1461–1465 (1993).

"The pH dependence of the interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of calcium (R-(R*,R*))-2-(4-fluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)-3phenyl- 4-((phenylamino)-carbonyl)-1H-pyrrole-1-heptanoate (CI-981; atorvastatin calcium) are described. Over a pH range of 2.1-6.0 and at 30 °C, the apparent solubility of the sodium salt of CI-981 increases about 60-fold, and the profile yields a pK_a for the terminal carboxyl group of 4.46. In contrast, over a pH range of 2.3-7.7 at the same temperature, the apparent solubility of the lactone form of CI-981 varies little, and the mean solubility is 1.34 mcg/ml. The kinetics of interconversion and the equilibrium between the hydroxyacid and lactone forms have been studied as a function of pH, buffer concentration, and temperature at a fixed ionic strength. The rate constant for lactone formation is well described by specific acid-catalyzed and spontaneous lactonization pathways, whereas the rate constant for lactone hydrolysis is well described by specific acid-, water-, and specific base-catalyzed pathways."

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)	
104	Atrazine (C ₈ H ₁₄ ClN ₅) (CH ₃) ₂ CHNH \sim Cl	1.85 ± 0.04 U	+H	1	H ₂ O t undefined I undefined	 Weber JB, Spectrophotometrically determined ionization cons of 13 alkylamino-s-triazines and the relationships of molecu structure and basicity, <i>Spectrochim. Acta</i>, 23A, 458–461 (1967) NB: Calculations were performed according to Albert and Ser No experimental details were given. Also reported the follo pK_a values: 	cular 67) . erjeant	
	NHCH ₂ CH ₃						Sym-triazine derivative pK_{a1} pK_{a2}	
							$\begin{array}{llllllllllllllllllllllllllllllllllll$	azine)
105	Atropine (C ₁₇ H ₂₃ NO ₃) CH ₃	9.85	U	+H	spectro	H ₂ O t = 18 c = 0.005 to 0.01	Kolthoff IM, The dissociation constants, solubility product an titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited Perrin DD, Dissociation constants of bases, Butterworths, Lo 1965, no. 2866, ref. K47. NB: See aconitine for details.	d in
	C ₆ H ₅ C ₆ H ₅ CH ₂ OH	10.20	U	+H	Potentiometric	H ₂ O t = 18 c = 0.005 to 0.01	Potentiometric study used hydrogen electrode with liquid jur potentials Ref. M60 Muller F, Z. Elektrochem., 30 , 587 (1924).	

106	Atropine	9.66	U	+H	Potentiometric	H ₂ O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46 (4) 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
107	Atropine	5.93	U	+H	Potentiometric	Acetic acid	Al-Badr AA and Muhtadi FJ, Atropine, <i>APDS</i> , 14 , 325–380 (1985). NB: No reference or supporting data given. NB: differing values in Merck Index (4.35), Foye (9.25), Connors <i>et al.</i> (9.8 at 18 °C; 10.2 at 16.5 °C). There is confusion here between pK_b and pK_a values, especially the Merck value. The value of 5.93 comes from Medwick T, Kaplan G, Weyer LG, Measurement of acidity and equilibria in glacial acetic acid with the glass calomel electrode system, <i>J. Pharm. Sci.</i> , 58 , 308–313 (1969); see also Bases (nonaqueous titrations). This value is mainly relevant to quantitative analysis by nonaqueous titration.
108	Azapropazone (apazone) ($C_{16}H_{20}N_4O_2$) H_3C N	6.3	U	+H	soly	H ₂ O <i>t</i> undefined <i>l</i> undefined	Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i> , 9 (5), 767–793 (1983). NB: See Ibuprofen for further details. " pK_a determination was only practicable by the solubility procedure, the spectrophotometric methods failed In some cases solubility data enable the determination of dissociation constants as described by Krebs and Speakman. The pK_a value results in the intercept with the abscissa when plotting log ([S/So] – 1) versus pH."
109	Azapropazone	6.58	U	+H	Potentiometric	50% EtOH t undefined I undefined	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test, <i>ArzneimForsch.</i> , 24 , 494–499 (1974).
		6.4	U	+H		80% Me cellosolve	NB: Literature values were obtained from the pH of half- neutralization.
110	Azathioprine (C ₉ H ₇ N ₇ O ₂ S)	7.94 ± 0.04	А	-H	soly	H ₂ O	Newton DW, Ratanamaueichatara S and Murray WJ, Dissociation,
110	H_{2}	7.87 ± 0.04	A	-H	Spectro	t = 25 I = 0.00	 Netword DW, Katalaha dechadara 5 and Multay WJ, Dissociation, solubility and lipophilicity of azathioprine, Int. J. Pharm., 11, 209–213 (1982). "The pK_a of I (azathioprine) was determined by solubility and spectrophotometric methods. Triplicate samples of I in masses that were incompletely soluble were equilibrated at 25 °C for 48 h with 10 mL of 0.02N buffer at pH 4.00 and with 10 mL of 0.025M tromethamine buffers at six pH values from 7.00 to 8.60. The pH values of samples at 25 °C were recorded, then the filtrates were diluted and I concentrations were determined from absorbances at 280 nm by comparison to known I solutions at the same pH values Seven 2.89 × 10⁻⁵ M I solutions in 0.025 M tromethamine buffers wer prepared over the range of pH 7.30 – 8.40 at 25 °C. Absorbance

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
111	Azelastine (C ₂₂ H ₂₄ ClN ₃ O) O N $-CH_3$ N CH_3	9.82	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	values of samples were determined at 226 nm, the wavelength of maximum separation between spectra of the undissociated and anionic species Correction of the solubility/pH value to zero ionic strength (according to the method of Albert and Serjeant) gives $pK_a = 7.99$." NB: Accuracy was limited by a difference of only 0.24 abs units between the anion and neutral forms. Two pK_a values have been also recorded for 6-mercaptopurine, nos. 782–783): pK_{a1} 7.77 and 7.7 (Albert and Brown, <i>J. Chem. Soc</i> , 2060–2071 (1954)). pK_{a2} 10.84 and 11.17 (Fox <i>et al.</i> , <i>JACS</i> , 80 1669–1675 (1958)). Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 9.16.
112	Azelastine	9.54	U	+H	Potentiometric	H_2O t = 25 I = 0.025	 Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. not given: potentiometric titration.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
115	Azuloic acid (C ₁₁ H ₈ O ₂)	5.11 ± 0.03	U	-H	Spectro	H_2O t = 20 to 25 I = 0.008	 Lichtenwalner MR and Speaker TJ, Substituent constants of azulene, <i>J. Pharm. Sci.</i>, 69, 337–339 (1980). "The ionization constants in water for six 3-substituted azuloic acids were determined spectrophotometrically. Conversion of these physical constants to their pK_a values allowed a set of Hammett-type sigma values for the substituents on these acids to be calculated. Determination of partition coefficients for nine 1-substituted azulenes allowed Hansch-type values to be determined, using azulene as the model compound. The method employed for the determination of ionization constants were
	3-Cl (C ₁₁ H ₇ ClO ₂) 3-Br (C ₁₁ H ₇ BrO ₂) 3-COCH ₃ (C ₁₃ H ₁₀ O ₃) 3-CHO (C ₁₂ H ₈ O ₃)	$\begin{array}{l} 4.95 \pm 0.05 \\ 4.87 \pm 0.05 \\ 4.76 \pm 0.07 \\ 4.51 \pm 0.04 \end{array}$	U U U U				adapted from that of Albert and Serjeant. The acid of interest was dissolved in 0.01N HCl, 0.01N NaOH, or a graded series of buffers having pH values that bracketed the anticipated pK_a . The pH values of the resulting solutions were recorded to a
	3-NO ₂ (C ₁₁ H ₇ NO ₄)	4.32 ± 0.06	U				thousandth of a pH unit, and the desired spectral characteristics were measured using a recording spectrophotometer. All measurements were made between 20 and 25° to eliminate making temperature corrections."
116	Bamipine (C ₁₉ H ₂₄ N ₂)	$\begin{array}{c} 3.34 \pm 0.04 \\ 8.04 \pm 0.11 \end{array}$	U U	+H +H	Potentiometric	H_2O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details.
117	Barbituric acid (C ₄ H ₄ N ₂ O ₃)	4.06	U	-H	Potentiometric	H ₂ O	Rubino JT, Electrostatic and non-electrostatic free energy
	H H O NH					$t = 25 \pm 0.5$ N ₂ atmosphere	 contributions to acid dissociation constants in cosolvent-water mixtures, <i>Int. J. Pharm.</i>, 42, 181–191 (1988). "Values of the molecular radii were estimated from molar volumes Bondi (1968) All <i>pK</i>_a values were adjusted for the solvent and concentration effects using the appropriate form of the Debye Huckel equation Thermodynamic values for dissociation constants of barbituric acid and several derivatives were determined in solvents containing 0–50% ethyl alcohol in water Results indicated that the type of hydrophilic functional group has a large influence on the non-electrostatic effect, necessitating a

Vol. fraction EtOH		
0.1	4.03	U
0.3	3.95	U
0.5	4.06	U
0.0	4.00	0

Α

Α

А

-H

-H

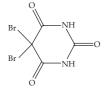
Potentiometric H2O

Potentiometric H2O

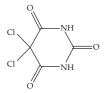
 $t = 25.0 \pm 0.02$

 $t = 25.0 \pm 0.02$

 $t = 25.0 \pm 0.02$


I = 0.00

H₂O


I = 0.00

I = 0.00

118 Barbituric acid, 5,5-dibromo (C₄H₂Br₂N₂O₃) 5.68 ± 0.02

119 Barbituric acid, 5,5-dichloro (C₄H₂Cl₂N₂O₃)

NH

Barbituric acid, 5,5-dimethyl ($C_6H_8N_2O_3$) 8.51 ± 0.02

 5.55 ± 0.02

-H

–H Potentiometric

model modification which divided lipophilic and hydrophilic components. Lipophilic nonelectrostatic effects correlated well with the hydrophobic surface area and log octanol-water partition coefficient of the solute. It was suggested that a linear free energy approach can be used to estimate dissociation constant changes for weak organic electrolytes in cosolvent-water mixtures."

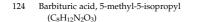
- NB: Some standard acids, for example, acetic, were also titrated, with good agreement with the literature.
- McKeown RH, First thermodynamic dissociation constants of 5,5disubstituted barbituric acids in water at 25 °C. Part 1, JCS. Perkin II, 504–514 (1980).
- NB: Thermodynamic value refined for activity coefficients, [H+], and [OH-]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

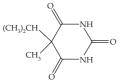
 McKeown RH, First thermodynamic dissociation constants of 5,5disubstituted barbituric acids in water at 25 °C. Part 1, *JCS. Perkin II*, 504–514 (1980).
 NB: Thermodynamic value refined for activity coefficients, [H+], and ICH 1. Previte uplicated through measured pK, values for

and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

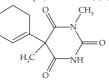
 McKeown RH, First thermodynamic dissociation constants of 5,5disubstituted barbituric acids in water at 25 °C. Part 1, JCS. Perkin II, 504–514 (1980).
 NB: Thermodynamic value refined for activity coefficients, [H+],

and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

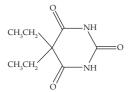

(continued)


120

CH.


CH₂

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments a	and Reference(s)		
121	Barbituric acid, 5,5-dimethyl	8.50 ± 0.03	A	-Н	Potentiometric	$H_2O t = 25.0 \pm 0.02 I = 0.00$	Universit NB: Therm and [OH	y of Otago (1977). odynamic value refir –]. Results validated nd 5,5-diethylbarbitt	ed for activity through meas	ured pK_a values for
							t (°C)	р <i>К</i> а	t (°C)	р <i>К</i> а
							5 10 15 20 25	8.974 (0.01) 8.809 (0.01) 8.730 (0.01) 8.618 (0.02) 8.497 (0.01)	30 35 40 45	7.406 (0.02) 7.336 (0.02) 7.249 (0.02) 7.186 (0.03)
							$\Delta G^{\circ} = 11.6$	namic functions for ic kcal/mol; $\Delta H^\circ = 7.5$ 3 cal/mol/K		
122	Barbituric acid, 5,5-dimethyl	7.1	VU	-Н	Conductance	H_2O $t = 25.0 \pm 0.02$ I = 0.00	$\Delta C^{\circ}_{p} = 73 \text{ cal/mol/K.}$ Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, <i>International Critical Tables</i> , Vol. 6, McGraw-Hill, NY, 259–304 (1929). NB: From Wood JK, The acidic constants of some ureides and uric acid derivatives, <i>J. Chem. Soc</i> , 89 , 1831–1839 (1906). Of historical interest only.			
123	Barbituric acid, 5-ethyl-5-methyl (C ₇ H ₁₀ N ₂ O ₃)	8.28 ± 0.02	Α	-Н	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	McKeown I disubstite <i>II,</i> 504–51 NB: Therma and [OH	RH, First thermodyna uted barbituric acids (4 (1980). odynamic value refir –]. Results validated nd 5,5-diethylbarbitu	in water at 25 ed for activity through meas	°C. Part 1, JCS. Perki coefficients, [H+], ured pKa values for



125 Barbituric acid, 5-cyclohex-1'-enyl-1,5dimethyl (hexobarbital) (C₁₂H₁₆N₂O₃)

126 Barbituric acid, 5,5-diethyl (barbital) (C₈H₁₂N₂O₃)

 127
 Barbituric acid, 5,5-diethyl
 7.98 \pm 0.02
 A
 -H
 Potentiometric
 H₂O

 12.4
 U
 -H
 Spectro
 $t = 25.0 \pm 0.02$ $I = 0.00 \text{ (pK_1)}$
 $I = 0.3 \text{ (pK_2)}$

 8.45 ± 0.02

8.34

7.9798

А

U

VR

-H

-H

-H

Potentiometric H_2O $t = 25.0 \pm 0.02$

Potentiometric H₂O

Electrometric

I = 0.00

H₂O

t = 25.0

I = 0.00

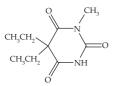
McKeown RH, First thermodynamic dissociation constants of 5,5disubstituted barbituric acids in water at 25 °C. Part 1, JCS. Perkin II, 504–514 (1980).

NB: Thermodynamic value refined for activity coefficients, [H+], and [OH-]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, *J. Phys. Chem.*, 44, 449–463 (1940).
NB: See Barbital, no. 129, for comment.

Manov GG, Schuette KE and Kirk FS, Ionization constant of 5,5diethylbarbituric acid, J. Res. Nat. Bur. Stand., 48, 84–91 (1952). NB: Exceedingly careful work performed using an electrochemical (hydrogen) cell without liquid junction potentials.

T(°C)	р <i>К</i> а	T(°C)	р <i>К</i> а	T(°C)	р <i>К</i> а	T(°C)	pK _a
0	8.3971	20	8.0592	35	7.8471	50	7.6776
5	8.3040	25	7.9798	40	7.7858	55	7.6264
10	8.2171	30	7.9092	45	7.7290	60	7.5762
15	8.1367						


Thermodynamic functions for ionization at 25 °C:

 $\Delta G^\circ = 10.89 \text{ kcal/mol}; \\ \Delta H^\circ = 5.81 \text{ kcal/mol}; \\ \Delta S^\circ = 17.0 \text{ cal/deg/mol}; \\ \text{McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1,$ *JCS. Perkin II*, 504–514 (1980). NB: Thermodynamic pKa1 value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pKa value for benzoic acid in agreement with best literature values.

Appendix A	(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
128	Barbituric acid, 5,5-diethyl Vol fraction EtOH	7.97 ± 0.02	А	-H	Potentiometric	H_2O $t = 25 \pm 0.5$	Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water
	0.1	8.03	U			I undefined	mixtures, Int. J. Pharm., 42, 181-191 (1988).
	0.3	8.43	U			N ₂ atmosphere	NB: See Barbituric acid for details.
	0.5	8.80	U			-	
129	Barbituric acid, 5,5-diethyl	7.91	U	-H	Potentiometric	H_2O t = 25 I = 0.00	Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, <i>J. Phys. Chem.</i> , 44 , 449–463 (1940). NB: Not reliable not in agreement with several others (7.88 ± 0.02). The work of Krahl used careful potentiometric measurements, but was flawed by attempting to correct for ionic strengths that were too high fo the version of the Debye-Hückel equation used.
130	Barbituric acid, 5,5-diethyl	7.86 ± 0.03	U	-Н	Spectro	H_2O $t = 20 \pm 0.2$ I = 0.1	 Mokrosz JL, Bojarski J and Welna W, The dissociation constants of some 1,5,5-trisubstituted barbituric acids, <i>Arch. Pharm. Weinheim</i>, 319, 255–260 (1986). NB: The deviation (0.20 pK unit) between thi value and the value given by Manov <i>et al.</i> (1952) (No. 126) for the same temperature, even when the ionic strength is taken into account (using the Davies' equation), raises doubts about the values reported in this paper for the 5,5-diethyl-1-substituted derivatives (see below), despite the good reproducibility of these results. The possibility of CO₂ interference cannot be discounted.
131	Barbituric acid, 5,5-diethyl	12.31 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	Butler TC, Ruth JM and Tucker GF, The second ionization of 5, 5-disubstituted derivatives of barbituric acid, JACS, 77, 1486–1488 (1955). NB: pK ₂ value. Mean of nine values (over a pF range of 12.17–12.40)

Barbituric acid, 5,5-diethyl-1-methyl 132 $(C_9H_{14}N_2O_3)$

 8.30 ± 0.03 U

Spectro

-H

$$H_2O$$

 $t = 2t$
 $I = 0$

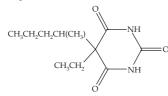
 20 ± 0.2

0.1

Mokrosz JL, Bojarski J and Welna W, The dissociation constants of some 1,5,5-trisubstituted barbituric acids, Arch. Pharm. Weinheim, 319, 255-260 (1986). NB: See comment for the 5,5-diethylbarbituric acid value reported by the same authors. The pK_a values of 15 N-substituted 5,5-diethylbarbituric acids containing phenyl, benzyl, and benzoyl moieties were determined. The pK_a values for the remaining derivatives are as follows:

N-substituent	p <i>K</i> a value	N-substituent	p <i>K</i> _a value
Phenyl	$7.62{\pm}0.02$	p-methylbenzoyl	6.64±0.02
p-nitrophenyl	$7.32{\pm}0.03$	o-methoxybenzoyl	$6.54{\pm}0.03$
Benzyl	$8.12{\pm}0.03$	<i>m</i> -methoxybenzoyl	$6.51 {\pm} 0.02$
p-chlorobenzyl	$8.01{\pm}0.04$	p-methoxybenzoyl	$6.80 {\pm} 0.02$
p-nitrobenzyl	$7.48{\pm}0.03$	o-bromobenzoyl	$6.56 {\pm} 0.02$
benzoyl	$6.40{\pm}0.03$	<i>m</i> -bromobenzoyl	$6.39 {\pm} 0.02$
o-methylbenzoyl	$6.50{\pm}0.03$	p-bromobenzoyl	$6.55 {\pm} 0.03$
<i>m</i> -methylbenzoyl	$6.64{\pm}0.03$		

Barbituric acids, N-methylated		U	-H	Potentiometric	H_2O t = 20.0	Doornbos DA and de Zeeuw RA, Determination of the acid dissociation constants of barbiturates by an accurate method of pH
R_1 N					<i>I</i> = 0.10	measurement. II. Correlations between normal and <i>N</i> -methylated barbiturates, <i>Pharm. Weekbl.</i> , 106 , 134–141 (1971). "The potentiometric determination of the "proton lost" dissociation constant of six <i>N</i> -methylated barbiturates was carried out. The constants are tabulated as association constants <i>K</i> H1 for an ionic strength $mu = 0.10$ and $t = 20.0$ °C. The influence of substituents at N1 and C5 on the acid strength is discussed. From the determination of the "proton gained" dissociation constants in
$R_1 = R_2 = n \cdot Pr$ $R_1 = Me, R_2 = i \cdot Pr$						strongly acid medium it could not be concluded how many protons can be bound. The 6 barbiturates studied were: 1-methyl-
$\label{eq:relation} \begin{split} & R_1 = Me, R_2 = Et \\ & R_1 = Me, R_2 = n\text{-}Bu \\ & R_1 = R_2 = \text{Allyl} \end{split}$						5,5-dipropyl-; 1,5-dimethyl-5-isopropyl-; 1,5-dimethyl-5-ethyl-; 1-methyl-5-ethyl-5-butyl-; 1-methyl-5,5-diallyl-; and 1-methyl-5- propyl-5-isopropylbarbituric acid."
$R_1 = n$ -Pr, $R_2 = i$ -Pr Barbituric acid, 5-ethyl-5-isopropyl (C ₉ H ₁₄ N ₂ O ₃)	8.14 ± 0.02	А	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	McKeown RH, First thermodynamic dissociation constants of 5,5- disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS. Perkin</i> <i>II</i> , 504–514 (1980).
(CH ₃) ₂ CH CH ₃ CH ₂ O						NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK _a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.


64

133

Appendix A	(continued)	

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
135	Barbituric acid, 5-ethyl-5-isopropyl (probarbital)	8.01	U	-H	Potentiometric	H_2O t = 25 I = 0.00	Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, J. Phys. Chem., 44, 449–463 (1940). NB: See Barbital no. 129, for comment.
136	Barbituric acid, 5-ethyl-5-isopropyl	12.59 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, <i>JACS</i> , 77 , 1486–8 (1955). NB: pK_2 value. Mean of nine values.
137	Barbituric acid, 5-ethyl-5-butyl ($C_{10}H_{16}N_2O_3$) CH_3CH_2 $n-C_4H_9$ NH O NH O NH O NH O O NH O O NH O O O O O O O O	7.98	U	-H	Potentiometric	H ₂ O t = 25	McKeown RH, personal communication (2006).
138	Barbituric acid, 5-ethyl-5-sec-butyl (C ₁₀ H ₁₆ N ₂ O ₃) O CH ₃ CH ₂ NH O NH	12.62 ± 0.05	U	-H	Spectro	H ₂ O t = 38.0 I = 0.1	 Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, <i>JACS</i>, 77, 1486–1488 (1955). NB: pK₂ value. Mean of nine values.
139	Barbituric acid, 5-ethyl-5-iso-butyl (butabarbital) (C ₁₀ H ₁₆ N ₂ O ₃) Vol fraction EtOH 0.1 0.3 0.5	7.95 ± 0.02 8.22 8.59 9.04	บ บ บ บ	-Н	Potentiometric	H_2O $t = 25 \pm 0.5$ N_2 atmosphere	 Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, <i>Int. J. Pharm.</i>, 42, 181–191 (1988). NB: See Barbituric acid for details.

140 Barbituric acid, 5-ethyl-5-(1-methylbutyl) (pentobarbitone) (C11H18N2O3)

U

-H

8.11

7.94

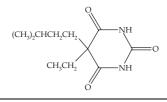
Potentiometric H2O t = 25

Potentiometric H2O

t = 25

I = 0.00

I = 0.00

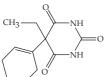

Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, J. Phys. Chem., 44, 449-463 (1940). NB: See Barbital, no. 129, for comment. See also no. 155.

141	Barbituric acid, 5-ethyl-5-(1-methylbutyl) (pentobarbitone)	8.13 ± 0.02	A	-H	Spectro	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
142	Barbituric acid, 5-ethyl-5-(1-methylbutyl) (pentobarbitone)	7.95	U	-Н		$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135, 120–127 (1962).
143	Barbituric acid, 5-ethyl-5-(1-methylbutyl) (pentobarbitone)	12.67 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	 Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, JACS, 77, 1486–1488 (1955). NB: pK₂ value. Mean of nine values.
144	Barbituric acid, 5-ethyl-5-(1-methylbutyl)- 2-thio (thiopentone)	7.6	U	-H	Spectro	H ₂ O I = 0.1	Shore PA, Brodie BB and Hogben CAM, The gastric secretion of drugs, JPET, 119, 361–9 (1957). NB: The value was measured according to Flexser LA, Hammett LP and Dingwall A, The determination of ionization by ultraviolet spectrophotometry, JACS, 57, 2103–2115 (1935).

-H

U

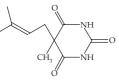
145 Barbituric acid, 5-ethyl-5-(3-methylbutyl)-(amobarbital; amylobarbitone) (C11H18N2O3)

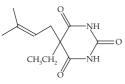


1957). NB: The value was measured Hammett LP and Dingwall A, The on by ultraviolet spectrophotometry, 5). Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, J. Phys. Chem., 44, 449-463 (1940).

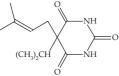
NB: See Barbital, no. 129, for comment.

Appendix A (continued)

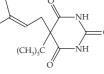

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
146	Barbituric acid, 5-ethyl-5-(3-methylbutyl)- (amobarbital; amylobarbitone)	7.96 ± 0.04	А	-H	Spectro	$H_2O \\ t = 25.0 \pm 0.01 \\ I = 0.00$	 Briggs AG, Sawbridge JE, Tickle P and Wilson JM, Thermodynamics of dissociation of some barbituric acids in aqueous solution, <i>J. Chem. Soc.</i> (<i>B</i>), 802–805 (1969). NB: All compounds were recrystallized to constant melting point and pH values were measured to ± 0.005. Ionic strengths were corrected to zero with Davies' equation. Results were discussed with reference to the IUPAC compilation data, primarily from AI Biggs, <i>JCS</i>, 2485–2488 (1956), which were obtained at relatively poorly controlled temperature.
147	Barbituric acid, 5-ethyl-5-(3-methylbutyl)- (amobarbital; amylobarbitone) Vol. fraction EtOH 0.1 0.3 0.5	7.94 ± 0.02 8.06 8.39 8.89	A U U U	-H	Potentiometric	H_2O $t = 25 \pm 0.5$ N_2 atmosphere	 Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, <i>Int. J. Pharm.</i>, 42, 181–191 (1988). NB: See Barbituric acid for details.
148	Barbituric acid, 5-ethyl-5-(3-methylbutyl)- (amobarbital; amylobarbitone)	12.42 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, <i>JACS</i> , 77 , 1486–1488 (1955). NB: pK ₂ value. Mean of nine values.
149	Barbituric acid, 5-ethyl-5-(1,3-dimethylbutyl) (C ₁₂ H ₂₀ N ₂ O ₃) (CH ₃) ₂ CHCH ₂ CH(CH ₃) (CH ₃ CH ₂ CH(CH ₃) (CH ₃ CH ₂)	8.14 ± 0.02	Α	-H	Spectro	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients as well as for [H+], and [OH–]; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5, 5-diethylbarbituric acids in agreement with best literature values.
150	Barbituric acid, 5-ethyl-5-cyclohex-1-enyl (Cyclobarbital) ($C_{12}H_{16}N_2O_3$) CH ₃ N_H	7.50	U	-H	Potentiometric	H_2O t = 25 I = 0.00	Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, <i>J. Phys. Chem.</i>, 44, 449–463 (1940).NB: See Barbital, no. 129, for comment.


151	Barbituric acid, 5-allyl-5-ethyl (C ₉ H ₁₂ N ₂ O ₃) CH ₂ =CHCH ₂ CH ₃ CH ₂ ONH OCH ₃ CH ₂ ONH	7.89 ± 0.02	Α	-Н	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	Baird DR, Barbituric acids: Structure-reactivity, a quantitative examination, M. Pharm. thesis, University of Otago, 1979. NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results were validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values. Also reported values for 5-allyl-5-phenyl ($pK_a = 7.40$), 5-phenyl-5-isopropyl ($pK_a = 7.76$), 5-ethyl-5-phenyl ($pK_a = 7.48$) and -1,5'-spirocyclohexane ($pK_a = 8.88$).
152	Barbituric acid, 5-allyl-5-isopropyl (C ₁₀ H ₁₄ N ₂ O ₃) $CH_2=CHCH_2$ (CH ₃) ₂ CH NH O	8.02 ± 0.02	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS. Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values. NB: See also no. 155.
153	Barbituric acid, 5-allyl-5-isopropyl (aprobarbital) Vol. fraction EtOH 0.1 0.3 0.5	8.00 ± 0.02 8.11 8.56 8.99	A U U U	-Н	Potentiometric	H_2O $t = 25 \pm 0.5$ N_2 atmosphere	 Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, <i>Int. J. Pharm.</i>, 42, 181–191 (1988). NB: See Barbituric acid for details.
154	Barbituric acid, 5-allyl-5-isopropyl (aprobarbital)	12.52 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, JACS, 77, 1486–1488 (1955). NB: pK ₂ value. Mean of nine values.
155	Barbituric acid, 5-allyl-5-isobutyl ($C_{11}H_{16}N_2O_3$)	7.63 ± 0.1	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=24 \end{array}$	Maulding HV and Zoglio MA, pK _a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, J. Pharm. Sci., 60, 309–311 (1971).
	CH ₂ =CHCH ₂ (CH ₃) ₂ CHCH ₂ O	7.86	U	-H			NB: By extrapolation of apparent values to 0% 7-(2-hydroxypropyl)- theophylline that was used as a complexing agent to increase solubility. TRIS was used as a pK _a reference (pK _a = 8.18 at 20 °C). See also Ritschel, who cited Fincher JH, Entrekin DN, Hartman CW, Surfactant-Base-Barbiturate Suppositories I Rectal absorption in rabbits, J. Pharm. Sci., 55, 23–28 (1966). Fincher in turn cited values from Shanker LS, Absorption of drugs from the rat colon, JPET, 126, 283–290 (1959) for 4 cpds: 5-allyl-5-isobutylbarbituric acid (7.86); 5-butyl-5-ethylbarbituric acid (8.10); 5-ethyl-5-(1- methylbutyl)barbituric acid (8.17) and 5-allyl-5-isopropylbarbituric acid (7.54).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
156	Barbituric acid, 5-allyl-5-isobutyl	12.36 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	 Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5- disubstituted derivatives of barbituric acid, <i>JACS</i>, 77, 1486–1488 (1955). NB: pK₂ value. Mean of nine values.
157	Barbituric acid, 5-allyl-5-(1-methylbutyl) (secobarbital) CH ₂ =CHCH ₂ O NH O	12.60 ± 0.05	U	-H	Spectro	H ₂ O t = 38.0 I = 0.1	Butler TC, Ruth JM, Tucker GF, The second ionization of 5, 5-disubstituted derivatives of barbituric acid, <i>JACS</i> , 77 , 1486–1488 (1955). NB: pK ₂ value. Mean of nine values.
158	Barbituric acid, 5,5-diallyl (allobarbital) $(C_{10}H_{12}N_2O_3)$ $CH_2=CHCH_2$ $CH_2=CHCH_2$ O NH O NH O NH O NH O NH O NH O NH O NH O NH O NH O O O O NH O O O O O O O O	7.81 ± 0.02	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS.Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
159	Barbituric acid, 5,5- diallyl (allobarbital) Vol fraction EtOH	7.73 ± 0.02	U	-H	Potentiometric	H_2O $t = 25 \pm 0.5$ N_2 atmosphere	Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, Int. J. Pharm., 42, 181–191 (1988). NB: See Barbituric acid for details.
	0.1	7.88	U				
	0.3 0.5	8.34 8.75	U U				
160	0.5 Barbituric acid, 5,5- diallyl (allobarbital)	8.75 7.79	U	-H	Potentiometric	H_2O t = 25 I = 0.00	Krahl ME, The effect of variation in ionic strength and temperatur on the apparent dissociation constants of thirty substituted barbituric acids, <i>J. Phys. Chem.</i> , 44, 449–463 (1940). NB: See Barbit no. 129, for comment.


Barbituric acid, 5-methyl-5-(3-methyl-but-2enyl) (C₁₀H₁₄N₂O₃)

162 Barbituric acid, 5-ethyl-5-(3-methylbut-2-enyl) 8.06 ± 0.02 (C₁₁H₁₆N₂O₃)



163 Barbituric acid, 5-isopropyl-5-(3-methylbut-2- 8.19 ± 0.02 envl) (C₁₂H₁₈N₂O₃)

164 Barbituric acid, 5-t-butyl-5-(3-methylbut-2- 8.39 ± 0.02 A enyl) (C₁₃H₂₀N₂O₃)

A –H

 8.39 ± 0.02

Spectro

Spectro

Spectro

Spectro

 H_2O $t = 25.0 \pm 0.02$ I = 0.00

H₂O

H₂O

H₂O

I = 0.00

 $t = 25.0 \pm 0.02$

I = 0.00

 $t = 25.0 \pm 0.02$

I = 0.00

 $t = 25.0 \pm 0.02$

Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985).
NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985).
NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985).
NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion.
Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

-H

-H

-H

Α

Α

85

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
165	Barbituric acid, 5,5-di-(3-methylbut-2-enyl) $(C_{14}H_{20}N_2O_3)$ $(CH_3)_2C=CHCH_2$ $(CH_3)_2C=CHCH_2$ O $(CH_3)_2C=CHCH_2$ O O O O O O O O	8.13 ± 0.02	A	-H	Spectro	H ₂ O $t = 25.0 \pm 0.02$ I = 0.00	Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
166	Barbituric acid, 5-ethyl, 5-(1-methylbut-1-enyl ($C_{11}H_{16}N_2O_3$) O CH ₃ CH ₂ H ₃ CO NH O NH	8.00	U	-H	Potentiometric	H_2O t = 25 I = 0.00	 Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, <i>J. Phys. Chem.</i>, 44, 449–463 (1940). NB: Also called Vinbarbital. See Barbital, no. 129, for comment.
167	Barbituric acid, 5-ethyl-5-(1-methylbut-1-enyl) ($C_{11}H_{16}N_2O_3$) CH ₃ CH ₂ CH=C(CH ₃) CH ₃ CH ₂ CH=C(CH ₃) CH ₃ CH ₂ O	12.06 ± 0.05	U	-H	Spectro	H ₂ O t = 38.0 I = 0.1	 Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, <i>JACS</i>, 77, 1486–1488 (1955). NB: pK₂ value. Mean of nine values.
168	Barbituric acid, 5-methyl-5-(4-methylpent- 1-en-2-yl) (C ₁₁ H ₁₆ N ₂ O ₃) $H_2C O \\ (CH_3)_2CHCH_2C \\ CH_3 O \\ CH_3 O \\ CH_3 O \\ O \\ NH O \\ O \\ O \\ NH O \\ O $	7.78 ± 0.02	Α	-H	Spectro	H_2O $t = 25.0 \pm 0.02$ I = 0.00	Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

169	Barbituric acid, 5-ethyl-5-(4-methyl-pent-1-en- 2-yl) $(C_{12}H_{18}N_2O_3)$ H_2C $(CH_3)_2CHCH_2C$ CH_3CHCH_2C O NH O	7.48 ± 0.02	Α	-H	Spectro	H_2O $t = 25.0 \pm 0.02$ I = 0.00	Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
170	Barbituric acid, 5-methyl-5-phenyl $(C_{11}H_{10}N_2O_3)$ O O CH_3 O O O NH O O O O O O O O	7.78 ± 0.02	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS. Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
171	Barbituric acid, 5-methyl-5-phenyl	7.63	U	-H	Spectro	H_2O $t = 20 \pm 0.2$ I = 0.1	Doornbos DA and de Zeeuw RA, Determination of the acid dissociation constants of barbiturates by an accurate method of pH measurement. II. Correlations between normal and N-methylated barbiturates, <i>Pharm. Weekbl.</i> , 106 , 134–141 (1971).
172	Barbituric acid, 5-methyl-5-phenyl-1-benzoyl ($C_{18}H_{14}N_2O_4$)	6.35 ± 0.06	U	-H	Spectro	H_2O $t = 20 \pm 0.2$ I = 0.1	 Mokrosz JL, Bojarski J and Welna W, The dissociation constants of some 1,5,5-trisubstituted barbituric acids, <i>Arch. Pharm. Weinheim</i>, 319, 255–260 (1986). NB: See comment for the 5,5-diethylbarbituric acid value reported by the same authors (above).
173	Barbituric acid, 5-ethyl-5-phenyl ($C_{12}H_{12}N_2O_3$)	7.48 ± 0.02	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS. Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

87

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
174	Barbituric acid, 5-ethyl-5-phenyl	7.48 ± 0.02	А	-Н	Spectro	$H_2O t = 25.0 \pm 0.02 I = 0.00$	Prankerd RJ, Physical Properties and Biological Activities of Barbituric Acids, Ph.D. thesis, University of Otago (1985). NB: Thermodynamic value refined for activity coefficients; corrected for effects of 2nd ionization on the spectrum of the monoanion. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
175	Barbituric acid, 5-ethyl-5-phenyl Vol. fraction EtOH 0.1 0.3 0.5	7.48 ± 0.02 7.66 8.04 8.41	A U U U	-Н	Potentiometric	H_2O $t = 25 \pm 0.5$ N_2 atmosphere	 Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, <i>Int. J. Pharm.</i>, 42, 181–191 (1988). NB: See Barbituric acid for details.
176	Barbituric acid, 5-ethyl-5-phenyl	7.41	U	-H	Potentiometric	H_2O t = 25 I = 0.00	Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, J. Phys. Chem., 44, 449–463 (1940). NB: See Barbital no. 129, for comment.
177	Barbituric acid, 5-ethyl-5-phenyl	7.52 ± 0.1	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=24 \end{array}$	Maulding HV and Zoglio MA, pK _a determinations utilizing solution of 7-(2-hydroxypropyl) theophylline, J. Pharm. Sci., 60, 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.
178	Barbituric acid, 5-ethyl-5-phenyl	$\begin{array}{c} 7.40 \pm 0.02 \\ 12.2 \end{array}$	U U	-H -H	Spectro Spectro	$\begin{array}{l} H_2O \\ t = 25.0 \pm 0.02 \\ I = 0.00 \ (pK_1) \\ I = 0.3 \ (pK_2) \end{array}$	 McKeown RH, First thermodynamic dissociation constants of 5,5- disubstituted barbituric acids in water at 25 °C. Part 1, JCS. Perkin II, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–].
179	Barbituric acid, 5-ethyl-5-phenyl	11.77 ± 0.05	U	-H	Spectro	H_2O t = 38.0 I = 0.1	Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5- disubstituted derivatives of barbituric acid, JACS, 77, 1486–8 (1955). NB: pK ₂ value. Mean of nine values.
180	Barbituric acid, 5-ethyl-5-phenyl	7.29	U	-H		$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135, 120–127 (1962).
181	Barbituric acid, 5-ethyl-5-phenyl	7.31 (0.16) 11.99 (0.16)	U U	-H -H	spectro (pK ₁ , 260 nm; pK ₂ , 257 nm)	$\begin{array}{l} H_2O\\ t=20.0 \end{array}$	 Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i>, 92(1), 15–22 (1993). NB: Alternative graphical method gave pK_a = 7.3 and 11.9 Sea A stateminearbox for further details.

See Acetaminophen for further details.

182	Barbituric acid, 5-ethyl-5-phenyl	7.36	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=20\pm0.2\\ I=0.1 \end{array}$	Doornbos DA and de Zeeuw RA, Determination of the acid dissociation constants of barbiturates by an accurate method of pH measurement. II. Correlations between normal and N-methylated barbiturates, <i>Pharm. Weekbl.</i> , 106 , 134–141 (1971).
183	Barbituric acid, 5-ethyl-5-phenyl	7.41 ± 0.03	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric p K_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: p $K_a = 7.41 \pm 0.05$ by extrapolation from 16.3 – 64.7 %w/w aqueous MeOH. See Acetaminophen for full details.
184	Barbituric acid, 5-ethyl-5-phenyl	7.43 ± 0.05	U	-H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a = 7.49 \pm 0.02$ at $I = 0.1$ (KNO ₃).
185	Barbituric acid, 5-ethyl-5-phenyl-1-benzoyl ($C_{19}H_{16}N_2O_4$) O O O O O COC ₆ H ₅ O CH ₃ CH ₂ O O O O NH	6.58	U	-H	Spectro	H_2O $t = 20 \pm 0.2$ I = 0.1	Paluchowska M, Ekiert L, Jochym K and Bojarski J, Hydrolysis of barbituric acid derivatives. Part V. Hydrolysis of 1-benzoyl-5- ethyl-5-phenylbarbituric acid, <i>Pol. J. Chem.</i> , 57 (7-8-9), 799–807 (1983); CA 102, 5311m, 1985.
186	Barbituric acid, 5-ethyl-5-(3-nitro-phenyl) (C ₁₂ H ₁₁ N ₃ O ₅) O_2N O_2N	7.04 ± 0.02	Α	-H	Spectro	H_2O t = 25.0 ± 0.02 I = 0.00	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS.Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
187	Barbituric acid, 5-ethyl-5-(3-nitro-phenyl) Vol. fraction EtOH 0.1 0.3 0.5	$\begin{array}{c} 6.99 \pm 0.02 \\ \\ 7.20 \\ 7.58 \\ 7.88 \end{array}$	A U U U	-Н	Potentiometric	$\begin{array}{l} H_2O\\ t=25\pm0.5\\ N_2 \text{ atmosphere} \end{array}$	 Rubino JT, Electrostatic and non-electrostatic free energy contributions to acid dissociation constants in cosolvent-water mixtures, <i>Int. J. Pharm.</i>, 42, 181–191 (1988). NB: See Barbituric acid for details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
188	Barbituric acid, 5-ethyl-5-(4-nitro-phenyl) (C ₁₂ H ₁₁ N ₃ O ₅) O ₂ N O ₃ N O ₂ N O ₃ N O ₃ N O ₂ N O ₂ N O ₂ N O ₂ N O ₃ N O ₂ N O ₃ N O ₂ N O ₃ N O ₃ N O ₂ N O ₃ N O	6.94 ± 0.02	A	-H	Spectro	$H_2O t = 25.0 \pm 0.02 I = 0.00$	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS. Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
189	Barbituric acid, 5,5-diphenyl (C ₁₆ H ₁₂ N ₂ O ₃)	7.30 ± 0.02 11.9	A U	-H -H	spectro Spectro	H ₂ O $t = 25.0 \pm 0.02$ $I = 0.00 (pK_1)$ $I = 0.3 (pK_2)$	 McKeown RH, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 1, <i>JCS. Perkin II</i>, 504–514 (1980). NB: Thermodynamic value refined for activity coefficients. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
190	Barbituric acid, -1',5-spiro(cyclopropane) (C ₆ H ₆ N ₂ O ₃)	8.73 ± 0.03	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	 McKeown RH and Prankerd RJ, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 3, <i>JCS. Perkin II</i>, 481–487 (1981). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.

191	Barbituric acid, -1',5-spiro(cyclobutane) (C ₇ H ₈ N ₂ O ₃)	8.82 ± 0.02	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	McKeown RH and Prankerd RJ, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 3, <i>JCS. Perkin II</i> , 481–487 (1981). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values.
192	Barbituric acid, -1',5-spiro(cyclopentane) (C ₈ H ₁₀ N ₂ O ₃) NH NH	8.83 ± 0.03	Α	-H	Potentiometric	H_2O $t = 25.0 \pm 0.02$ I = 0.00	McKeown RH and Prankerd RJ, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 3, <i>JCS. Perkin II</i> , 481–487 (1981). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values. ACD calculated value 9.30 ± 0.2.
193	Barbituric acid, -1',5-spiro(cyclohexane) $(C_9H_{12}N_2O_3)$ NH O NH O NH O O NH O	8.88 ± 0.03	Α	-H	Potentiometric	H ₂ O $t = 25.0 \pm 0.02$ I = 0.00	McKeown RH and Prankerd RJ, First thermodynamic dissociation constants of 5,5-disubstituted barbituric acids in water at 25 °C. Part 3, <i>JCS. Perkin II</i> , 481–487 (1981). NB: Thermodynamic value refined for activity coefficients, [H+], and [OH–]. Results validated through measured pK_a values for benzoic and 5,5-diethylbarbituric acids in agreement with best literature values. This value was measured by DR. Baird, see Barbituric acid, 5-ethyl-5-butyl, for details.
194	Bases (nonaqueous titrations)	Acetous pK _b			Potentiometric	acetic acid	Castellano T, Medwick T, Shinkai JH and Bailey L, Differential titration of bases in glacial acetic acid, J. Pharm. Sci., 70, 104–105 (1981).
	Benzocaine	7.53	U	+H			"The overall basicity constants for 20 bases were measured in glacial
	Nicotinic acid	7.01	U	+H			acetic acid, and the differential titration of five binary mixtures of
	Isonicotinic acid	6.86	U	+H			variable dissociation constant (pK_b) values was followed using a
	TRIS buffer	6.06	U	+H			glass electrode-modified calomel electrode system. A leveling
	Atropine	5.93	U	+H			diagram was constructed that indicated that bases stronger than aqueous p $K_{\rm b}$ 10 are leveled to an acetous p $K_{\rm b}$ 5.69, whereas weaker

Solution A (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
							bases are not leveled but instead exhibit their own intrinsic basicity, with the acetous pK_b to aqueous pK_b values being linearly related. A minimum acetous pK_b of 4 units is required for satisfactory differential titration of two bases in acetic acid."
195	Bencyclane (C ₁₉ H ₃₁ NO) CH ₃	8.94 ± 0.04	U	+H	Potentiometric	40% EtOH $t = 25.0$	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i> , 34, 407–409 (1984).
	CH ₃	9.68	U	+H	H I	H ₂ O	NB: See Aprindine for details.
196	Bendroflumethiazide (C ₁₅ H ₁₄ F ₃ N ₃ O ₄ S ₂) O_2 SNH ₂ F_3 C NH H $CH_2C_6H_5$	8.53 ± 0.05	U	-Н	soly	H_2O t = 25 I = 0.2	Ågren A and Bäck T, Complex formation between macromolecules and drugs. VIII., <i>Acta Pharm. Suecica</i> , 10 , 223–228 (1973). "The pK _a values of bendroflumethiazide were therefore determined by using the solubility variation with pH according to Green [8]." Also cited in Florey K and Russo-Alesi FM, Bendroflumethiazide, <i>APDS</i> , 5 , 1–19 (1976).
197	Bendroflumethiazide Flumethiazide Hydrochlorothiazide Hydroflumethiazide Cyclothiazide Trichloromethiazide Methyclothiazide Polythiazide	6.3 8.7 8.5 8.8 6.9 9.5 9.1	บ บ บ บ บ บ	-H	Potentiometric	H ₂ O	 Hennig UG, Moskalyk RE, Chatten LG and Chan SF, Semiaqueous potentiometric determinations of apparent pK_{a1} values for benzothiadiazines and detection of decomposition during solubility variation with pH studies, <i>J. Pharm. Sci.</i>, 70, 317–319 (1981). "Semi-aqueous potentiometric determination of apparent pK_a values by extrapolation technique: The apparent pK_{a1} values of various benzothiadiazines were determined by the method of Chatten <i>et al.</i> (5) using acetone-water mixtures. Four concentrations of each benxothiadiazine (0.0005, 0.001, 0.0015, and 0.002 M) were prepared from 0.02M acetone stock solutions. The acetone-water ratios were 5:45, 10:40, 15:35, and 20:30, respectively. The solutions were titrated with 0.05N NaOH and the pH was measured after

were titrated with 0.05N NaOH and the pH was measured after the addition of each 0.1 mL increment of titrant. The apparent pK_{a1} values were obtained by the usual extrapolation techniques (2, 5)."

							 Chatten LG and Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962). Chatten LG, Moskalyk RE, Locock RA and Scaefer FJ, Nonaqueous titration of methaqualone and its dosage forms, <i>J. Pharm. Sci.</i>, 63, 1294–1296 (1974). NB: Hennig <i>et al.</i> claimed that the studies of Ågren and Bäck for bendroflumethiazide did not take into account degradation in solution during their solubility-pH measurements. However, they failed to report a value for the title compound, so comparisons with Ågren and Bäck could not be done.
198	Benidipine (C ₂₈ H ₃₁ N ₃ O ₆) H ₃ C $+$ H CH ₃ CH ₃ O $+$ $+$ $+$ CH ₃ O $+$ $+$ $+$ O $+$ $+$ $+$ $+$ O $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	7.34	U	+H	Potentiometric	H ₂ O (long extrapolation)	 Suzuki H, Ono E, Ueno H, Takemoto Y and Nakamizo N, Physico-chemical properties and stabilities of the highly potent calcium antagonist benidipine hydrochloride, <i>ArzneimForsch.</i>, 38(11a), 1671–1676 (1988). "The pK_a value was measured by the titration method. About 250 mg of KW-3049 was dissolved in 100 ml aqueous methanol solution containing 90, 85, 80, and 75% methanol by volume, and 5 ml 0.1-N hydrochloric acid, respectively. These solutions were titrated with a 0.1-N sodium hydroxide. The pK_a in water (0% methanol) was obtained by extrapolating the pK_a values at the various methanol concentrations to methanol 0%."
199	2-Benzenesulfanilamidopyrimidine ($C_{10}H_9N_3O_2S$) H_2N V	5.91	U	-H	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	 Willi AV and Meier W, Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i>, 39, 54–56 (1956). NB: See Sulfapyridine.
200	2-Benzenesulfonamidopyridine (C ₁₁ H ₉ NO ₂ S)	8.20	U	-H	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	 Willi AV and Meier W, Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i>, 39, 54–56 (1956). NB: See Sulfapyridine.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
201	Benzenesulfonamide and analogues $(C_6H_7NO_2S)$ O S NH_2	10.0	U	-Н	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	 Willi AV 5. Die Aciditatskonstanten von Benzolsulfonamiden und ihre Beeinflussbarkeit durch Substitution (Effect of substitution or the acidity constants for benzenesulfonamides), <i>Helv. Chim. Acta</i>, 39, 46–53 (1956). NB: This paper reported pK_a values for the following substituted benzenesulfonamides. The pK_a values were treated according to the Hammett equation:
							Substituent X X-C ₆ H ₄ SO ₂ NH ₂ X-C ₆ H ₄ SO ₂ NH-C ₆ H ₅ X-C ₆ H ₄ SO ₂ NH-C ₆ H ₄ -X
							H 10.00 8.31 8.31 p-CH ₃ 10.17 8.46 8.64 p-CH ₃ O 10.22 8.66 8.70 p-Cl 9.77 7.98 7.93 p-NO ₂ 9.14 7.415 6.20
							$\begin{array}{cccccccccccccccccccccccccccccccccccc$
							p-COO- – – 7.75 m-OH, p-COO- – – 7.61
202	Benzocaine (C ₉ H ₁₁ NO ₂)	2.45	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MI and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a literature value (Tam KY and
	NH ₂	2.39 ± 0.01	U	+H	Potentiometric	H_2O t = 25 I = 0.15 (KCl)	Takacs-Novac K, Anal Chim Acta, 434 , 157–167 (2001)) of 2.53 and a predicted value (ACD Labs) of 2.51. Sirius Technical Application Notes, vol. 2 , p. 25 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW UK.

203	Benzocaine	$GLpK_a$: 2.53 \pm 0.02	А	+H	Spectro	H_2O t = 25	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta, 434,
		A&S:	А	+H		I = 2.5 I = 0.15 (KCl)	157–167 (2001).
		2.50 ± 0.04	11	111		Ar atmosphere	NB: See Clioquinol for details.
204	1,4-Benzodiazepines	2000 2 0101			Spectro	5% MeOH in H ₂ O	Barrett J, Smyth WF and Davidson IE. Examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry, J. Pharm.
	Chlordiazepoxide	4.6	U	+H		t = 20	Pharmacol., 25, 387–393 (1973).
	Diazepam	3.3	U	+H		I = 0.15	"Changes of ultraviolet absorption spectra with pH in solution were
	Medazepam	4.4	U	+H			used to determine pK_a values for six 1,4-benzodiazepines.
	Lorazepam	1.3	U	+H			Diazepam, chlordiazepoxide, and medazepam as a result of
	Nitrazepam	3.2	U	+H			protonation of the molecule in acidic solutions, were found to each
		10.8	U	-H			have one pK_a , while 2 pK_a values were observed for oxazepam,
	Oxazepam	1.6	U	+H			nitrazepam, and lorazepam, because of protonation in acid and
	-	11.6	U	-H			deprotonation of the neutral molecule in alkaline media. The
							spectra are explained by considering them to be superimposed
							spectra of the 2 benzene rings, one monosubstituted and one
							trisubstituted, within the molecule. Sites of protonation
							(principally at nitrogen atoms in position 4 in the diazepine ring)
							and deprotonation (for oxazepam, nitrazepam, and lorazepam)
							are predicted and the differences in the observed pK_a values explained."
205	1,4-Benzodiazepine metabolites				Spectro	5% MeOH in	Barrett J, Smyth WF and Hart JP, Polarographic and spectral
	*					H ₂ O	behavior of some 1,4-benzodiazepine metabolites: Application to
	7-Acetamidonitrazepam (C ₁₇ H ₁₃ N ₃ O ₄)	3.2	U	+H		t = 20	differentiation of mixtures, J. Pharm. Pharmacol., 26, 9–17 (1974).
		12.4	U	-H		I = 0.15	"Changes of ultraviolet absorption spectra with solution pH were
	7-Aminonitrazepam (C ₁₅ H ₁₂ N ₄ O ₃)	2.5	U	+H			used to determine pK_a values for four 1,4-benzodiazepine
	· · · · · · · · · · · · · · · · · · ·	4.6	U	+H			metabolites. 7-Acetamidonitrazepam, desmethyldiazepam, and
		13.1	U	-H			the chlordiazepoxide lactam all gave 2 pKa values, corresponding
	Desmethyldiazepam (C ₁₅ H ₁₁ ClN ₂ O)	3.5	U	+H			to protonation in acid and deprotonation of the neutral molecule in
		12.0	U	-H			alkaline media. 7-Aminonitrazepam gave 3 pK_a values, the third
	Chlordiazepoxide lactam (C ₁₅ H ₁₁ ClN ₂ O ₂)	4.5	U	+H			one being due to an additional protonation in acid media. The
		11.5	U	-H			spectra are explained by considering them to be superimposed
							spectra of the 2 benzene rings, one monosubstituted and one
							trisubstituted, within the molecule. Sites of protonation and
							deprotonation are predicted and the differences in the observed
							pK_a values explained. Differences in the pK_a values or the
							polarographic behavior between the parent compounds and some
							of their metabolites are then used to effect novel separations after
							solvent extractions from aqueous buffered solutions."
							*

(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
206	Benzoic acid (C ₇ H ₆ O ₂) COOH	4.190-4.203	R	-H	Conductance	H ₂ O t = 25.0 I = 0.00	Robinson RA and Stokes RH, Electrolyte Solutions, 2 nd Revised Edn., Butterworths (Lond.), Appendix 12.1. Cited Ives DJG, Linstead RP and Riley HL, The olefinic acids. VIII. Dissociation constants, <i>J. Chem. Soc.</i> , 561–568 (1933) (4.190); Brockman FG and Kilpatrick M, The thermodynamic dissociation constant of benzoic acid from conductance measurements, <i>JACS</i> , 56 , 1483–1486 (1934) (4.199); Saxton B and Meier HF, The ionization constants of benzoic acid and the three monochlorbenzoic acids, at 25°, from conductance measurements, <i>JACS</i> , 56 , 1918–1921 (1934) (4.200); Dippy JFJ and Williams FR, Chemical constitution and the dissociation constants of monocarboxylic acids. II, <i>JCS</i> , 1888–1892 (1934) (4.203); Jeffery GH and Vogel AI, Thermodynamic dissociation constant of benzoic acid at 25° from conductivity measurements. <i>Phil. Mag.</i> , 18 , 901–909 (1934) (4.196).
207	Benzoic acid	4.212-4.218	R	-H	Electrometric	H_2O t = 25.0 I = 0.00	Robinson RA and Stokes RH, Electrolyte Solutions, 2 nd Revised Edn., Butterworths (Lond.), Appendix 12.1. Cited Briscoe HT and Peake JS, Measurements of the ionization constant of benzoic acid using silver chloride electrodes, <i>J. Phys. Chem.</i> , 42 , 637–640 (1938) (4.218); Briegleb G and Bieber A, Dissociation constants of substituted benzoic acids at different temperatures and thermodynamic functions of acid dissociation. Potential measurements in cells without liquid junction potentials, <i>Z. Elektrochem.</i> , 55 , 250–259 (1951) (4.212).
208	Benzoic acid	4.203–4.216	R	-H	Spectro	H_2O t = 25.0 I = 0.00	Robinson RA and Stokes RH, Electrolyte Solutions, 2 nd Revised Edn., Butterworths (Lond.), Appendix 12.1. Cited von Halban H and Brull J, The exact determination by means of indicators of the dissociation constants of moderately strong acids, <i>Helv. Chim. Acta</i> , 27, 1719–1727 (1944) (4.216); Kilpatrick M and Arenberg CA, Effect of substituents on the protolytic constants of anilinium type protolypes, <i>JACS</i> , 75, 3812–3821 (1953) (4.208); Robinson RA and Biggs AI, Ionization constants of p-aminobenzoic acid in aqueous solution at 25°, <i>Aust. J. Chem.</i> , 10, 128–134 (1957) (4.203).
209	Benzoic acid	4.13 (0.11)	U	-H	Spectro (275 nm)	H_2O t = 20.0 I undefined	Solution at 25 , Aust. J. Chem., 10, 126–134 (1957) (4.205). Wahbe AM, El-Yazbi FA, Barary MH and Sabri, SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i> , 92 (1) 15–22 (1993). NB: See Acetaminophen for further details. Alternative graphical method gave $pK_a = 4.15$.

210	Benzoic acid	4.05 ± 0.01	U	-H	Potentiometric	H ₂ O t = 23.0 I undefined Ar atmosphere	Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i> , 76 (8) 611–620 (1987). "Automatic titrations were performed using (an) automatic titrator, an 80 mL beaker and a combination glass electrode Water was degassed by boiling for 1 hr under a stream of nitrogen, of HPLC grade water was used Reagents and solutions were maintained at room temperature A solution of the salt of the compound was prepared as follows. The salt (0.08 mmol if monoprotic, 0.04 mmol if diprotic) was placed in an 80 mL titration beaker and attached to the titrator. Air was displaced with a slow stream of argon and 25 mL of water was added, followed by 5 mL of 1.0 M NaCl solution. If the compound was the salt of a base, then 0.1 mL of 0.1 M HCl was added. If the compound was the salt of an acid, then 0.1 mL of 0.1 M NaOH was added. If the titrated compound was the free base or free acid, then the salt was prepared in situ by addition of 0.9 mL of 0.1 M HCl or NaOH, respectively The titrator was set to run under equilibrium conditions using 0.01 mL titrant increments. Usually the time to reach equilibrium was set at 5 s" [NB: difference titrations were performed to "correct" for the presence of dissolved carbon dioxide. The procedure was modified for simultaneous measurement of the O/W partition coefficient and pK _a . Authors acknowledged the importance of temperature control.]
211	Benzoic acid	3.98 ± 0.01	U	-H	Potentiometric	H ₂ O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a = 3.98 \pm 0.01$ at $I = 0.1M$ (KNO ₃). The same result was reported in Sirius Technical Application Notes, vol. 2 , p. 151 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: From extrapolation to 0% DMSO from data in 10.7–58.3 wt% DMSO by the Yasuda-Shedlovsky procedure. Concentration of
212	Benzoic acid, 4-R diethylaminoethyl esters $R \longrightarrow O \qquad N(C_2H_3)_2$				Potentiometric	H_2O t = 20.0 I = 0.1	analyte, 0.64–1.16 mM; <i>I</i> = 0.155 M (KCl). Buchi J, Bruhin HK and Perlia X, Relations between the physicochemical properties, the chemical reactivity and the local anesthetic activity of 4-substituted diethylaminoethyl esters of benzoic acid. Part 27. <i>ArzneimForsch.</i> , 21 , 1003–1017 (1971).

lo.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
	Sidechain (R)					N ₂ atmosphere	"Some 4-substituted diethylaminoethyl esters of benzoic acid were
	-NHC ₂ H ₅	8.96	А	+H			prepared and their physico-chemical properties (pKa, solubility,
	-OC ₂ H ₅	8.95	А	+H			partition coefficient, surface activity), as well as IR spectra, rate
	-NH ₂	9.00	А	+H			constants, and binding to albumin were determined. A correlation
	-H	8.80	А	+H			between the physicochemical properties and the local anesthetic
	-CH ₃	8.85	А	+H			activity could not be found. There was a good correlation betwee
	-OH	9.09	А	+H			the chemical reactivity (carbonyl frequency, rate constants, and
	-Br	8.83	А	+H			sigma-values) and the activity. The compound with more electro
	-Cl	8.82	А	+H			releasing groups gave the most pronounced increase in activity.
	-F	8.82	А	+H			The binding to albumin and the activity also showed a satisfactor
	-NO ₂	8.67	А	+H			correlation. Measurement of the acetic acid pK_a was used as
							validation for the method."
	R COOH						NB: Analogues of the local anaesthetic procaine. pK _a values were determined as described previously by Buchi J and Perlia X,
							Beziehungen zwischen de physikalisch-chemische Eigenschafter
	Sidechain (R)						und der Wirkung von Lokalanasthetica, ArzneimForsch., 10,
	-NH ₂	4.71	А	+H			745-754 (1960). These were careful studies conducted by Dr. G
	-NHC ₂ H ₅	4.77	A	+H			Anderegg at the Analytical Chemistry laboratories of the ETH
	-OH	4.46	A	+H			Zurich (Prof. G. Schwarzenbach). Potentiometric tirations with
	-OC ₂ H ₅	4.33	A	+H			calibrated glass and calomel electrodes were performed under a
	-CH ₃	4.30	A	+H			nitrogen atmosphere. Solutions were of constant ionic strength (
	-H	4.13	A	+H			M (KCl) at 20 °C. Acetic acid was used as a test substance, with
	-F	4.08	A	+H			reference to the very accurate measurements of Harned. Some
	-Cl	3.98	A	+H			measurements were also performed spectrophotometrically. The
	-Br	3.95	A	+H			experimental error was typically ± 0.03 .
	-NO ₂	3.50	U	+H			
13	Benzoylecgonine($C_{16}H_{19}NO_4$)	11.80	U	+11 +H			Kolthoff IM, The dissociation constants, solubility product and
15	CH_3 COOH	11.80	0	+11			titration of alkaloids, <i>Biochem. 2.</i> , 162 , 289–353 (1925). Cited in Perrin no. 2867 ref. K47.
	Ň,						NB: See Aconitine for details.

//

214	Benzoylecgoni	ne methyl	ester	$(C_{17}H_{21}NO_4)$
-----	---------------	-----------	-------	----------------------

U

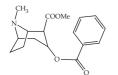
U

+H

+H

+H

50% aqueous


dioxane

t = 25

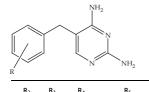
H₂O

t = 25

Potentiometric

Benzquinamide

R₂


215

5.9

R,

 7.14 ± 0.08

5-R-benzyl-2,4-diaminopyridines 216

112	N3	14	NS .	146	
	OEt	Pyrr	OEt		7.00
Cl	OMe		OMe	Cl	7.25
Br		O-CH ₂ -O			7.11
	OEt	COHMe ₂	OEt		7.04
	OMe	OMe	OBz		7.15
	NMe ₂	Me	NMe ₂		7.16
OMe	Pyr	OMe			7.20
	OMe	Pyrr	OMe		7.02
	OMe	Pyr	OMe		7.05
	OMe	SMe	OMe		7.08
		O-CH ₂ -O			7.20
	OMe	O-CH ₂ -O			7.17
OMe		OMe	OMe		7.24
	NMe_2	OMe	NMeCOMe		7.07
	OMe	OMe	OMe		7.13
	OMe	NH ₂	OMe		7.24
	OMe	OY	OMe		7.10
	OH	OMe	OH		7.18
	OMe	OH	OH		7.23

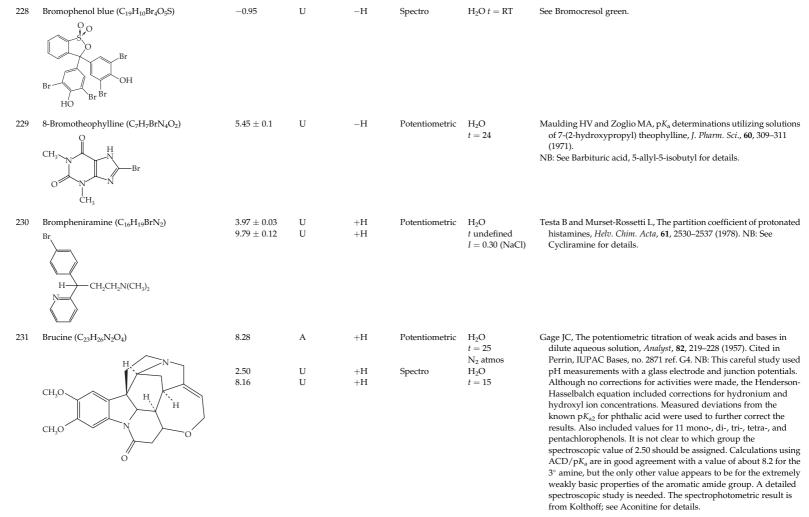
 $Y = CH_2CH_2OCH_3$

Chilton J and Stenlake JB, Dissociation constants of some compounds related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, J. Pharm. Pharmacol., 7, 1004-1011 (1955). Cited in Perrin 2862 ref. C27. NB: The method used a glass electrode with liquid junction potentials.

Wiseman EH, Schreiber EC and Pinson R, The distribution, excretion and metabolism of benzquinamide, Biochem. Pharmacol., 13, 1421-1435, (1964).

NB: Method not stated but probably potentiometric.

- Seiler P, Bischuff O and Wagner R, Partition coefficients of 5-(substituted benzyl)-2,4-diaminopyridines, Arzneim.-Forsch., 32(7),
- 711-714 (1982). "The average pK value of the 19 compounds measured is 7.14, the standard deviation within the series being 0.08 which is not greater than the standard deviation due to experimental error. Thus the small differences between our pK-values, though possibly really existing, are not judged significant, and in all further discussions
- we assume a mean pK-value of 7.14 for all compounds in Table 1." NB: The pK_a values were averaged arithmetically, corresponding to geometric averaging of theK values. The values were measured according to Albert and Serjeant (1971).


Mean = 7.3966E - 8; mean p $K_a = 7.13$ SD = 1.3691E - 8

Sigma = 1.3326E - 8

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
217	Benzylpenicillin (Penicillin G) ($C_{16}H_{18}N_2O_4S$)	$\begin{array}{c} 2.73 \pm 0.03 \\ \text{or} \\ 2.71 \pm 0.05 \end{array}$	A A	-H -H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ c = 0.01 N ₂ atmos	Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, <i>J.</i> <i>Pharm. Pharmacol.</i> , Suppl. 15, 222–231T (1963). NB: The two values were from slightly different initial concentrations. Results were rejected if pH calibration standards (4, 7, 9.15) shifted by > 0.02 over the course of a titration. "The pK of benzylpenicillin at 25° and in water at a concentration of 0.0099 M was 2.73 \pm 0.03 and for 0.0093 M was 2.71 \pm 0.05 using titration with 0.4-M HCL."
		2.78	U	-H	Potentiometric	H_2O t = 60	Finholt P, Jurgensen G and Kristiansen H, catalytic effect of buffers on degradation of penicillin G in aqueous solution, J. Pharm. Sci., 54, 387–393 (1965). NB: Kirschbaum incorrectly stated that this study used an iodimetric titration method.
		3.82 4.10	U U	-H -H	Potentiometric	20% MeOH 30% MeOH <i>t</i> = 20 <i>I</i> = 0.15	Salto F, Prieto JG and Alemany MT, Interactions of cephalosporins and penicillins with non-polar octadecylsilyl stationary phase, <i>J.</i> <i>Pharm. Sci.</i> , 69 , 501–506 (1980). NB: This study measured pK _a values in partially aqueous media that corresponded to chromatographic mobile phases, using the potentiometric method described by Albert and Serjeant.
218	Benzylpenicilloic acid (C ₁₆ H ₂₀ N ₂ O ₅ S) \downarrow COOH \downarrow COOH \downarrow COH \downarrow CH ₃ COOH	5.32 ± 0.05	Α	+H	Potentiometric	H_2O t = 25 c = 0.01M	 Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, <i>J. Pharm. Pharmacol.</i>, Suppl.15, 222–231T, (1963). Cited in Perrin Suppl. No. 7780 Ref. R6. Also cited in Kirschbaum J and Penicillin G, Potassium (Potassium Benzylpenicillin), <i>APDS</i>, 15, 427–507 (1986). NB: The study used pH measurements with a glass electrode and liquid junction potentials.
219	Benzylpenicilloic acid	2.95 5.32	U U	-H +H	Method not given	$\begin{array}{l} H_2O\\ t=23 \end{array}$	Woodward RB, Neuberger A and Trenner NR, <i>in</i> Clarke H, Johnson JR and Robinson Sir R (eds.), The Chemistry of Penicillin, Princeton University Press, Princeton, NJ, 415–422, 1949.

220	Benzylpenicilloic acid α -benzylamide (C ₂₃ H ₂₅ N ₃ O ₄ S) H H H H H H H H	4.1	U	+H	Method not given	H ₂ O t = 23	Johnson	RB, Neuberg R and Robin: 1 University I	son Sir R (e	ds.), The C	hemistry o	of Penicillin,
221	Benzylpenicilloic acid α-benzylamide	3.96	U	+H	Method not given	$\begin{array}{l} H_2O\\ t=23 \end{array}$	Johnson	RB, Neuberg R and Robins University I	son Sir R (e	ds.), The C	hemistry o	of Penicillin,
222	Benzylpenilloic acid (C ₁₅ H ₂₀ N ₂ O ₃ S)	1.35	U	-H	Method	H ₂ O		RB, Neuberg				
	C ₆ H ₅ CH ₂ H H HN COOH	4.75	U	+H	not given	t = 23	Johnson	JR and Robins	son Sir R (e	ds.), The C	hemistry o	of Penicillin,
223	Bisoprolol (C ₁₈ H ₃₁ NO ₄) $H_3C \xrightarrow{CH_3}_{H_3C} \xrightarrow{CH_3}_{OH} \xrightarrow{CH_3}_{CH_3}$	9.57	U	+H	Potentiometric	H ₂ O (extrap) $t = 25 \pm 1$ <i>I</i> undefined Ar atmosphere	Levron J-	, Poirier J-M, -C and Snoed in obese and 1 (1997).	k E., Pharm	acokinetic	s of β-adre	enoceptor
224	Boric acid (H ₃ BO ₃) H ₃ BO ₃	9.234	VR	-H	Potentiometric	H_2O t = 25.0 I = 0.00	acid, J. R NB: Very c	, DeLollis NJ <i>es. Nat. Bur. S</i> areful work p liquid junctio	<i>Stand.,</i> 33 , 28 verformed u	87–306 (194 sing an ele	44).	
							T (°C)	pK _a	T (°C)	p <i>K</i> a	т (°С)	p <i>K</i> a
							0	9.5078	25	9.2340	45	9.1013
							5	9.4374	30	9.1947	50	9.0766
							10 15	9.3785 9.3255	35	9.1605	55 60	9.0537
							15 20	9.3255 9.2780	40	9.1282	60	9.0310
							20	9.2700				

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)			
225	Brequinar (C ₂₃ H ₁₅ F ₂ NO ₂) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	4.45	U	-H	Spectro (λ = 254 nm)	H ₂ O t = RT I = 0.10	S-YP King, AM Basista an solubility behaviours of sodium, J. Pharm. Sci., 7 "The apparent ionization determined at RT in 0.1 strength of 0.1. The ana after examining pure sp molecular (at pH 2.85) absorbance at this wave 5.04 were used. The ion to the method of Albert NB: Only one pK _a value w However, the quinoline in the pH range of the st this group may account (4.26–4.57); and (b) obse profile.	a novel ant 8, 95–100 (19 constant wa M sodium 4 bectra of boti pecies. These length. Six p ization cons and Serjear vas found, p nitrogen sh udy. Interfer for: (a) the	i-cancer agent, br 989). Is spectrophotome acetate buffer at a Jength of 254 nm h ionized (at pH 7 se two species diff pH values ranging stant was calculate t." oresumably the -C would also have pa rence from partial wide range of res	equinar etrically n ionic was chosen 7.0) and fered most in g from 3.75 to ed according COOH. artly ionized ionization of ults obtained
226	Brinzolamide ($C_{12}H_{21}N_3O_5S_3$) $H_2N \xrightarrow{O}_{O}$ $H_2N \xrightarrow{O}_{O}$ $S \xrightarrow{O}_{O}$ OCH_3	5.88 8.48	U U	+H -H	Potentiometric		Hall R, Havner G, Baker J, Curtis M, Struble C, Mc Brinzolamide, APDS, 2 NB: No references were g house (R&D, Alcon Lab Dorzolamide. The assig spectroscopy.	Cue B, Jash 6, 47–96 (199 iven, so data oratories, Ft	eway D and McG 99). a was presumably t Worth, TX, USA	ee D, obtained in), but see
227	Bromocresol green ($C_{21}H_{14}Br_4O_5S$)	-0.85	U	-Н	Spectro	H_2O t = RT	Das Gupta V and Reed JB indicators, J. Pharm. Sci.			acid-base
	H ₃ C Br HO HO						Compound Bromocresol green Bromocresol purple Bromophenol blue	рК _{а1} -0.85 -0.75 -0.95	Compound Cresol red Phenol red	рК _{а1} +1.05 +1.03

(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; / or c M	Comments and Reference(s)
232	Bumetanide (C ₁₇ H ₂₀ N ₂ O ₅ S) COOH CH ₃ (CH ₂) ₃ HN CH ₃ (CH ₂) ₃ HN CC ₆ H ₅	3.6 7.7	U U	-H -H	Potentiometric	H ₂ O t = 20	 Orita Y, Ando A, Urakabe S and Abe H, A metal complexing property of furosemide and bumetanide: Determination of <i>pK</i> and stability constant, <i>ArzneimForsch.</i>, 26(1), 11–13 (1976). Cited in Tata PNV, Venkataramanan R and Sahota SK, Bumetanide, <i>APDS</i>, 22, 107–144, 1993. "The pK₁ and pK₂ values of bumetanide are reported to be 3.6 and 7.7, respectively." NB: These pK_a values were obtained from measured pH values for the partially aqueous solutions (80% dioxane-water) that were claimed to be converted to aqueous solution pH values with an equation from the literature: pH in aq. = pH in dioxane-water + 1.8 (Hoeschle GK, Andelman JB, Gregor HP, <i>J. Phys. Chem.</i>, 62, 1239–1244 (1958)).
233	Bumetanide	3.83	U	-H	CE/pH (-ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639– 2648 (2003). NB: Reported literature values (Dollery C, Therapeutic Drugs, 1999) of 4 and 5.2 and a predicted value (ACD Labs) of 3.18.
234	Bupivacaine (C ₁₈ H ₂₈ N ₂ O) n-Bu N C H H	8.09 (R, S, or racemate form)	U	+H	soly	H_2O $t = 23 \pm 1$ I > 0.1	Friberger P and Aberg G, Some physicochemical properties of the racemates and the optically active isomers of two local anaesthetic compounds, <i>Acta Pharm. Suecica</i> , 8 , 361–364 (1971).
235	Bupivacaine	8.17 (RS form)	U	+H	Potentiometric	H_2O $t = 25 \pm 0.02$ I = 0.05 (KCl) N_2 atmosphere	 Kamaya H, Hayes JJ and Ueda I, Dissociation constants of local aesthetics and their temperature dependence, <i>Anesth. Analg.</i>, 62, 1025–1030 (1983). Cited by Wilson TD, Bupivacaine, <i>APDS</i>, 19, 59–94 (1990). NB: Other pK_a values: 8.495 (10 °C); 7.927 (38 °C); See Lidocaine for details.

Buprenorphine ($C_{29}H_{41}NO_4$)					I = 0.01 (NaCl)	<i>Acta Pharm. Suec.</i> , 19 , 137–142 (1982). NB: See Lidocaine for details.
HO	8.24	U	+H	soly	H_2O $t = 23.0 \pm 0.3$	Garrett ER and Ravi Chandran V, Pharmacokinetics of morphine and its surrogates. Part 6. Bioanalysis, solvolysis kinetics, solubility,
	10.16	U	-H	spectro	25% EtOH	pK' _a values and protein binding of buprenorphine, J. Pharm. Sci.,
	9.85	U	-H	spectro	15% EtOH	74, 515–524 (1985).
	9.7	U	-H		10% EtOH	"Soly/pH method: Buffer solutions with pH values ranging between
CH ₃ O HO CC(CH ₃) ₃	9.39	U	-H	extrap	0% EtOH	6 and 13 were prepared. Powdered buprenorphine hydrochloride was added in excess of solubility to 3 ml of each buffer solution. The solutions were vortexed for 30 min and maintained at room temperature, 23.0 \pm 0.3 °C overnight. The solutions were filtered through 100 um Millipore filters aided by reduced pressure. The clear filtrate was appropriately diluted and analysed by HPLC using fluorescence detection. Calibration curves were prepared simultaneously." NB: Assumptions in the treatment of the spectrophotometric measurements led to the expectation that the true pK_{a2} value (phenol) was higher than the extrapolated value of 9.39.
Buprenorphine	8.31	U	+H	Potentiometric	EtOH/H ₂ O	Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-,
	9.62	U	-H		$t = 25.0 \pm 0.1$ I = 0.15 (KCl) under Ar	chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med. Chem.</i> , 39 , 4377–4381 (1996). NB: Extrapolated to 0% ethanol by Yasuda-Shedlovsky treatment. See Morphine for further details.
Buspirone ($C_{21}H_{31}N_5O_2$)	7.60 ± 0.01	U	+H	Potentiometric	H_2O t = 25.0	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods,
\sim					<i>I</i> = 0.1 (NaCl)	J. Pharm. Biomed. Anal., 14 , 1405–1413 (1996). NB: See Acetaminophen for further details.
Butanephrine (C ₁₀ H ₁₅ NO ₃) OH HO	8.42	U	+H	Potentiometric	H_2O t = 25.0 ± 0.2 I ≤ 0.001	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details; from $pK_b = 5.58$; no attempt was made to unravel the microconstants.
	$GH_{3}O \rightarrow GH_{3}O \rightarrow GH_{$	$\begin{array}{c} 9.7\\ 9.39\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 9.7 & U \\ 9.39 & U \\ \end{array}$ $\begin{array}{c} 0 \\ HO \\ \leftarrow CH_{3}O \\ C(CH_{3})_{3} \end{array}$ Buprenorphine $\begin{array}{c} 8.31 & U \\ 9.62 & U \\ \end{array}$ Buspirone (C_{21}H_{31}N_{5}O_{2}) & 7.60 \pm 0.01 & U \\ \hline \left(\int \\ \leftarrow \\ O \\ O \\ \end{array} \right) Butanephrine (C_{10}H_{15}NO_{3}) & 8.42 & U \\ \hline \left(\int \\ \leftarrow \\ HO \\ \end{array} \right) $\begin{array}{c} 0 \\ \leftarrow \\ O \\ \leftarrow \\ HO \\ \leftarrow \\ HO \\ \end{array}$	$\begin{array}{c} 9.7 & U & -H \\ 9.39 & U & -H \\ 9.39 & U & -H \end{array}$ Buprenorphine $\begin{array}{c} 8.31 & U & +H \\ 9.62 & U & -H \end{array}$ Buspirone (C ₂₁ H ₃₁ N ₅ O ₂) $\begin{array}{c} 7.60 \pm 0.01 & U & +H \\ \hline (\int (\int (-H_{2})_{4} - N - \int (-N - (-N -$	$\begin{array}{c} 9.7 & U & -H & spectro \\ 9.39 & U & -H & extrap \end{array}$ $\begin{array}{c} 9.7 & U & -H & spectro \\ 9.39 & U & -H & extrap \end{array}$ Buprenorphine $\begin{array}{c} 8.31 & U & +H \\ 9.62 & U & -H & Potentiometric \end{array}$ Buspirone (C ₂₁ H ₃₁ N ₅ O ₂) 7.60 ± 0.01 U +H Potentiometric $\begin{array}{c} -\int \int V(CH_2)_4 - N & -\int N $	$\begin{array}{c} 9.7 & U & -H & \operatorname{spectro} & 10\% \text{ EtOH} \\ 9.39 & U & -H & \operatorname{extrap} & 0\% \text{ EtOH} \\ 9.39 & U & -H & \operatorname{extrap} & 0\% \text{ EtOH} \\ \end{array}$ Buprenorphine $\begin{array}{c} 8.31 & U & +H & \operatorname{Potentiometric} & \operatorname{EtOH}/H_2O \\ t = 25.0 \pm 0.1 \\ t = 0.15 \text{ (KCI)} \\ under \text{ Ar} \end{array}$ Buspirone (C ₂₁ H ₃₁ N ₅ O ₂) 7.60 ± 0.01 U & +H & \operatorname{Potentiometric} & H_3O \\ t = 25.0 \\ t = 25.0 \\ t = 25.0 \\ t = 0.1 \text{ (NaCI)} \end{array} Butanephrine (C ₁₀ H ₁₅ NO ₃) 8.42 U & +H & \operatorname{Potentiometric} & H_3O \\ t = 25.0 \pm 0.2 \\ t \leq 0.001 \end{array}

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Referer	nce(s)		
241	Caffeine (C ₈ H ₁₀ N ₄ O ₂)	$(C_8H_{10}N_4O_2)$ -0.13 ± 0.03 U $+H$	+H	¹³ CNMR/H _o	0.05 to 18-M H_2SO_4 t = 28.0	Benoit RL and Fréche xanthine and caffei				
		0.18 ± 0.01	U	+H	Spectro		Compound	рК _{NMR} р	ж _{uv}	р <i>К</i> lit
							Guanine _{H+}			3.3
							Guanine _{2H+}	-1.01 ± 0.03	-0.99 ± 0.01	-1.05
	0						Hypoxanthine _{H+}			1.8, 2.0
	L CH3						Hypoxanthine _{2H+}	-3.12 ± 0.05 -	-3.65 ± 0.10	
							Xanthine _{H+}		0.91 ± 0.01	0.8, 1.2
	H ₃ C N						Xanthine _{2H+}	-	-10.0 ± 0.06	
							Purine _{H+}			2.39
							Purine _{2H+}	-1.66 ± 0.04		-1.5
							Adenine _{H+}			4.19
	O N N						Adenine _{2H+}		-0.47	-0.35
	CH ₂						Adenine _{3H+}	-4.23 ± 0.2		
242	Caffeine	-0.10	U	+H	kinetic	t = 40.1	Perrin Bases, Suppler 1831–1839 (1906).	nent, no. 7464. Re	ef. Wood JK	C, J. Chem. Soc.,
243	Caffeine	1.22	VU	+H	kinetic	$\begin{array}{l} H_2O\\ t=55 \end{array}$	Arnall F, The determ nitrogen bases and Cited in Perrin Base compounds were c	alkaloids, J. Cher es 2873 Ref. A73.	n. Soc. 117,	835–839 (1920)
		<1	U	+H	Spectro	$\begin{array}{l} H_2O\\ t=25 \end{array}$	NB: See also Ref T16: determination of th theobromine and ca	Turner A, Osol A ne dissociation co affeine, J. Am. Pha	nstants of t r. Assoc., 38	heophylline, , 158–161 (1949
244		1.18	TT	. 11	C	11.0	spectrophotometric			
244	Camptothecin (C ₂₀ H ₁₆ N ₂ O ₄)	1.18	U	+H	Spectro	H ₂ O	Fassberg J and Stella			
						t = 25	hydrolysis of camp	tothecin and som	ie analogue	s, J. Pharm. Sci.
						I = 0.5	676–684 (1992). Analogues:			
										pK _a
	Et						Compound	p <i>K</i> a (quinoline	pK _a e) (phenol)	(benzyl- dimethylamine
	OH O						Camptothecin	1 18	_	

Compound	pK _a (quinoline)	p <i>K</i> a (phenol)	(benzyl- dimethylamine)
Camptothecin	1.18	-	-
10-hydroxycamptothecin	1.39	8.56	-
9-(methyl-N,N-dimethylamino) camptothecin	0.601	6.99	10.50

245	Candesartan cilexetil $(C_{33}H_{34}N_6O_6)$ (COR + 1-[[(cyclohexyloxy)carbonyl]oxy]ethyl	3.55 5.91 NH	U U	-H +H	CE/pH (–ve ion mode)	H ₂ O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported literature values (Astra-Zeneca) of 4.5 and 6 and predicted values (ACD Labs) of 4.24 and 4.22.
246	Captopril (C ₉ H ₁₅ NO ₃ S) CH_3 $HSCH_2$ O O O O O O O O	3.7 9.8	UU	-H -H	Potentiometric Spectro	H ₂ O	 Kadin H and Captopril, APDS, 11, 79–137 (1982). "The pK_a of the carboxyl of captopril (pK₁) is reported (29) to be 3.7. Whereas a carboxyl break was readily observed with alkali potentiometry, the sulfhydryl break could not be detected (17). Therefore, the pK_a of the sulfhydryl in captopril (pK₂) was not estimated by classical potentiometry. It was, however, estimated at 9.8 (pK₂) by Ondetti (19) and Weiss (30) using sulfhydryl u.v. shifts to higher wavelengths with increase in pH. The method utilized was adapted from Benesch and Benesch (31)." 17. Whigan DB, personal communication, April 1976 (presumably Squibb Institute for Medical Research). 19. Ondetti M, personal communication, February 1976 (presumably Squibb Institute for Medical Research). 29. Weiss AL, personal communication, March 1980 (presumably Squibb Institute for Medical Research). 30. Weiss AL, personal communication, May 1976 (presumably Squibb Institute for Medical Research). 31. Benesch R, The acid strength of the –SH group in cysteine and related compounds, <i>JACS</i>, 77, 5877–5881 (1955).

Appendix A	(continued)

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
247	Carbenoxolone (C ₃₄ H ₅₀ O ₇)	4.28 ± 0.1	U	-H	<i>, , , , , , , , , ,</i>	H_2O t = RT	Pindado S, Corrigan OI and O'Driscoll CM, Carbenoxolone sodiun APDS, 24, 1–43 (1996).
	CH ₃ , COOH	5.28 ± 0.3	U	-H	1	<i>I</i> = 0.5	"Large differences in the values for the dissociation constants of car benoxolone have been reported. These are summarized in the Tab Table: Dissociation constants (pK _a) of carbenoxolone
							pK _{a1} pK _{a2} Method (reference)
	CH ₃ CH ₃ H CH ₃						 6.7 7.1 not stated (Downer <i>et al.</i>, 1970) 4.18 5.56 Partition (Blanchard <i>et al.</i>, 1988) 4.38 5.11 Solubility (no reference) (present) (Data is from Blanchard <i>et al.</i>)"
	OCH3 CH3 COOH						Downer HD, Galloway RW, Horwich L, Parke DV, J. Pharm. Pharmacol., 22 , 479–487 (1970). This reference gave no method or reference for the pK _a measurements, neither was there any discus sion of the high values, compared to typical -COOH pK _a values. Blanchard J, Boyle JO, Van Wagenen S, J. Pharm. Sci., 77 , 548–552 (198 See no. 248.
248	Carbenoxolone	4.18 5.56	U U	H H	partition	H_2O t = RT I = 0.5	Blanchard J, Boyle JO and Van Wagenen S, Determination of the partition coefficients, acid dissociation constants and intrinsic solubility of carbenoxolone, <i>J. Pharm. Sci.</i> , 77, 548–552 (1988). NB: Partition and soly methods used ³ H-labeled compound, du
		4.38 5.11	U U	H H	soly		to very low solubility in water. Partitioning method required fitting the apparent partition coefficient (APC) at each pH value
	Enoxolone (C ₃₀ H ₄₆ O ₄)	5.56 ± 0.1	U	-H	Spectro		$APC = \frac{TPC + \frac{C_1}{[H^+]} + \frac{C_2}{[H^+]^2}}{1 + \frac{K_1}{[H^+]} + \frac{K_1K_2}{[H^+]^2}}$
	H ₃ C COOH		-				where TPC is the true partition coefficient, K_1 and K_2 are dissociatic constants for the two carboxyl groups, $C_1 = K_{IP}[Na^+]K_1$ and $C_2 = K_{IP2}[Na^+]K_1K_2$, where K_{IP} and K_{IP2} are the equilibrium constants for ion-pair formation with the monoanion and dianic respectively. The resulting pK_a values were compared favoural with model compounds, succinic acid, and 1-methylcyclohexanecarboxylic acid. A spectrophotometric method for enoxolone used buffers in the range $pH = 2.6$ to 7.6

249	Carbinoxamine (C ₁₆ H ₁₉ ClN ₂ O) $CH_2CH_2N(CH_3)_2$ H $CH_2CH_2N(CH_3)_2$ $CH_2N(CH_3)_2$ $CH_2N($	$\begin{array}{c} 3.77 \pm 0.04 \\ 8.98 \pm 0.04 \end{array}$	U U	+H +H	Potentiometric	H ₂ O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details.
250	Carbomycin A (Magnamycin A) (C ₄₂ H ₆₇ NO ₁₆) $\downarrow \qquad \qquad$	7.61	U	+H	Potentiometric	H_2O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a .
	Carbomycin B (C42H67NO15) Cf Carbomycin A	7.55	U	+H			
251	Carbonic acid H ₂ CO ₃	6.352 10.329	R R	-H -H	Potentiometric	H_2O t = 25 I = 0.000	Harned HS and Scholes SR, The ionization constant of HCO ₃ ⁻ from 0 to 50°, <i>JACS</i> , 63 , 1706–09 (1941); Harned HS and Davis R, The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°, <i>JACS</i> , 65 , 2030–2037 (1943); Shedlovsky T, MacInnes DA, The first ionization constant of carbonic acid, 0 to 38°, from conductance measurements, <i>JACS</i> , 57 , 1705–1710 (1935) gave 6.583 ($t = 0$), 6.429 ($t = 15$), 6.366 ($t = 25$), and 7.317 ($t = 38$) by careful conductance work. Results of Harned and Davis (pK _{al}) and Harned and Scholes (pK _{a2})

5.84-6.26

U

-H

T (°C)	pK _{a1} ; pK _{a2}	T (°C)	pK _{a1} ; pK _{a2}	т (°С)	pK _{a1} ; pK _{a2}
0	6.5787; 10.625		6.3809; 10.377	40	6.2978; 10.220
5	6.5170; 10.557	25	6.3519; 10.329	45	6.2902; 10.195
10	6.4640; 10.490	30	6.3268; 10.290	50	6.2851; 10.172
15	6.4187; 10.430	35	6.3094; 10.250		

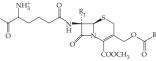
		NB: The pK_{a1} measurements are for $CO_2 + H_2O \Leftrightarrow H^+ + HCO_3^-$. A further reaction of major interest is $H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$, for which
		pK_a has been shown by Roughton FJW, The kinetics and
		thermochemistry of carbonic acid, JACS, 63 2930-34 (1941) to be 3.62
		at 15 °C and by Berg D, Patterson A, The high field conductance of
		aqueous solutions of carbon dioxide at 25°. The true ionization
		constant of carbonic acid, ib., 75, 5197–5200 (1953) to be 3.88 at 25 °C.
		This difference arises because only about 0.3% of dissolved CO ₂ (at
		25 °C) is in the form of H ₂ CO ₃ molecules.
Potentiometric	healthy human	Flear CTG, Roberts SW, Hayes S, Stoddart JC, Covington AK, pK'1
	plasma	and bicarbonate concentration in plasma, Clin. Chem., 33, 13-20
	t = 37	(1987).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and	Referer	nce(s)			
252	Carboxylic acids and phenols	Measured	U	-H	Potentiometric	H ₂ O	Connors KA a	ind Lipa	ari JM, Effect of cycloamy	loses on app	parent	
		pK_a (lit)				t = 25.0			nts of carboxylic acids an			
	Effect of α-CD					I < 0.005	equilibrium	analyti	ical selectivity induced by	y complex for	rmatio	
	Acetic acid	4.83 (4.76)				N ₂ atmos	J. Pharm. Sci	J. Pharm. Sci., 65, 379–383 (1976).				
	Propionic acid	5.16 (4.97)				Presence of	"Apparent dis	ssociatio	on constants of organic ac	cids were de	termine	
	Chloroacetic acid	3.30 (3.20)				α-cyclodextrin	by potention	metric t	itration in the presence o	f cyclohexaa	mylose	
	Maleic acid	3.40 (3.32),					(α-CD) or cy	clohep	taamylose (β-CD). This ex	xperimental	approa	
		6.38 (6.23)					has been ela	aborated	d in 3 systematic techniqu	ues for study	ring	
	Malonic acid	3.69 (3.60),					molecular c	omplex	es of acids and bases. The	e quantity Δ_{j}	$pK_a' =$	
		5.92 (5.70)					pKa' (cycloa	mylose)- pK _a ' (water) was positi	ive or zero fo	or all	
	Benzoic acid	5.20 (4.11)					carboxylic a	arboxylic acids studied and negative or zero for all phenols. T arm $\Delta p K_a'$ can be related to the cyclo-amylose concentration, <i>K</i>				
	Salicylic acid	3.63 (3.40)					term $\Delta p K_a'$					
	<i>m</i> -OH-benzoic acid	4.95 (4.10)					and K_{11b} , w	here K ₁	_{1a} and K _{11b} are 1:1 stabilit	ty constants	for	
	<i>p</i> -OH-benzoic acid	5.83 (4.58)					complexes of the act	cid and the anion, respect	tively. From	the		
	o-MeO-benzoic acid	4.20 (4.15)						e of $\Delta p R$	(a' on cyclo-amylose conce	entration, est	timates	
	<i>m</i> -MeO-benzoic acid	5.13 (4.18)							e obtained. If $\Delta p K_a' \neq 0$,			
	o-nitrobenzoic acid	3.20 (3.19)							$K_{11a} > K_{11b}$; for phenols, K_1			
	<i>m</i> -nitrobenzoic acid	3.83 (3.60)							, it is possible to carry ou			
							titrations of some acid mixtures					
	<i>p</i> -nitrobenzoic acid	4.53 (3.74)					titrations of	some a	cid mixtures in cycloamy	lose solutior	ns,	
	<i>p</i> -nitrobenzoic acid <i>p</i> -fluorobenzoic acid	4.53 (3.74) 4.98 (4.18)							cid mixtures in cycloamy cids cannot be differentia			
	<i>p</i> -fluorobenzoic acid	4.98 (4.18)					whereas the	same a	cids cannot be differentia	ted in water.	If an a	
		(/					whereas the is weakened	same a l by cyc	cids cannot be differentia cloamylose, its conjugate	ted in water. base is streng	. If an a gthene	
	<i>p</i> -fluorobenzoic acid	4.98 (4.18) 3.50 (3.4)					whereas the is weakened	e same a 1 by cyc arboxyl	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit	ted in water. base is streng	. If an a gthene	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid	4.98 (4.18) 3.50 (3.4) 5.34 (5.20)					whereas the is weakened and some ca of a cycloan	e same a 1 by cyc arboxyl	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit	ted in water. base is streng	. If an a gthene	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid	4.98 (4.18) 3.50 (3.4) 5.34 (5.20) 4.85 (4.85)			Eff	fect of β-CD on appare	whereas the is weakened and some ca of a cycloan	e same a 1 by cyc arboxyl	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit	ted in water. base is streng	. If an a gthene	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid picolinic acid	4.98 (4.18) 3.50 (3.4) 5.34 (5.20) 4.85 (4.85) 5.33 (5.31)			Eff		whereas the is weakened and some ca of a cycloan ent pK _a values:	e same a 1 by cyc arboxyl nylose.'	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit	ted in water. base is streng trated in the	If an a gthene preser	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid	4.98 (4.18) 3.50 (3.4) 5.34 (5.20) 4.85 (4.85) 5.33 (5.31) 4.53 (4.20)			Eff	fect of β-CD on appare	whereas the is weakened and some ca of a cycloan	e same a 1 by cyc arboxyl	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit	ted in water. base is streng	. If an a gthene preser	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i> -hydroxycinnamic	$\begin{array}{c} 4.98 \\ (4.18) \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \end{array}$			Eff —		whereas the is weakened and some ca of a cycloan ent pK _a values:	e same a 1 by cyc arboxyl nylose.'	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit	ted in water. base is streng trated in the	If an a agthene preser Lit	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i> -hydroxycinnamic <i>m</i> -hydroxycinnamic	$\begin{array}{c} 4.98 \\ (4.18) \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \\ 5.64 \\ (4.49) \end{array}$			Eff —	Compound Benzoic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95	e same a 1 by cyc arboxyl nylose.' Lit 4.11	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit <u>Compound</u> o-MeO-cinnamic acid	ted in water. base is streng trated in the Measured 5.48	Lit 4.70	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i> -hydroxycinnamic <i>m</i> -hydroxycinnamic <i>p</i> -hydroxycinnamic	$\begin{array}{c} 4.98 \\ (4.18) \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \end{array}$			Eff —	Compound	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured	e same a 1 by cyc arboxyl nylose.' Lit	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound	ted in water. base is streng trated in the Measured	If an a agthene preser Lit	
	 <i>p</i>-fluorobenzoic acid <i>o</i>-phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i>-hydroxycinnamic <i>p</i>-hydroxycinnamic <i>p</i>-hydroxycinnamic <i>o</i>-methoxycinnamic 	$\begin{array}{c} 4.98 & (4.18) \\ 3.50 & (3.4) \\ 5.34 & (5.20) \\ 4.85 & (4.85) \\ 5.33 & (5.31) \\ 4.53 & (4.20) \\ 5.80 & (4.43) \\ 5.82 & (4.69) \\ 5.64 & (4.49) \\ 5.88 & (4.40) \\ 5.20 & (4.70) \end{array}$			Eff	Compound Benzoic acid o-nitrobenzoic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95 3.33	e same a d by cyc arboxyl nylose.' Lit 4.11 3.19	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid m-MeO-cinnamic acid	ted in water. base is streng trated in the Measured 5.48 4.88	If an a agthene preser Lit 4.70 4.47	
	 <i>p</i>-fluorobenzoic acid <i>o</i>-phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i>-hydroxycinnamic <i>p</i>-hydroxycinnamic <i>o</i>-methoxycinnamic <i>m</i>-methoxycinnamic 	$\begin{array}{c} 4.98 \\ (4.18) \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \\ 5.64 \\ (4.49) \\ 5.88 \\ (4.40) \end{array}$			Eff	Compound Benzoic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95	e same a 1 by cyc arboxyl nylose.' Lit 4.11	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid <i>m</i> -MeO-cinnamic	ted in water. base is streng trated in the Measured 5.48	Lit 4.90 4.90	
	 <i>p</i>-fluorobenzoic acid <i>o</i>-phthalic acid nicotinic acid gicolinic acid gallic acid cinnamic acid <i>o</i>-hydroxycinnamic <i>m</i>-hydroxycinnamic <i>p</i>-hydroxycinnamic <i>p</i>-methoxycinnamic <i>p</i>-methoxycinnamic <i>p</i>-methoxycinnamic 	$\begin{array}{c} 4.98 \\ (4.18) \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \\ 5.64 \\ (4.49) \\ 5.88 \\ (4.40) \\ 5.20 \\ (4.70) \\ 5.76 \\ (4.47) \\ 6.24 \\ (4.90) \end{array}$			Eff	Compound Benzoic acid o-nitrobenzoic acid p-nitrobenzoic acid	whereas the is weakened and some cc of a cycloan ent pK _a values: Measured 4.95 3.33 4.02	same a d by cyc arboxyl nylose.' Lit 4.11 3.19 3.74	cids cannot be differentia loamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid m-MeO-cinnamic acid p-MeO-cinnamic acid	ted in water. base is streng trated in the Measured 5.48 4.88 5.29	Lit 4.90 4.90	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid gallic acid cinnamic acid <i>o</i> -hydroxycinnamic <i>m</i> -hydroxycinnamic <i>p</i> -hydroxycinnamic <i>p</i> -hydroxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic	$\begin{array}{c} 4.98 \ (4.18) \\ 3.50 \ (3.4) \\ 5.34 \ (5.20) \\ 4.85 \ (4.85) \\ 5.33 \ (5.31) \\ 4.53 \ (4.20) \\ 5.80 \ (4.43) \\ 5.82 \ (4.69) \\ 5.64 \ (4.49) \\ 5.88 \ (4.40) \\ 5.20 \ (4.70) \\ 5.76 \ (4.47) \\ 6.24 \ (4.90) \\ 9.81 \ (9.81) \end{array}$			Eff	Compound Benzoic acid o-nitrobenzoic acid p-nitrobenzoic acid o-MeO-benzoic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95 3.33 4.02 4.48	Esame a d by cycarboxyl, nylose.' Lit 4.11 3.19 3.74 4.15	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid m-MeO-cinnamic acid p-MeO-cinnamic acid o-phthalic acid	ted in water. base is streng trated in the Measured 5.48 4.88 5.29 5.55	. If an a agthene preser Lit 4.70 4.47 4.90 5.20	
	 <i>p</i>-fluorobenzoic acid <i>o</i>-phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i>-hydroxycinnamic <i>m</i>-hydroxycinnamic <i>p</i>-hydroxycinnamic <i>m</i>-methoxycinnamic <i>p</i>-methoxycinnamic 	$\begin{array}{c} 4.98 \\ (4.18) \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \\ 5.64 \\ (4.49) \\ 5.88 \\ (4.40) \\ 5.20 \\ (4.70) \\ 5.76 \\ (4.47) \\ 6.24 \\ (4.90) \\ 9.81 \\ (9.81) \\ 7.21 \\ (7.21) \end{array}$			Eff —	Compound Benzoic acid o-nitrobenzoic acid o-MeO-benzoic acid o-OH-benzoic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95 3.33 4.02 4.48 3.68	Esame a d by cycarboxyl. nylose.' Lit 4.11 3.19 3.74 4.15 3.40	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid <i>m</i> -MeO-cinnamic acid <i>p</i> -MeO-cinnamic acid <i>o</i> -phthalic acid <i>p</i> -nitrophenol	ted in water. base is streng trated in the Measured 5.48 4.88 5.29 5.55 6.70	. If an a agthene preser Lit 4.70 4.90 5.20 7.09	
	 <i>p</i>-fluorobenzoic acid <i>o</i>-phthalic acid nicotinic acid picolinic acid gallic acid cinnamic acid <i>o</i>-hydroxycinnamic <i>m</i>-hydroxycinnamic <i>p</i>-hydroxycinnamic <i>m</i>-methoxycinnamic <i>p</i>-methoxycinnamic <i>p</i>-methoxycinnamic <i>p</i>-methoxycinnamic <i>p</i>-methoxycinnamic <i>p</i>-methoxycinnamic <i>m</i>-mitophenol <i>m</i>-nitophenol 	$\begin{array}{c} 4.98 \\ 4.18 \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \\ 5.64 \\ (4.49) \\ 5.88 \\ (4.40) \\ 5.20 \\ (4.70) \\ 5.76 \\ (4.47) \\ 6.24 \\ (4.90) \\ 9.81 \\ (9.81) \\ 7.21 \\ (7.21) \\ 8.00 \\ (8.29) \end{array}$			Eff	Compound Benzoic acid o-nitrobenzoic acid o-MeO-benzoic acid o-OH-benzoic acid Cinnamic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95 3.33 4.02 4.48 3.68 5.08	Esame a d by cycarboxyl. nylose.' Lit 4.11 3.19 3.74 4.15 3.40 4.43	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid m-MeO-cinnamic acid p-MeO-cinnamic acid o-phthalic acid	ted in water. base is streng trated in the Measured 5.48 4.88 5.29 5.55	. If an a signal set of the set o	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid gallic acid cinnamic acid <i>o</i> -hydroxycinnamic <i>m</i> -hydroxycinnamic <i>p</i> -hydroxycinnamic <i>o</i> -methoxycinnamic <i>m</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -nitrophenol <i>m</i> -nitrophenol <i>p</i> -nitrophenol	$\begin{array}{c} 4.98 \ (4.18) \\ 3.50 \ (3.4) \\ 5.34 \ (5.20) \\ 4.85 \ (4.85) \\ 5.33 \ (5.31) \\ 4.53 \ (4.20) \\ 5.80 \ (4.43) \\ 5.82 \ (4.69) \\ 5.64 \ (4.49) \\ 5.88 \ (4.40) \\ 5.20 \ (4.70) \\ 5.76 \ (4.47) \\ 6.24 \ (4.90) \\ 9.81 \ (9.81) \\ 7.21 \ (7.21) \\ 8.00 \ (8.29) \\ 6.15 \ (7.09) \end{array}$			Eff	Compound Benzoic acid o-nitrobenzoic acid o-MeO-benzoic acid o-OH-benzoic acid Cinnamic acid o-OH-cinnamic	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95 3.33 4.02 4.48 3.68	Esame a d by cycarboxyl. nylose.' Lit 4.11 3.19 3.74 4.15 3.40	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid <i>m</i> -MeO-cinnamic acid <i>p</i> -MeO-cinnamic acid <i>o</i> -phthalic acid <i>p</i> -nitrophenol	ted in water. base is streng trated in the Measured 5.48 4.88 5.29 5.55 6.70	. If an a signal set of the set o	
	<i>p</i> -fluorobenzoic acid <i>o</i> -phthalic acid nicotinic acid gallic acid cinnamic acid <i>o</i> -hydroxycinnamic <i>m</i> -hydroxycinnamic <i>p</i> -hydroxycinnamic <i>p</i> -methoxycinnamic <i>p</i> -methoxycinnamic	$\begin{array}{c} 4.98 \\ 4.18 \\ 3.50 \\ (3.4) \\ 5.34 \\ (5.20) \\ 4.85 \\ (4.85) \\ 5.33 \\ (5.31) \\ 4.53 \\ (4.20) \\ 5.80 \\ (4.43) \\ 5.82 \\ (4.69) \\ 5.64 \\ (4.49) \\ 5.88 \\ (4.40) \\ 5.20 \\ (4.70) \\ 5.76 \\ (4.47) \\ 6.24 \\ (4.90) \\ 9.81 \\ (9.81) \\ 7.21 \\ (7.21) \\ 8.00 \\ (8.29) \end{array}$			Eff	Compound Benzoic acid o-nitrobenzoic acid o-MeO-benzoic acid o-OH-benzoic acid Cinnamic acid	whereas the is weakened and some ca of a cycloan ent pK _a values: Measured 4.95 3.33 4.02 4.48 3.68 5.08	Esame a d by cycarboxyl. nylose.' Lit 4.11 3.19 3.74 4.15 3.40 4.43	cids cannot be differentia cloamylose, its conjugate ate salts can be readily tit Compound o-MeO-cinnamic acid <i>m</i> -MeO-cinnamic acid <i>p</i> -MeO-cinnamic acid <i>o</i> -phthalic acid <i>p</i> -nitrophenol	ted in water. base is streng trated in the Measured 5.48 4.88 5.29 5.55 6.70	. If an a gthene preser	

253	Carbutamide (C ₁₁ H ₁₇ N ₃ O ₃ S) H_2N H_2N H_N	5.75	U	-Н	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	 Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV. <i>Acta Pharm. Suec.</i> 7, 473–482 (1970). NB: See Sulphanilamide for details.
254	Cefadroxil (C ₁₆ H ₁₇ N ₃ O ₅ S) H_2 H_3 H_4 H_5 H_5 H_6 H_7	1.38 7.55 10.10	U U U	-H +H -H	Potentiometric	H_2O $t = 20 \pm 2$ N_2 atmosphere	 Mariño EL and Dominquez-Gil A, Determination of the macro- and micro-ionization constants of a dipolar zwitterionic cephalosporin: cefadroxil, <i>Int. J. Pharm.</i>, 8(1), 25–33 (1981). Macro constants pK₁ pK₂ pK₃ 1.4 7.5 10 1.38 7.55 10
							Micro constants (spectrophotometric; $I = 0.05$ M)pKapKcpKdEdsall's Method8.217.669.449.99Linear Reg8.357.6310.3711.09NB: The similar magnitudes of the microconstants mean that all four species $(-/-/+, -/+, -/-$ and $-$ coexist in the pH range 6.8 to
255	Cefazaflur (C ₁₃ H ₁₃ F ₃ N ₆ O ₄ S ₃) $CF_3 \rightarrow HN \rightarrow HN \rightarrow COH - S \rightarrow CH_3 \rightarrow COH - N \rightarrow N$	2.45	U	-H	Potentiometric	H ₂ O t = 37 I = 0.2	 11.8. Irwin VP and Timoney RF, Cefazaflur: Kinetics of hydrolysis in aqueous solution, acid dissociation constant and alkaline decomposition to fluorescent products, <i>J. Pharm. Pharmacol.</i>, 41, 360 (1989). NB: The potentiometric method followed one in the literature: Streng WH, Microionization constants of commercial cephalosporins, <i>J. Pharm. Sci.</i>, 67, 666–669 (1978).
256	Cefazolin (C ₁₄ H ₁₄ N ₈ O ₄ S ₃) $H \rightarrow H \rightarrow S \rightarrow S \rightarrow CH_3$	2.75	U	-Н	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1	Streng WH, Microionization constants of commercial cephalosporins, <i>J. Pharm. Sci.</i>, 67, 666–669 (1978).NB: See Cephalosporin derivatives for further details.

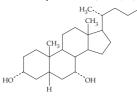
12					Ionization		Conditions	
	No.	Name	pK _a value(s)	Data quality	type	Method	t°C; I or c M	Comments and Reference(s)
	257	Cefotaxime (C ₁₆ H ₁₇ N ₅ O ₇ S ₂) CH ₃ O H_1 H_1 H_2 H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_2 H_2 H_2 H_2 H_2 H_3 H_3 H_4 H	2.1 3.4 10.9	U U U	-H +H +H	Potentiometric	H ₂ O t = 20 I < 0.005	Fabre H, Hussam-Eddine N and Berge G, Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin, <i>J. Pharm. Sci.</i> , 73, 611–618 (1984). "The pK _a values of I were determined by the potentiometric titration of a 2.8×10^{-3} M cefotaxime aqueous solution with 0.1 M NaOH at 20 °C, under nitrogen. The two functional groups corresponding to the terminal amino group of the sidechain at C-7 and the carboxylic group at C-3 of the cephem ring were acidified with a stoichiometric amount of 0.1 M HCl before titration." NB: The values were determined using methods of Albert and Serjeant. No values were reported in Muhtadi FJ and Hassan MMA, Cefotaxime, <i>APDS</i> , 11 , 132–168 (1982).
	258	Cefroxadine (C ₁₆ H ₁₉ N ₃ O ₅ S) NH_2 H H H NH_2 H O NH_2 H H H NH_3 COOH	$\begin{array}{c} 3.30 \pm 0.02 \\ 7.00 \pm 0.06 \end{array}$	A U	-H +H	Potentiometric	H_2O t = 35.0 I = 0.00	 Neito MJ, González JL, Dominguez-Gil A and Lanao JM, Determination of the thermodynamic ionization constants of cefroxadine, <i>J. Pharm. Sci.</i>, 76, 228–237 (1987). "The values of thermodynamic ionization constants of the carboxylic (pK = 3.30 ± 0.02) and amine (pK = 7.00 ± 0.06) groups of cefroxadine were determined at 35.0 °C using potentiometric data. The apparent ionization constants of these groups were also determined at 35 °C, and at different values of ionic strength."
	259	Cephalexin (C ₁₆ H ₁₇ N ₃ O ₄ S) H_1 H_2 H_1 H_2 H_1 H_2 H_3 H_3 H_4	$\begin{array}{c} 2.53 \pm 0.02 \\ 7.14 \pm 0.02 \end{array}$	U U	-H +H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric p K_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). "p $K_{a1} = 2.72 \pm 0.02$ and p $K_{a2} = 7.15 \pm 0.02$ by extrapolation from 14.8 – 55.7 %w/w aqueous MeOH." NB: See Acetaminophen for full details.
	260	Cephalexin	5.2–5.3	U	-H	Potentiometric	66% DMF	Marelli LP, Cephalexin, APDS, 4, 21–46 (1975).

7.3


U

+H

- Marelli LP, Cephalexm, APDS, 4, 21–46 (1975).
 Hargrove WW, Eli Lilly and Co., personal communication, 1967
 Ryan CW, Simon RL and van Heyningen EM, Chemistry of cephalosporin antibiotics. XIII. Desacetoxycephalosporins. The synthesis of cephalexin and some analogs, J. Med. Chem., 12, 310–313 (1969).
- Flynn EH (ed.), Cephalosporins and penicillins. Chemistry and Biology, Academic Press, NY, 310 (1972).
- NB: Ryan *et al.* and Flynn gave values in 66% DMF. Hargrove also gave a value of 7.1 for the amino group in water.


261	Cephalexin	2.45 7.62	U U	-H +H	Potentiometric, Spectro	H_2O $t = 25 \pm 2$ I = 0.1	Streng WH, Microionization constants of commercial cephalosporins, <i>J. Pharm. Sci.</i> , 67 , 666–669 (1978). N macroconstants were calculated from the four mic constants, which were determined by a combination spectrophotometry and potentiometry, giving the values:		78). NB: The two r microionization ination of	
							рК1	pK ₂	pK ₃	pK ₄
							2.48 (3.31e-3)	7.59 (2.57e-8)	6.46 (3.47e-7)	3.60 (2.51e-4)
							⁺ HNRCOO to NRCOO	OH to ⁺ HNRCOO OH and NRCOOH	to ⁺ HNRCOO ⁻ to ⁺ HNRCOOH,	to the equilibria for NRCOO ⁻ , NRCOO ⁻ respectively. trength with Davies'
262	Cephalexin	5.3 7.3	U U	-H +H	Potentiometric	66% DMF	EH (ed.), C	, Nagarajan R, Phy Cephalosporins and p Press, NY, 311–31	venicillins: Chemis	roperties in Flynn try and Biology,
263	Cephaloglycin (C ₁₈ H ₁₉ N ₃ O ₆ S)	1.71	U	-H	Potentiometric,	H ₂ O		Microionization co	. ,	ercial
	NH ₂ H H N CH ₂ OAc	7.29	U	+H	Spectro	$t = 25 \pm 2$ I = 0.1	cephalosporins, J. Pharm. Sci., 67 , 666–669 (1978). NB: 7 macroconstants were calculated from the four microio constants, which were determined by a combination o spectrophotometry and potentiometry, giving the follo values:			r microionization ination of
							р <i>К</i> 1	pK ₂	pK ₃	pK₄
							1.78 (1.66e-2)	7.22 (6.03e-8)	6.46 (3.47e-7)	2.53 (2.95e-3)
							⁺ HNRCOO NRCOO ⁻ respectivel	icroconstants K ₁ , K DH to ⁺ HNRCOO to NRCOOH and ly. Apparent value ith Davies' equati	, ⁺ HNRCOO ⁻ to NRCOOH to ⁺ HI es were corrected	NRCOOH,
264	Cephaloglycin	4.7	U	-H	Potentiometric	66% DMF		and Nagarajan R,		al Properties, in
	,	7.4	U	+H			Flynn EH (0,	s and penicillins: C	Chemistry and Biology,
265	L-Cephaloglycin	4.6	U	-H	Potentiometric	66% DMF		Spencer JL, Flynn		
		7.1	U	+H						ntibiotics. VII. gs, J. Med. Chem., 9 ,

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
266	Cephaloridine (C ₁₉ H ₁₇ N ₃ O ₄ S ₂) H H H S H H S G G G G G G G G G G G G G G G G G G G	3.4	U	-Н	Potentiometric	66% DMF	Craig; N&K Flynn EH, ed., Cephalosporins and penicillins Chemistry and Biology, Academic Press, NY, 312–316 (1972).
267	Cephaloridine	3.4	U	-H	Potentiometric	66% DMF	Demarco PV and Nagarajan R, Physical-Chemical Properties, in Flynn EH (ed.), Cephalosporins and penicillins: Chemistry and Biology Academic Press, NY, 311–316 (1972).
268	Cephalosporin derivative (C ₁₆ H ₁₇ N ₃ O ₇ S)				potentio, Spectro	H_2O t = 25 ± 2 I = 0.1	Streng WH, Microionization constants of commercial cephalosporins, J. Pharm. Sci., 67, 666–669 (1978). NB: The four microionization constants were estimated with a combination of spectrophotometry and potentiometry: $\underline{pK_1 pK_2 pK_3 pK_4}$ $1.70 2.80 1.97 2.53$
							where the microconstants K_1 , K_2 , K_3 and K_4 refer to the equilibria for ⁺ HNRCOOH to ⁺ HNRCOO ⁻ , ⁺ HNRCOO ⁻ to NRCOO ⁻ , NRCOO ⁻ to NRCOOH and NRCOOH to ⁺ HNRCOOH, respectively. Apparent values were corrected to zero ionic strength with Davies' equation.
269	Cephalosporin, 5-amino-5-carboxyvaleramido 7-substituted $-0 + \frac{NH_3^+}{0} + \frac{R_1}{H_1} + \frac{S_2}{0} + \frac{S_3}{0} + \frac{S_3}{0}$				Potentiometric	66% DMF	 Nagarajan R, β-Lactam antibiotics from Streptomyces, <i>in</i> Flynn EH (ed.), <i>Cephalosporins and penicillins: Chemistry and Biology</i>, Academic Press, NY, 636–647 (1972). Corresponding N-acyl derivatives:

	(2) $R^2 = CH_3 (C_{17}H_{23}N_3O_8S)$	3.9	U	-H			Compound	nk	values (all	classified U)
		5.3 10.5	U U	-H +H					a values (all	classified 07
	(3) $R^2 = NH_2 (C_{16}H_{22}N_4O_8S)$	3.9	U	+π –Η				_	соон	—соон
	(5) K = 14112 (C161122144085)	5.3	U	-H			N-chloroacetyl-(2)	4.8	,	6.2
		10.5	U	+H			N-phthalimido-(3)	4.0		6.5
	$R^1 = OCH_3$						N-chloroacetyl-(3)	5.		6.5
	(4) $R^2 = CH_3 (C_{18}H_{25}N_3O_9S)$	4.0	U	-H			N-phthalimido-(3)	5.2		6.5
		5.3	U	-H			N-chloroacetyl-(4)	4.8		6.1
		10.5	U	+H			N-phthalimido-(4)	5.5		6.7
	(5) $R^2 = NH_2 (C_{17}H_{24}N_4O_9S)$	4.2	U	-H			N-chloroacetyl-(5)	5.4		6.8
		5.6	U	-H			N-phthalimido-(5)	5.2		6.5
		10.4	U	+H				0	-	0.5
270	Cephalosporin C ($C_{16}H_{21}N_3O_8S$)	5.0 U —H Flynn EH (ed.), Cephalospa					Demarco PV and Nagarajan R, P. Flynn EH (ed.), <i>Cephalosporins a</i> Academic Press, NY, 311–316 (and penic		
	O H H CH3						Compound	p <i>K</i> a	Reliability	lonization type
	COOH O						Deacetoxycephalosporin C	4.0	U	-H
							$(C_{14}H_{19}N_3O_7S)$	5.8	U	-11 -H
							$(C_{14}I_{19}I_{3}O_{7}S)$	10.6	U	-11 +H
							N-Chloroacetylcephalosporin	4.8	U	-H
							$C (C_{18}H_{22}CIN_3O_9S)$	6.2	U	-H
							N-Chloracetyl	5.4	U	-H
							deacetoxycephalo-sporin C	6.7	U	-H
							$(C_{16}H_{20}ClN_3O_8S)$	0.7	0	11
					D					
271	Cephalothin ($C_{16}H_{16}N_2O_6S_2$)	2.35	U	-H	Potentiometric	H_2O $t = 25 \pm 2$	Streng WH, Microionization cons cephalosporins, J. Pharm. Sci., 6			1
	$ \begin{array}{c} H & H \\ H \\ S \\ S \\ O \\ O \\ O \\ COOH \end{array} \right) \begin{array}{c} H & H \\ S \\ CH_2OAc \\ COOH \end{array} $					$I = 25 \pm 2$ $I = 0.1$	NB: See Cephalosporin derivativ		09 (1978).	
272	Cephalothin	5.0	U	-H	Potentiometric	66% DMF	Demarco PV and Nagarajan R, P	hysical-(Chemical Pr	operties in

Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Re	eference(s)		
Cephapirin (C ₁₇ H ₁₇ N ₃ O ₆ S ₂) H H H G = G = G = G = G = G = G = G = G = G =		Potentiometric, Spectro	, 2	Streng WH, Microionization constants of commercial cephalosporins, <i>J. Pharm. Sci.</i> , 67 , 666–669, 1978. NB: The two macroconstants were calculated from the four microionization constants, which were determined by a combination of spectrophotometry and potentiometry. Two calculation methods gave the following values:					
						р <i>К</i> 1	рК ₂	pK3	рK ₄
					1.83 (1.48e – 2) 1.85	5.48 (3.31e – 6) 5.44	4.78 (1.66e – 5) 4.47	2.53 (2.95e - 3) 2.81	
Cerivastatin (C ₂₆ H ₃₄ FNO ₅)	rastatin ($C_{26}H_{34}FNO_5$) 4.38 U +H	(-ve ion mode) $t =$	t = 25	 ⁺HNRCOOH to ⁺HNRCOO⁻, ⁺HNRCOO⁻ to NRCOO⁻, NRCOO⁻ to NRCOOH and NRCOOH to ⁺HNRCOOH, respectively. Apparent values were corrected to zero ionic strength with Davies' equation. Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard ME and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis 					
CCOOH , MOH F						and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 26 2648 (2003). NB: Reported predicted values (ACD Labs) of 4.24 and 4.22. Th data are identical to those given in the same source for Candesartan, so may be a typo.			
	Cephapirin (C ₁₇ H ₁₇ N ₃ O ₆ S ₂) $\downarrow H$ H $\downarrow H$ H $\downarrow G$ COOH $\downarrow H$ COOH	Cephapirin (C ₁₇ H ₁₇ N ₃ O ₆ S ₂) $ \begin{array}{c} 1.75\\ 5.56 \end{array} $ Cerivastatin (C ₂₆ H ₃₄ FNO ₅) $ \begin{array}{c} 4.38\\ HO \\ HO \\ COOH \end{array} $ $ \begin{array}{c} 5.29 \end{array} $	Cephapirin (C ₁₇ H ₁₇ N ₃ O ₆ S ₂) $ \begin{array}{c} 1.75 \\ 5.56 \\ U \end{array} $ $ \begin{array}{c} U \\ 5.56 \\ U \end{array} $ Cerivastatin (C ₂₆ H ₃₄ FNO ₅) $ \begin{array}{c} 4.38 \\ HO \\ -COOH \end{array} $ $ \begin{array}{c} 5.29 \\ U \end{array} $	Name pK_a value(s)Data qualitytypeCephapirin (C17H17N3OcS2)1.75U-H $\downarrow \downarrow $	Name pK_a value(s)Data qualitytypeMethodCephapirin (C17H17N3OcS2)1.75U-HPotentiometric, Spectro $\downarrow \downarrow $	NamepKa value(s)Data qualitytypeMethodt°C, l or c MCephapirin (C17H17N3O6S2)1.75U-HPotentiometric, t = 25 ± 2H2O $h = 0$	Name pK_a value(s)Data qualitytypeMethod $t^*C; l \text{ or } c M$ Comments and ReCephapirin (C ₁₇ H ₁₇ N ₃ O ₆ S ₂)1.75U-HPotentiometric, HH2O SpectroStreng WH, Mice cephalosporin macroconstant constants, whi spectrophoton gave the follow $\zeta = 25 \pm 2$ $\zeta = 0.1$ $H = 0.1$ $H = 0.1$ $I = 0.1$ $I = 0.1$ $\zeta = 0.1$ $H = 0.1$ $I = 0.1$ $I = 0.1$ $I = 0.1$ $I = 0.1$ $\zeta = 0.0CH$ $I = 0.1$ $I = 0.025$	NamepK_s value(s)Data qualitytypeMethodt*C; / or c MComments and Reference(s)Cephapirin (C127H12N3O_652)1.75U-HPotentiometric, HH_2O SpectroStreng WH, Microionization consceptionas, J. Pharm. Sci., G macroconstants were calculate coonstants, which were determine spectrophotometry and potent gave the following values:Streng WH, Microionization consceptionas, J. Pharm. Sci., G macroconstants were calculate constants, which were determine spectrophotometry and potent gave the following values:Cerivastatin (C20H34FNO5)4.38U+HCE/pH (-ve ion mode)H_2O (-ve ion mode)Wan H, Holmen AG, Wang Y, LiHO G GOCH5.29U+HCE/pH (-ve ion mode)H_2O (-ve ion mode)Wan H, Holmen AG, Wang Y, Li and Thompson RA, High-throo pharmaceuticals by pressure-a and mass spectrometry, Rapid 2648 (2003).	NamepK_a value(s)Data qualitytypeMethodt²C; t or c MComments and Reference(s)Cephapirin (C_{tr}H_1rNsO_5;s) $\downarrow \downarrow $

COOH

-H

$$t = 25.0 \pm 0.1$$

 $I = 0.00$

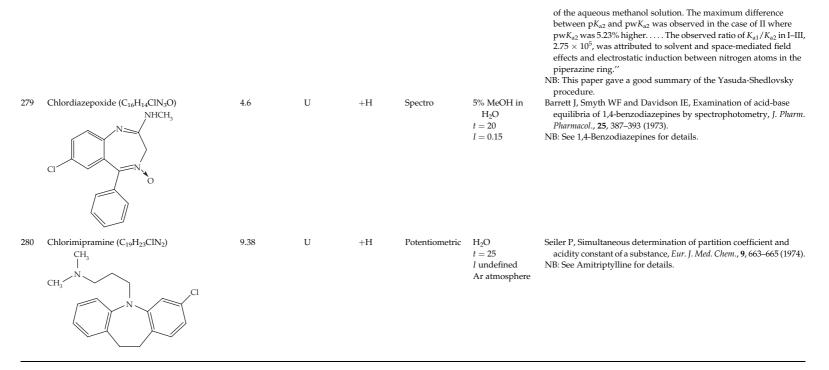
Fini A and Roda A, Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids, J. Lipid Res., 28(7), 755–759 (1987).

"The use of mixed aqueous-organic solvents was justified on the basis that the effects on pK_a of micelle formation were eliminated.... Bile acids were purified... by preparative thin layer chromatography...."

NB: Apparent pK_a values were determined by titration in either aqueous DMSO (30-80 wt%) solutions or in aqueous methanol (10– 50 wt%) solutions. Ionic strength effects were corrected with Davies' modification of the Debye-Huckel equation. Weight percent compositions were converted to mole fraction and plots (often exhibiting traces of curvature) of apparent pK_a were extrapolated to 100% water by linear regression analysis. The following values were reported for the pK_a value in water (pK_{aw}):

	рК _{аw}						
Compound	LR ^a	Extr ^b	Extr				
3α-hydroxy	5.03						
3α-hydroxy, gly conj	3.84						
3α,7β-dihydroxy	5.02	5.05	5.08				
3α,7β-dihydroxy, gly conj	3.86						
3α,7α-dihydroxy	4.98	5.08	5.03				
3α,7α-dihydroxy, gly conj	3.87						
3α,12α-dihydroxy	5.02						
3α,12α-dihydroxy, gly conj	3.88	3.81	3.93				
3α-hydroxy 7-keto	5.00						
3α-hydroxy, 7-keto, gly conj	3.89						
3α,7α,12α-trihydroxy	5.00						
3α,7α,12α-trihydroxy, gly conj	3.88	3.81	3.93				

 $^a\,\,pK_{\rm aw}$ calculated from a previously validated linear relationship between the apparent pK_a in 80% aqueous DMSO and the true pK_a


^b pK_{aw} calculated by extrapolation of the apparent pK_a values in DMSO-water mixtures to 100% water

 $^c\,\,pK_{\rm aw}$ calculated by extrapolation of the apparent $pK_{\rm a}$ values in MeOH-water mixtures to 100% water

The pattern of hydroxyl group substitution does not significantly affect the pK_a values of either the bile acid –COOH or the corresponding glycine conjugate.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
276	Chloral Hydrate (C ₂ H ₃ Cl ₃ O ₂) $Cl \rightarrow OH$ $Cl \rightarrow H$ $Cl \rightarrow H$	10.04	U	-H	Potentiometric	H_2O t = 25.0 ± 0.005 I = 0.00	 Bell RP and Onwood DP, Acid strengths of the hydrates of formaldehyde, acetaldehyde and chloral, <i>Farad. Soc. Trans.</i>, 58, 1557–61 (1962). Cited by Fairbrother JE, Chloral Hydrate, <i>APDS</i>, 2, 85–143 (1973). "The ionization constant, pK_a, was obtained by measuring the pH of buffered solutions of chloral hydrate (96). The mean of 25 experiments gave pK_a = 10.04, which differs considerably from the value of 11 obtained by Euler and Euler (97) and is closer to pK_a = 9.77, derived indirectly from kinetic measurements (98). 96. Bell RP and Onwood DP, <i>Farad. Soc. Trans.</i>, 58, 1557–1561 (1962). 97. Euler H and Euler A, <i>Chem. Ber.</i>, 36, 4246–4259 (1903). 98. Gustafsson C and Johanson M, Kinetic study of the decomposition of chloral hydrate by sodium hydroxide in aqueous solution, <i>Acta Chem. Scand.</i>, 2, 42–48 (1948). This paper gave, from the kinetic results, <i>K</i> = 1.1x10⁻¹⁰ (15°); 1.4 × 10⁻¹⁰ (20°); 1.7 × 10⁻¹⁰ (25°); 2.0 × 10⁻¹⁰ (30°).
277	Chloral Hydrate	10.07 ± 0.01	U	-H	kinetic	H_2O t = 25.0 I = 0.00	Kucerova T and Mollin J, Effect of medium on the acid-catalyzed solvolysis of hydroxamic acids, <i>Collect. Czech. Chem Communs.</i> , 43, 1571–1580 (1978).
		9.66	U	-H	Potentiometric	H ₂ O	Gawron O and Draus F, Kinetic evidence for reaction of chloralate ion
		9.70	U	-Н	kinetic	t = 25.0? I = 0.00?	with p-nitrophenyl acetate in aqueous solution, <i>JACS</i> , 80 , 5392–5394 (1958). They state that Gustaffson and Johanssen reported 9.70, not 9.77 (see above, no. 276).
		10.54 ± 0.41	U	-H	comp		ACD/pK_a estimate
		13.96 ± 0.2	U	-H	1		Ref. $9.95/25.00/I = 0.10/Palm VA$, 1975.
278	Chlorcyclizine ($C_{18}H_{21}ClN_2$)	2.12 ± 0.04	A	+H	Potentiometric	H ₂ O	Newton DW, Murray WJ and Lovell MW, pK _a determination of
	Cl H Cl Cl Cl Cl Cl Cl Cl	7.65 ± 0.04	Ā	+H		$t = 24.5 \pm 0.5$ I = 0.00	benzhydrylpiperazine antihistamines in aqueous and aqueous methanol solutions, <i>J. Pharm. Sci.</i> , 71(12) , 1363–1366 (1982). "The pK _{a1} and pK _{a2} values of three benzhydrylpiperazine anti- histamines, cyclizine (I), chlorcyclizine (II), and hydroxyzine (III) were determined at $24.5 \pm 0.5^{\circ}$ by potentiometric titration in aqueous solution to be 2.16 ± 0.02 and 8.05 ± 0.03 , 2.12 ± 0.04 and 7.65 ± 0.04 , and 1.96 ± 0.05 and 7.40 ± 0.03 , respectively. The pK _{a2} values were also determined by titration in seven aqueous methanol solutions in the range of 11.5 – 52.9% (w/w) methanol. The apparent dissociation constants of I - III in the aqueous methanol solutions, psK _{a2} , were plotted according to two linear regression equations from which the values in water, pwK _{a2} , were extrapolated. The plotted variables were psK _{a2} versus methanol concentration (%w/w) and psK _{a2} + log(water concentration, M) versus $1000/\epsilon$, where ϵ is the dielectric constant

-118

(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
281	2-Chloro-2',3'-dideoxy-adenosine (2-CIDDA) (C ₁₀ H ₁₂ CIN ₅ O ₂)	2.2	U	+H	Spectro	$t = 25.0 \pm 0.1$ I = 0.15	Al-Razzak LA and Stella VJ, Stability and solubility of 2-chloro-2',3' dideoxyadenosine, <i>Int. J. Pharm.</i> , 60 , 53–60 (1990). "The solubility in various solvents and the effects of pH, temperature, and buffer type and concentration on the stability or 2-chloro-2',3'-dideoxyadenosine (2-CIDDA; I) were studied and used to develop some prototype parenteral dosage forms; pK _a and degradation rate constants were determined, and degradation products were identified using high pressure liquid chromatography. In the pH range 1.0–10.5, 2-chloroadenine was the principal degradation product detected. A mixture of propylene glycol, ethanol (ethyl alcohol), and water at several different ratios provided a clinically desirable solubility of >5.0. mg/ml. The pK _a of I was determined spectrophotometrically to be 2.2. Prototype solution formulations were developed with projected shelf-lives of >2 yr at room temperature; these shelf-lives were limited by the time for precipitation of 2-chloroadenine rather than the time for 10% degradation of I. It was concluded I degrades via the same mechanism and at comparable rates to 2',3' dideoxyadenosine."
282	N^{1} -p-Chlorophenyl- N^{5} -alkylbiguanides H H N $NHRCl$ NH $NHRR = CH_{3} (C_{9}H_{12}ClN_{5})R = C_{2}H_{5} (C_{10}H_{14}ClN_{5})R = C_{2}H_{5} (C_{10}H_{14}ClN_{5})$	10.95 ± 0.04 11.01 ± 0.06 11.02 ± 0.06	A A A	+H +H +H	Potentiometric	H_2O t = 25 I < 0.002 N_2 atmos CO_2 -free	of pH<3.0, due to rapid hydrolysis. Warner VD, Lynch DM and Ajemian RS, Synthesis, physicochemica parameters, and in vitro evaluation of N ¹ -p-chlorophenyl-N5- alkylbiguanides, <i>J. Pharm. Sci.</i> , 65 , 1070–1072 (1976). "A series of N ¹ -p-chlorophenyl-N ⁵ -alkylbiguanides were synthesized as potential inhibitors of dental plaque. Partition coefficients and pK _a values were determined by standard methods. Biological activity was evaluated against <i>Streptococcus</i> <i>mutans</i> , a pure strain of plaque forming bacteria. All compounds were compared to chlorhexidine acetate."
	$\begin{split} R &= n\text{-}C_{3}H_{7}\left(C_{11}H_{16}ClN_{5}\right)\\ R &= n\text{-}C_{4}H_{9}\left(C_{12}H_{18}ClN_{5}\right) \end{split}$	11.02 ± 0.08 10.83 ± 0.04	A	+11 +H		R	рК _а (25% EtOH) Reliability R рК _а (25% EtOH) Reliability
						CH_3 C_2H_5 Chlorhexidin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

283	3-(<i>p</i> -Chlorophenyl)-5,6-dihydro-2-ethyl imidazo [2,1-b]thiazole (C ₁₃ H ₁₃ ClN ₂ S) Et	9.30 ± 0.1	U	-H	Potentiometric	H ₂ O <i>t</i> =24	 Maulding HV and Zoglio MA, pK_a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, <i>J. Pharm. Sci.</i>, 60, 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.
284	3-(p-Chlorophenyl)-2-ethyl-2,3,5,6-tetrahydro- imidazo[2,1-b]thiazol-3-ol (C ₁₃ H ₁₅ ClN ₂ OS)	7.68 ± 0.1	U	-H	Potentiometric	H ₂ O <i>t</i> = 24	 Maulding HV and Zoglio MA, pK_a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, <i>J. Pharm. Sci.</i>, 60, 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.
285	Chloroquine ($C_{18}H_{26}CIN_3$)	8.37	А	+H	spectro $(\lambda = 343 \text{ nm})$	H_2O $t = 20.0 \pm 0.1$ I = 0.15	Schill G, Photometric determination of amines and quaternary ammonium compounds with bromothymol blue. Part 5. Determination of dissociation constants of amines, <i>Acta Pharm.</i> <i>Succ.</i> , 2 , 99–108 (1965).
	HN (CH ₂) ₃ N(C ₂ H ₅) ₂ CH ₃	10.76	A	+H	soly		" In an aqueous solution, a change in absorbance was observed in the pH range 6–11. Beyond this range, up to pH 13 and down to pH 1, no further absorbance changes were observed The absorbance changes were assumed to be due to protolysis of the heterocyclic nitrogen, since the structurally related 4-aminoquinoline had $pK_a = 9.17$ When determining the constants, the possibility of overlapping values had to be taken into account." NB: Excellent agreement with Wahbe <i>et al.</i> , 1993, no. 286.
286	Chloroquine phosphate	8.34 (0.12)	А	+H	spectro (p K_1 , $\lambda = 334$ nm; p K_2 , $\lambda = 346$ nm)	H_2O t = 20.0	 Wabe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i>, 92(1), 15–22 (1993).
		10.75 (-)	А	+H			NB: Alternative graphical method gave $pK_a = 8.3$ and 10.75. See Acetaminophen for further details.

Append	lix A (continued)

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
287	8-Chlorotheophylline (C ₇ H ₇ ClN ₄ O ₂) H ₃ C $H_{3}C$	5.3	U	-H	Potentiometric	H ₂ O t = 24	 Maulding HV and Zoglio MA, pK_a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, <i>J. Pharm. Sci.</i>, 60, 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.
288	Chlorothiazide (C ₇ H ₆ ClN ₃ O ₄ S ₂)	6.85 9.45	U U	-H -H	Potentiometric	H ₂ O	 Brittain HG, Chlorothiazide, <i>APDS</i>, 18, 33–56 (1989). "The relative insolubility of chlorothiazide in most common solvent has made the determination of ionization constants difficult. Several groups have used aqueous potentiometric titration to obtain pK_a data, with the general consensus being that pK_{a1} = 6.8 and pK_{a2} = 9.45." NB: See Whitehead CW, Traverso JJ, Sullivan HR and Morrison DE Diuretics. IV. 6-Chloro-3-substituted-7-sulfamoyl-1,2,4-benzothiadiazine-1,1-dioxides, <i>JOC</i>, 26, 2809–2813 (1961). Essig A, Competitive inhibition of renal transport of p-amino-hippurate by analogs of chlorothiazide, <i>Am. J. Physiol.</i>, 201, 303–308 (1961); Charnicki WP, Bacher FA, Freeman SA and DeCesare DH, The pharmacy of chlorothiazide: A new orally effective diuretic agent, <i>J. Am. Pharm. Assoc., Sci. Edn.</i>, 48, 656–659 (1959).
289	Chlorothiazide	9.7	U	-Н	Spectro	H ₂ O	Hennig UG, Chatten LG, Moskalyk RE and Ediss C, Benzothiadiazine dissociation constants. Part 1. Ultraviolet spectrophotometric pK _a determinations, Analyst, 106, 557–564 (1981). NB: Thermodynamic values for the dissociation constants of a number of benzothiadiazines, including chlorothiazide, methyclothiazide, polythiazide and diazoxide, were determined by UV spectrophotometry. Resolution of the overlapping acidity constants was achieved by employing a computer program of

successive approximations.

290	Chlorpheniramine (C ₁₆ H ₁₉ ClN ₂)	$\begin{array}{c} 3.99 \pm 0.05 \\ 9.26 \pm 0.02 \end{array}$	U U	+H +H	Potentiometric	H ₂ O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details .
291	Chlorpromazine $(C_{17}H_{19}CIN_2S)$	9.32	U	+H	soly	H_2O $t = 20.0 \pm 0.1$ I = 0.15	 Schill G, Photometric determination of amines and quaternary ammonium compounds with bromothymol blue, Part 5. Determination of dissociation constants of amines, <i>Acta Pharm. Suecica</i>, 2, 99–108 (1965). NB: See Chlorquine for details.
292	Chlorpromazine	9.22	U	+H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). "Methanolic solutions of the free bases were prepared, and from these, accurately measured aliquots were taken. Known dilutions were prepared with distilled water, and titrations were carried to exactly half-neutralization with 0.1N HCl, so that the concentrations of total salt and free base did not exceed 0.001 to 0.002M. The pH of the solution was then measured on the Fisher Titrimeter. Three measurements were made for the same concentration of base but with varying percentages of methanol. These pH readings were plotted and the straight line was extrapolated to 0% alcohol. Three such series were run giving a total of nine measurements for each base. The reading obtained by extrapolation was plotted against milligrams of base. The straight line was extrapolated back to infinite dilution of the drug and the pH determined Because pH = pK_a at half-neutralization, this same reading gives the pK_a value of the base. The pK_b was then determined'

No.	Name	p <i>K</i> _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
							NB: Cited Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J. Pharmacol.</i> , 10 , 270–278 (1955). Compounds were checked for purity (99%) I nonaqueous titration. They were stored over P_2O_5 and protectee from light. All solutions were freshly prepared in light protectee flasks and operations were performed in a semi-darked room. Results were reported as pK_b values. As no further corrections were performed, results must be regarded as uncertain.
293	Chlorpromazine	9.3	U	+H	soly	H_2O $t = 24 \pm 1$	Green AL, Ionization constants and water solubilities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details. Value cited by Abadi A, Rafatullah S, Al-Badr AA, Chlorpromazine, <i>APDS</i> , 26 , 108 (1999), which cited Clarke as source.
294	Chlorpromazine	9.3	U	+H	partition/pH	H_2O $t = 25.0 \pm 0.1$	Persson BA, Extraction of amines as complexes with inorganic anions. Part 3, Acta Pharm. Suec., 5, 335–342 (1968). NB: Reference for methods, Persson BA, Schill G, Extraction of amines as complexes with inorganic anions. Part 2, Acta Pharm. Suec., 3, 281–302 (1966).
295	Chlorpromazine	9.24 ± 0.02	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ, Avdeef A, Potentiometric pK _a determination of water-insoluble compounds: Validation study methanol/water mixtures, Int. J. Pharm., 151, 235–248 (1997). NI By extrapolation from 34–50 %w/w aqueous MeOH. See Acetaminophen for full details.
296	Chlorpromazine	9.29 ± 0.13	U	+H	Potentiometric	H_2O t = 25 I undefined Ar atmosphere	Seiler P, Simultaneous determination of partition coefficient and acidity constant of a substance, <i>Eur. J. Med. Chem.</i> , 9, 663–665 (1974 NB: See Amitriptylline for details.
297	Chlorpromazine	9.38	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MI and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis an mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 9.41.
298	Chlorpromazine	9.3	U	+H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K at Artursson P, Absorption classification of oral drugs based on molecular surface properties, J. Med. Chem., 46(4), 558–570 (2003 NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

Chlorpromazine	9.21	U	+H	Potentiometric	H_2O (extrap.) t = 20 N_2 atmosphere	Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazine derivatives by solid adsorbents, <i>J. Pharm. Sci.</i> , 55 , 785–794 (1966). NB: Followed the procedure of Marshall. Titrations were performed in hydroalcoholic solutions (10, 20, 30, 40, and 50%) and apparent values extrapolated to zero percent alcohol, using a linear relationship. Precipitation occurred and data post- precipitation were used, "assuming the concentration of the amine base actually in solution to be constant after the point where precipitation first occurred". This assumption seems to be unreasonable.
Chlorpromazine	9.40 ± 0.05	U	+H	partition/ pH	H_2O $t = 20 \pm 0.5$	 Vezin WR and Florence AT, The determination of dissociation constants and partition coefficients of phenothiazine derivatives, <i>Int. J. Pharm.</i>, 3, 231–237 (1979). NB: See also Promethazine for details. Compounds were purified before use and partitioned between buffers and cyclohexane. Only the aqueous phases were analysed, the cyclohexane phase concentrations being assessed by difference. The effect of ionic strength was tested over a fourfold range and found to cause no systematic deviations.
Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) $\begin{array}{c} Cl & OH & H & H & N(CH_3)_2 \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	3.30 7.44 9.27	ប ប ប	-H -H +H	Potentiometric	H ₂ O <i>I</i> = 0.00	 Schwartzman G, Wayland L, Alexander T, Furnkranz K, Selzer G, and the US Antibiotics Standards Research Group, Chlortetracycline hydrochloride, <i>APDS</i>, 8, (1979), 101–137 Leeson L, Krueger J and Nash R, <i>Tet. Lett.</i>, 18, 1155–1160 (1963). Kalnins K and Belen'skii BG, A study of dissociation of tetracyclines by infrared spectroscopy, <i>Dokl. Akad. Nauk. SSSR</i>, 157(3), 619–621 (1964); CA 61:9381f. "CTC exhibits three acidic dissociation constants when titrated in aqueous solutions. Stephens <i>et al.</i> identified the three acidic groups, and reported thermodynamic pK_a values of 3.30, 7.44, and 9.27. Leeson <i>et al.</i> assigned pK_a values to the following acidic groups:
						pKaAssignment3.30Tricarbonylmethane System (A)7.44Dimethylamino System (B)9.27Phenolic Diketone System (C)
	Chlorpromazine Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) $\overset{Cl}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{N(CH_3)_2}{\downarrow} \overset{O}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{N(CH_3)_2}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} \overset{H}{\downarrow} \overset{OH}{\downarrow} \overset{H}{\downarrow} H$	Chlorpromazine 9.40 ± 0.05 Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) 3.30 Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) 7.44 0.7 0.	Chlorpromazine 9.40 ± 0.05 U Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) 3.30 U $\downarrow \downarrow $	Chlorpromazine 9.40 ± 0.05 U +H Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) 3.30 U -H $\downarrow \downarrow $	Chlorpromazine 9.40 \pm 0.05 U +H partition/pH Chlortetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) 3.30 U -H Potentiometric $\downarrow \downarrow $	Chlorpromazine 9.40 ± 0.05 U +H partition / pH H ₂ O $t = 20 \pm 0.5$ Chlortetracycline (C ₂₂ H ₂₃ CIN ₂ O ₈) 3.30 U -H Potentiometric H ₂ O $t = 20 \pm 0.5$ Chlortetracycline (C ₂₂ H ₂₃ CIN ₂ O ₈) f = 0.00 f = 0.00 f = 0.00 f = 0.00 f = 0.00

Kalnins and Belen'skii verified the assignments by infrared (IR) spectroscopy of several tetracyclines."

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)	
302	Chlortetracycline CI OH H H H $N(CH_3)_2$ OH O OH OH OH OH OH OH	3.30 7.44 9.27	A A A	-H +H -H	Potentiometric	H ₂ O t = 25 I = 0.00	 Stephens C, Murai K, Brunings K and Woodward RB, Acidity constants of the tetracycline antibiotics, <i>JACS</i>, 78, 4155–4158 (1956). Cited in Perrin Bases 3324 ref. 573. NB: Used a glass electrode with liquid junction potentials. "The three observed dissociation constants of the antibiotics oxytetracycline, chlortetracycline and tetracycline have been assigned to specific acidic groupings. In each case, the first dissociation is due to the tricarbonyl system in ring A, the second to the dimethylammonium function and the third to the phenolic β-diketone system: 	
							pK _a Assignment	
							 3.30 Tricarbonylmethane System (A) 7.44 Dimethylamino System (B) 9.27 Phenolic Diketone System (C) 	
							NB: A note added in proof indicated that these assignments were in error. The correct assignments interchange (B) and (C). Later papers, mainly Garrett (<i>J. Pharm. Sci.</i> , 1963) and Rigler <i>et al.</i> , (<i>Anal. Chem.</i> , 1965) provided strong evidence for the interchanged assignments.	
303	Chlortetracycline	3.30	A	-H	Potentiometric	H ₂ O	Albert A, Avidity of terramycin and aureomycin for metallic cations,	
		7.44 9.27	A A	-H +H		t = 20 c = 0.001	<i>Nature</i> , 172 , 201 (1953). Cited in Perrin Bases 3324 ref A17. NB: The study used pH measurements with a glass electrode and junction potentials.	
304	Chlortetracycline	3.66	U	-H	Potentiometric	H ₂ O	Doluisio JT and Martin AN, Metal complexation of the tetracycline	
		7.40 9.06	A U	-H +H		$t = 30.0 \pm 0.2$ I = 0.01 (KCl) N ₂ atmosphere	hydrochlorides, J. Med. Chem., 6, 16–20 (1963). NB: Metal-free solutions of the tetracycline were titrated with standard NaOH solution and the pH measured. No details were given of the pl meter calibration. Metal stability constants were determined fr identical titrations in the presence of varying concentrations of nickel(II), zinc(II), or copper(II) ions.	

305	Chlortetracycline	3.27 7.43 9.33	A A A	-H -H +H	Potentiometric	H_2O $t = 25 \pm 0.05$ I = 0.01
306	Chlortetracycline	3.14 7.33 9.24	U U U	-H -H +H	Potentiometric	H ₂ O t undefined I undefined
307	Chlorthalidone ($C_{14}H_{11}ClN_2O_4S$)	9.36	А	-H	soly	H ₂ O RT
	ĬĬ	9.35 ± 0.02	А	-H	Potentiometric	H ₂ O
	NH	12.2 - 13.3	U	-H		$t = 25 \pm 1$ I = 0.00 N_2 atmosphere

Benet LZ and Goyan JE, Determination of the stability constants of tetracycline complexes, *J. Pharm. Sci.*, **54**, 983–987 (1965). NB: Used carbonate-free KOH to titrate the hydrochloride salt and measured pH with a high quality pH meter (Beckman Research Model) that had been calibrated at pH 4.01. Activity corrections were applied.

Parke TV and Davis WW, Use of apparent dissociation constants in qualitative organic analysis, *Anal. Chem.*, **26**, 642–5 (1954). NB: No activity corrections were used, and the data therefore described as pK_a' values, that is, apparent pK_a .

Singer JM, O'Hare MJ, Rehm CR and Zarembo JE, Chlorthalidone, APDS, 14, 1–34 (1985); Fleurren ALJ, van Ginneken CAM and van Rossum JM, Differential potentiometric method for determining dissociation constants of very slightly water soluble drugs applied to the sulfonamide diuretic chlorthalidone, J. Pharm. Sci., 68(8), 1056–1058 (1979). NB: The sulfonamide function present in chlorthalidone, is considered to be responsible for the acid dissociation. The ionization constant of chlorthalidone was determined based on spectrophotometric measurements of the concentration [chlor] at various pH values:

pН	[chlor] mg∕ml	рН	[chlor] mg∕ml	рН	[chlor] mg∕ml
4.90	0.167	8.95	0.300	10.10	2.958
7.00	0.180	9.40	0.390	10.30	4.698
7.70	0.183	9.60	0.597	10.50	5.534
8.40	0.210	10.00	1.201	10.90	9.911
8.65	0.230				

"A single pK_a value of 9.36 in water ($22^{\circ} \pm 1 \,^{\circ}$ C) was obtained, which indicates that chlorthalidone is a weakly mono-acidic compound. ... Potentiometric difference titrations (Fleuren *et al.*) produced a value of 9.24 ± 0.02 in 0.1 M aqueous KCl which, when corrected for ionic strength, yields a thermodynamic constant of 9.35 (25 °C), which is in excellent agreement with the spectrophotometric (i.e., soly) determination."

HO

NH,SO.

Cl

Ì

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
308	Cimetidine (C ₁₀ H ₁₆ N ₆ S) H ₃ C H ₃ C N HN NC-N CH ₃	7.11 ± 0.04	U	+H	Potentiometric	H ₂ O t = 25 I = 0.1 (KCl)	Bavin PMG, Post A and Zarembo JE, Cimetidine, <i>APDS</i> , 13 , 127–182 (1984). Graham MJ, Smith Kline and French Ltd., unpublished results.
309	Cimetidine	6.89	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639– 2648 (2003). NB: Reported a predicted value (ACD Labs) of 6.72.
310	Cinchonidine (C ₁₉ H ₂₂ N ₂ O) H ₂ C HO HO HO	4.17 8.40	U U	+H +H	Spectro	H ₂ O t = 15 $(pK_w = 14.35 \text{ at} 15 ^{\circ}\text{C})$	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in

311	Cinchonine (C ₁₉ H ₂₂ N ₂ O) H	4.28 8.35	U U	+H +H	Spectro	H ₂ O $t = 15 (pK_w = 14.35 \text{ at } 15^{\circ}\text{C})$	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases 2877. NB: See Aconitine for details.
	CH2=CH	5.21	U	+H	kinetic	H_2O t = 55	NB: Also by rate of inversion of sucrose, ref. A73, Arnall F, <i>JCS</i> , 117 , 835 (1920). See Caffeine (no. 243) for details.
	но	4.04 8.15	U U	+H +H	calorimetric	H ₂ O	NB: Dragulescu C and Policec S, Thermometric titration of weak diacidic bases. <i>Studii Cercetari Chim.</i> , 9, 33–40 (1962); CA 58:30272. Cited in Perrin Suppl. No. 7488. NB: From pK _b values 5.85 and 9.96 at unknown temperature (assumed 25 °C).
	H						
312	Cinnamic acid (C ₉ H ₈ O ₂)	4.45 ± 0.01	А	-Н	Conductance	H_2O t = 25 c = 0.004-0.0004	Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, <i>International Critical Tables</i> , Vol. 6, McGraw-Hill, NY, 259–304 (1929).
313	Cinnarizine (C ₂₆ H ₂₈ N ₂)	7.47	U	+H	Potentiometric	H ₂ O t = 25	 Peeters J, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i>, 67, 127–129 (1978). "A potentiometric titration method is proposed in which only one titration is necessary to obtain dissociation constants for different solvent compositions. The method allows the results to be extrapolated to the value for pure water Titration data for 1-Me-1-1H-imidazole are given. The pK_a values determined by the proposed method are given for seperidol, cinnarizine, diphenoxylate, etomidate and miconazole." NB: The paper recognizes the problem of long extrapolations from aqueous-organic solvent mixtures to estimate pK_a values of poorly water-soluble substances. No activity corrections were applied.

(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
314	Cinnopentazone ($C_{22}H_{22}N_2O_2$)	4.4	U	+H	t undefined Antiphlogistika im Bradykinin-, UV- I undefined Rattenpfotenödem-Test, ArzneimFor 80% Me NB: Literature values obtained from the	t undefined I undefined	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test, <i>ArzneimForsch.</i> , 24 , 494–499 (1974).
		4.6	U	+H		NB: Literature values obtained from the pH of half-neutralization. Also gave values (range 4.3–5.4) in 50% EtOH for 8 analogous structures.	
315	Cinoxacin (C ₁₂ H ₁₀ N ₂ O ₅)	5.38	U	-Н	CE/pH (-ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard M and Thompson RA, High-throughput screening of pK_a values o pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003).
						NB: Reported a predicted value (ACD Labs) of 0.61 (typographic error?).	
316	Ciprofloxacin (C ₁₇ $H_{18}FN_3O_3$) HN	6.15 8.66	U U	-H +H	Potentiometric	H ₂ O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K ar Artursson P, Absorption classification of oral drugs based on molecular surface properties, J. Med. Chem., 46(4) 558–570 (2003)
		COOH				NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.	

$3.128 \pm 0.001_8$	VR	-H	pot
$4.761 \pm 0.000_9$	VR	-H	. (
$6.396 \pm 0.001_1$	VR	-H	c
			c
			t

3- 1	CI	

`Pt´

H.N

Cisplatin degradation product (H₇ClN₂OPt)

317

318

H₂N

HO

HO

Citric acid (C₆H₈O₇)

O.

.OH

COOH

potentio	H ₂ O
(electro-	t = 25 I extrap
chemical	to 0.000 (KCl)
cells with	
the utmost	
technical	

refinement)

Andersson A, Hedenmalm H, Elfsson B and Ehrsson H,
Determination of the acid dissociation constant for cis-
diammineaquachloroplatinum(II) ion: hydrolysis product of
cisplatin, J. Pharm. Sci., 83, 859–862 (1994).

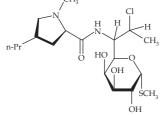
"The determination of the pK_a of *cis*-diammineaquachloroplatinum(II) ion (monoaqua) at 37 °C by utilizing the fact that it rapidly reacts with chloride ions while the corresponding mono-hydroxy moiety remains unreactive is described. ... The pK_a was determined to be 6.56 ± 0.01 (SEM). Thus, at physiological pH, the monoaqua complex is present mostly in its less reactive monohydroxy form." NB: U classification made for the following reasons: (1) kinetic results are often uncertain acit is not next to rabet the orguilibrium

results are often uncertain, as it is not easy to relate the equilibrium constant to the ground state or the transition state; and (2) the kinetic measurements were made at 37 °C, but the necessary pH measurements were made at 25 °C.

Bates RG and Pinching GD, Resolution of the dissociation constants of citric acid at 0 to 50°, and determination of certain related thermodynamic functions, *JACS*, **71**, 1274–1283 (1949). NB: The maximum uncertainty in these data is \pm 0.003. The three pK_a values for citric acid are temperature dependent, see Table. The pK_a values for carboxylic acids frequently pass through a minimum with temperature. The Table shows that for citric acid, the pK_{a2} value does this near 40 °C, the pK_{a3} minimum is near 12 °C, while the minimum for the pK_{a1} value is just above 50 °C. Table: pK_a values for Citric Acid in water at various temperatures

Temperature °C (K)	р <i>К</i> _{а1}	pK _{a2}	pK _{a3}
0 (273.15)	3.220	4.837	6.393
5 (278.15	3.200	4.813	6.386
10 (283.15)	3.176	4.797	6.383
15 (288.15)	3.160	4.782	6.384
20 (293.15)	3.142	4.769	6.388
25 (298.15)	3.128	4.761	6.396
30 (303.15)	3.116	4.755	6.406
35 (308.15)	3.109	4.751	6.423
40 (313.15)	3.099	4.750	6.439
45 (318.15)	3.097	4.754	6.462
50 (323.15)	3.095	4.757	6.484

NB: See also Poerwono H, Higashiyama K, Kubo H, Poernomo AT, Suharjono, Sudiana IK, Indrayanto G and Brittain HG. Citric Acid, APDS, 28, 13–14 (2001). Several references to the data are given, all of which are secondary sources.


kinetic

+H

$$t = 37$$

 $I = 0.15$

H₂O

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
319	Citric acid	- 4.81 6.21	U U	-H -H -H	Potentiometric	H_2O t = 23.0	Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, J. Pharm. Sci., 76(8), 611–620 (1987). NB: See Benzoic acid for further details.
320	Clarithromycin (C ₃₈ H ₆₉ NO ₁₃) H_3C - CH ₃ HO H_3C - CH ₃ H_3C	8.99	U	+H	Potentiometric	H ₂ O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative Structure-activity relationships among macrolide antibacterial agents: In vitro and in vivo potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997) NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the p K_{a} .
321	Clarithromycin	8.76	U	+H	soly	H ₂ O t = 37	Nakagawa Y, Itai S, Yoshida T and Nagai T, Physicochemical properties and stability in the acidic solution of a new macrolide antibiotic, clarithromycin, in comparison with erythromycin, <i>Chem. Pharm. Bull.</i> , 40 , 725–728 (1992).
322	Clindamycin (C ₁₈ H ₃₃ ClN ₂ O ₅ S)	$\textbf{7.72} \pm 0.04$	A	+H	Potentiometric	H_2O t = 25 I < 0.005	Tarazska MJ, Absorption of clindamycin from the buccal cavity, <i>J. Pharm. Sci.</i> , 59 , 873–874 (1970).

323	Clindamycin	7.77	А	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 8.74.
324	Clindamycin	7.6	U	+H			 Novak E, Wagner JG and Lamb DJ, Local and systemic tolerance, absorption and excretion of clindamycin hydrochloride after intramuscular administration, <i>Int. J. Clin. Pharm.</i>, 3(3), 201–208 (1970). Cited by Brown LW and Beyer WF, Clindamycin hydrochloride, <i>APDS</i>, 10, 75–90 (1981).
325	Clindamycin	7.45 ± 0.02	U	+H		H_2O t = 37	Taraszka MJ, Transfer of clindamycin and 1'demethyl-4'-depropyl- 4'-pentylclindamycin by the cannulated everted rat gut, <i>J. Pharm.</i> <i>Sci.</i> , 60 , 946–948 (1971). NB: Also reported $pK_a = 7.96 \pm 0.04$ for 1'-demethyl-4'-depropyl-4'-pentylclindamycin.
326	Clindamycin 2-palmitate (C ₃₄ H ₆₃ ClN ₂ O ₆ S) n-Pr H H H CH_3 CI H H H CH_3 C	7.6	U	+H	soly	H_2O $t = 24.3 \pm 0.3$ I not reported but stated to be low	 Rowe EL, Anomalous solution behavior of 2-palmitate esters of lincomycin and clindamycin, <i>J. Pharm. Sci.</i>, 68, 1292–1296 (1979). NB: The low aqueous solubility of clindamycin-2-palmitate was recognized as a problem for accurate pK_a measurement, but it was rationalized that the pK_a value for the parent should not be greatly altered by the remote acyl substituent. This assumption appears justified.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
327	Clindamycin-2-phosphate (C ₁₈ H ₃₅ ClN ₂ O ₈ SP) $(C_{18}H_{35}ClN_{2}O_{8}SP)$ $(C_{18}H_{35}ClN_{2}O_{8}SP)$ $(C_{18}H_{15}H_{$	$\begin{array}{l} 0.964\pm 0.06\\ (I=0.11)\\ 6.06\pm 0.06\\ (I=0.008) \end{array}$	U	-H -H	³¹ P-NMR	H ₂ O t = 21	Kipp JE, Smith III WJ and Myrdal PB, Determination of phosphate functional group acid dissociation constants of clindamycin 2-phosphate using ³¹ P Fourier transform NMR spectrometry, <i>Int.</i> <i>J. Pharm.</i> , 74 , 215–220 (1991). NB: 31P-NMR; values by fitting chemical shifts to double sigmoid curve. Fitting of coupling constants gave $pK_1 = 1.31 \pm 0.8$; $pK_2 = 6.47 \pm 0.41$. Errors calculated from 3(s.e.).
328	Clioquinol (C ₉ H ₅ ClINO) $ (\bigcup_{i=1}^{OH} (\bigcup_{i=1}^{I} $	8.12	Α	-H	Potentiometric	50% aq EtOH $t = 35.0 \pm 0.1$ I = 0.00 N ₂ atmosphere	 Agrawal YK and Patel DR, Thermodynamic proton-ligand and metal-ligand stability constants of some drugs, <i>J. Pharm. Sci.</i>, 75(2), 190–192 (1986). "The thermodynamic proton-ligand (pK_a) and metal-ligand stability constants of clioquinol, clofibrate, nitrofurazone, and tetracycline with Cu⁺², Zn⁺², Mn⁺², Mg⁺² and Ca⁺² have been determined a 35 °C in 50% ethanol-water media. An empirical pH correction for mixed aqueous media has been applied Determination of pK, The titration procedure was essentially that recommended by Agrawal <i>et al.</i>. A 0.5 M portion of a drug and 47.5 ml of solvent [50% (v/v) ethyl alcohol: water 50 ml of pure EtOH diluted to 100 ml with water] were placed in a three-necked titration vessel (thermostated at 35 °C ± 0.1 °C) carrying the combined electrode microburette (5x 0.01ml), and inlet for nitrogen. Nitrogen gas, presaturated with carbonate-free water and the desired solvent mixture [50% (v/v) ethyl alcohol: water], was passed through the solutions. The solutions were titrated with potassium hydroxide (0.1M) which was also prepared to contain the required ethanol percentage by adding aliquots (0.5 ml) The highest appropriate drift-free reading on the meter was recorded."

329	Clioquinol	3.17 ± 0.11	U	+H	partition/ pH	H_2O t = 25	Tanaka H and Tamura Z, Determination of the partition coefficient
		8.08 ± 0.08	U	-H		1 = 25	and acid dissociation constants of iodochlorohydroxyquin by an improved partition method, <i>J. Pharm. Sci.</i> , 73 (11), 1647–1649 (1984). "The partition ratio at various pH values (1.2–9.8) was measured using five buffer systems. Figure 3 shows that the pH profile of the partition ratios in I was a bell-shaped curve with a maximum at pH 5.6. The constants, K_{p} , $K_{1'}$, and $K_{2'}$ were estimated from the data as follows; $K_{p} = 2230 \pm 43$ (CV 1.9%), $n = 11$; $K_{1}' = 5.6 \times 10^{-4}$, $pK_{1}' = 3.25$; $K_{2}' = 1.29 \times 10^{-8}$, $pK_{2}' = 7.89$. Consequently Eq2 can be expressed as Partition ratio = 2230/10 ^{3.25-pH} + 1 + 10 ^{pH-7.89} The values of pK_{1}' and $pK_{2'}$, obtained from the spectrophotometric results at the same temperature and the same ionic strength as the partition method, were 3.17 ± 0.11 and 8.05 ± 0.08 at 25 °C, respectively, and agree well with those obtained by the partition method."
330	Clioquinol	2.42 8.16	U A	+H -H	CE/pH (-ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 2.32 and 7.23.
331	Clioquinol	GLpK _a : 2.96 ± 0.01 7.60 ± 0.01 A&S: No data	U U	+H -H	Spectro	H ₂ O t = 25 I = 0.15 (KCl) Ar atmosphere	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i> , 434 , 157–167 (2001). NB: A new spectrophotometric method was validated by comparison with the standard method of Albert and Serjeant, using 10 ⁻⁵ M solutions in 0.15M KCI. No details of pH meter calibration. In the novel method, operational pH values were converted to p[H] by a multi-parametric equation (ref. 12, Avdeef A). Sample concentrations of 10–100 uM were titrated in a Sirius GLpK _a instrument and pH data were collected when drift was <0.02 pH/min. 15–25 wavelengths were used for each measurement. Note that errors are for reproducibility only, not accuracy.
332	Clioquinol	7.90	U	-H			Martell AE and Smith RM, Critical Stability Constants, Vol. 3, Plenum Press, NY (1977) . Not in M&S or in Foye, Ritschel, W&G, N&K.

Appendix A	(continued)
------------	-------------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
333	Clofazimine (C ₂₇ H ₂₂ Cl ₂ N ₄) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	8.37 8.511	U	+H +H	Potentiometric Spectro $(\lambda = 482 \text{ nm})$	H_2O H_2O t = 37 l unspecified	O'Driscoll CM and Corrigan OI, Clofazimine, <i>APDS</i> , 21 , 75–108 (1992). Potentiometric method (Canavan B, Esmonde AG, Feely JF Quigley JM, Timoney RF, The influence of lipophilic and steric properties on the transport of N2-substituted phenazines to spleer of mice following oral administration, <i>Eur. J. Med. Chem.</i> , 21 , 199- 203 (1986)). NB: The paper gave no details of the potentiometric procedure beyond stating that the procedure followed that of Mizutani (1925). The Mizutani procedure used organic cosolvent mixtures to dissolve the compounds of interest, and ignored the effect of the solvent on K_a when the percentage was low (<10– 20%). No details of the cosolvent solution compositions was giver Also reported $pK_a = 8.35$, method unspecified (Morrison NE and Marley GM, Clofazimine binding studies with deoxyribonucleic acid, <i>Int. J. Lepr.</i> , 44 , 475–481 (1976)). Quigley JM, Fahelelbom KMS, Timoney RF and Corrigan OI, Temperature dependence and thermodynamics of partitioning o clofazimine analogues in the n-octanol/water system, <i>Int.</i>
							J. Pharm., 54 , 155–159 (1989); ib. 58 , 107–113 (1990).
							H 8.480 CH(Me)(CH ₂) ₃ N(Et) ₂ 8.662 CHMe ₂ 8.511 (CH ₂) ₃ -N<>(CH ₂) ₄ 8.596 (clofazimine) (CH ₂) ₃ -N (CH ₂) ₃ -N (CH ₂) ₃ -N
						$\begin{array}{c} (CH_{2})_{2}NEt_{2} & 8.850 & (CH_{2})_{3}\text{-}N<>(CH_{2})_{5} & 8.800 \\ (CH_{2})_{3}NEt_{2} & 8.813 & CH_{2}\text{-}CH<>\left[(CH_{2})_{2}NHCH_{2}CH_{2}\right] & 8.085 \end{array}$	
335	Clofazimine	9.11	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard M and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) o 7.87.
336	Clofezone	4.5	U	-H	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. See Azapropazone and Ibuprofen f details.

337	Clonidine (C ₉ H ₉ Cl ₂ N ₃) H N H N H Cl	8.26	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	 (2-(4-chlorophenoxy)-N-2-(diethylaminoethyl)acetamide) and phenylbutazone. The value reported here appears to be for the phenylbutazone component, as the diethylaminoethyl group in clofexamide should have a value of about 7.5–7.8, and would not be expected to appear in a spectrophotometric study. Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 7.71.
338	Clonidine	GLpK _a :			Spectro	H ₂ O	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric
		8.12 ± 0.02 A&S:	А	+H		t = 25 I = 0.15 (KCl)	determination of acid dissociation constants, Anal. Chim. Acta, 434, 157–167 (2001).
		8.04 ± 0.11	U	+H		Ar atmosphere	NB: See Clioquinol for details.
339	Clopenthixol (C ₂₂ H ₂₅ ClN ₂ OS)	3.443	А	+H	Potentiometric	H_2O I = 0.00 t = 25	Lukkari S, Ionization of some thiaxanthene derivatives, clopenthixol and flupenthixol, in aqueous solutions, <i>Farm. Aikak.</i> , 80(4–5) , 237–242 (1971).
	H, Cl	6.14	Α	+H		1 - 25	"The acid ionization constants of clopenthixol HCl and flupenthixol HCl were determined potentiometrically in aqueous solutions at 25 °C. The values $pK_{a1,2} = 3.443$, $pK_{a1} = 6.14$ are obtained for the acid ionization constant of clopenthixol and $pK_{a1,2} = 3.362$, $pK_{a1} = 6.18$ for those of flupenthixol at zero ionic strength. The effect of the ionic strength on the ionization constants, as adjusted with sodium chloride, was determined."
340	Clorindione (C ₁₅ H ₉ ClO ₂)	3.59	U	-Н	Spectro	H ₂ O I = 0.1 $t = 25.0 \pm 0.1$	 Stella VJ and Gish R, Kinetics and mechanism of ionization of the carbon acids 4'-substituted 2-phenyl-1,3-indandiones, <i>J. Pharm. Sci.</i>, 68(8), 1047–1049 (1979). NB: See Anisindione for details.

NB: Martindale states that clofezone is a mixture of clofexamide (2-(4-chlorophenoxy)-N-2-(diethylaminoethyl)acetamide) and

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
341	Clotrimazole (C ₂₂ H ₁₇ ClN ₂)	4.7	U	+H	Potentiometric	EtOH 50% aq.	Buechel KH, Draber W, Regel E and Plempel M, Synthesen und Eigenschaften von Clotrimazol und weiteren antimykotischen 1-Triphenylmethylimidazolen, <i>ArzneimForsch.</i> , 22 , 1260–1272 (1972). NB: $pH = pK_a$ at half-neutralization method. $c = 5.3$ mM titrated with 0.1 M HCl. Cited in Hoogerheide JG and Wyka BE, Clotrimazole, <i>APDS</i> , 11 , 225–255 (1982).
342	Cloxacillin (C ₁₉ H ₁₈ ClN ₃ O ₅ S) $Cl \rightarrow H H H H H H H H H H H H H H H H H H $	2.70 ± 0.07	U	-H	Potentiometric	H ₂ O t = 35.0 c = 0.0025	Mays DL, Cloxacillin sodium, <i>APDS</i> , 4 , 113–136 (1975). "Value calculated by averaging the data from Bundgaard and Ilver with that from Rapson and Bird Bundgaard and Ilver reporte an apparent pK_a of 2.68 \pm 0.05 at 35 °C, determined by measurin the pH of a partially neutralized 0.0025 M solution of sodium cloxacillin. Rapson and Bird obtained replicate apparent pK value of 2.73 \pm 0.04 and 2.70 \pm 0.03 at 25 °C by titrating 0.0025M sodiur cloxacillin solutions." Bundgaard H and Ilver K, Kinetics of degradation of cloxacillin sodiur in aqueous solution, <i>Dansk. Tidsskrift. Farm.</i> , 44 , 365–380 (1970). Rapson HDC and Bird AE, Ionization constants of some penicillins an of their alkaline and penicillinase hydrolysis products, <i>J. Pharm.</i> <i>Pharmacol.</i> , Suppl. 15, 222–231T (1963).
343	Clozapine (C ₁₈ H ₁₉ ClN ₄) $(H_3 \rightarrow H_3)$ $(H_3 \rightarrow H_3)$ $(H_3$	3.58 7.94	U U	+H +H	CE/pH (+ve ion mode)	H ₂ O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard M and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639- 2648 (2003). NB: Reported predicted values (ACD Labs) of 4.36 and 6.19.

344	Clozapine	7.50	U	+H		H ₂ O <i>t</i> undefined <i>l</i> undefined	El Tayar N, Kilpatrick GJ, van de Waterbeemd H, Testa B, Jenner P and Marsden CD, Interaction of neuroleptic drugs with rat striatal D-1 and D-2 dopamine receptors: a quantitative structure-affinity relationship study, <i>Eur. J. Med. Chem.</i> , 23 , 173–182 (1988). NB: Refered to El Tayar N, van de Waterbeemd H and Testa B, L. Chemistrer, 20 , 205–212 (1985) for graph delarge
345	Cobefrin (Nordefrin) (C ₉ H ₁₃ NO ₃) OH HO HO CH ₃	8.45	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $I \le 0.001$	 J. Chromatogr., 320, 305–312 (1985) for methodology. Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i>, 73, 2611–2613 (1951). NB: See Amphetamine for details. Decomposes in aqueous solution.
346	Cocaine $(C_{17}H_{21}NO_4)$	8.85 ± 0.03	Α	+H	Potentiometric	H_2O t = 20.0 I = 0.10 (KCl) N_2 atmosphere	Buchi J and Perlia X, Beziehungen zwischen de physikalisch-chemische Eigenschaften und der Wirkung von Lokalanasthetica, <i>Arzneim</i> <i>Forsch.</i> , 10 , 745–754 (1960). NB: These were careful studies conducted by Dr. G. Anderegg at the Analytical Chemistry laboratories of the ETH Zurich (Prof. G. Schwarzenbach). Potentiometric titrations with calibrated glass and calomel electrodes were performed under a nitrogen atmosphere. Solutions were of constant ionic strength 0.1 M (KCl) at 20 °C. Acetic acid was used as a test substance, with reference to the very accurate measurements of Harned. Some measurements were also performed spectrophotometrically. The experimental error was typically \pm 0.03
347	Cocaine	8.61	U	+H	Spectro	H ₂ O t = 15 $(pK_w = 14.35$ at 15 °C)	 Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i>, 162, 289–353 (1925). Cited in Perrin Bases 2878. NB: See Aconitine for details. NB: The potentiometric study (Muller F, Z. Elektrochem, 30, 587,
		8.39	U	+H	Potentiometric	H_2O t = 24	(1924)) used pH measurements in an asymmetric cell with a hydrogen electrode and liquid junction potentials.
348	Codeine (C ₁₈ H ₂₁ NO ₃)	8.22 ± 0.01	А	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) Ar atmosphere	 Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med. Chem.</i>, 39, 4377–4381 (1996). NB: See Morphine for further details NB: The same value was reported in: Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i>, 14, 1405–1413 (1996).

Conditions Ionization pK_a value(s) Data quality Method t°C; I or c M Comments and Reference(s) No. Name type 349 Codeine 8.21 +HConductance H₂O Oberst FW and Andrews HL, The electrolytic dissociation of morphine А t = 25derivatives and certain synthetic analgetic compounds, JPET, 71, $\kappa < 1.5$ 38-41 (1941). Cited in Perrin Bases 2879 ref O1. NB: Results were 8.25 U +HPotentiometric H₂O reported as $K_{\rm b}$ values. For codeine, $K_{\rm b} = 1.61 \times 10^{-6}$, giving $pK_b = 5.79$. The potentiometric study used an asymmetric cell with t = 20c = 0.01 - 0.03Mdiffusion potentials. NB: Also gave 8.04 (U, potentiometric with glass electrode and liquid junction potentials; H2O); 8.15 (U, spectro; H2O; t = 15; c = 0.005-0.01 M; 8.17 (U; quinhydrone electrode). 350 Codeine 8.25 ± 0.01 Α +HPotentiometric H₂O Takacs-Novak K and Avdeef A, Interlaboratory study of log P t = 25.0determination by shake-flask and potentiometric methods, I = 0.1 (NaCl) J. Pharm. Biomed. Anal., 14, 1405-1413 (1996). NB: See Acetaminophen for further details. 8.21 А +HCE/pH H₂O Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB 351 Codeine (+ve ion mode) t = 25and Thompson RA, High-throughput screening of pKa values of I = 0.025pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, Rapid Commun. Mass Spectrom., 17, 2639-2648 (2003). NB: Reported a predicted value (ACD Labs) of 8.25. 352 Codeine 8.18 ± 0.02 U +HPotentiometric H₂O Kaufman IJ, Semo NM and Koski WS. Microelectrometric titration t = 20measurement of the pK_a 's and partition and drug distribution I < 0.01coefficients of narcotics and narcotic antagonists and their pH and 8.10 ± 0.02 U +HH₂O temperature dependence, J. Med. Chem., 18, 647-655 (1975). t = 37 I < 0.01"... a small sample cell in which 0.04 mmol of the sample is N₂ atmosphere dissolved in 5 ml of CO2-free triply distilled water. A constant temperature circulator is employed to circulate water continuously through a jacket surrounding the ... cell. ... N2 gas is maintained over the sample A pH meter type PH64 Radiometer utilizing calomel and glass electrodes is used A microburet attached to a microdelivery tip enables one to accurately add small quantities of titrant (2 N NaOH). A constant speed magnetic stirrer enables proper agitation of the sample solution and an externally mounted light source enables one to observe the first signs of any light scattering ... due to formation of a precipitate." 9.27 U +H353 Codeine t = 37Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, JPET, **135**, 120–127 (1962). NB: From $pK_b = 6.05$, $pK_w = 13.621$ at 37 °C.

354	Colchicine (C ₂₂ H ₂₅ NO ₆) CH_3O \longrightarrow OCH_3O OCH_3	1.85	U	+H	Spectro	H_2O t = 15 c = 0.03 - 0.05	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases 2880. See Aconitine for details. NB: $pK_w = 14.35$ at 15 °C.
355	Coumermycin A1 (C55H59N5O20)	6.0 ± 0.2	U	-H (2x)		H ₂ O	Newmark HL and Berger J, Coumermycin A ₁ - Biopharmaceutical studies, J. Pharm. Sci., 59, 1246–1248 (1970).
	RHN CH ₃ NHR H O	6.35 7.76	U U	-Н (2x) -Н (2x)		75% aq DMF 75% aq dioxane	 NB: Each value reported is a mean of two values. The values in partially-aqueous solvent mixtures are from: Kawaguchi H, Tsukiura H, Okanishi M, Miayaki T, Ohmori T, Fujisawa K and Koshiyama H, Coumermycin, a new antibiotic. I., <i>J. Antibiot. Ser. A</i>, 18, 1–10 (1968); Kawaguchi H, Naito T and Tsukiura H, Studies on coumermycin, a new antibiotic. II., <i>ib.</i>, 11–25 (1968).
	R =						

NH

CH,

Appendix A (continued)	Арр	pendix	Α	(continued)	
------------------------	-----	--------	---	-------------	--

 142	No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)		
	356	Creatine (C ₄ H ₉ N ₃ O ₂) CH ₃ N HOOC NH ₂	$\begin{array}{c} 2.79 \pm 0.03 \\ 12.1 \pm 0.09 \end{array}$	U U	-H +H	Potentiometric	H ₂ O t = 25.0	physico-chemical parame creatinine, and their react tissue, <i>Pharmatherapeutica</i> , "The method utilized consis HCl or NaOH. The instru Radiometer potentiomete electrodes, standardized v according to Robinson an values obtained were not titrimetric curves, the valu The values in parenthesis	and Stagni G, Correlation between eters of phosphocreatine, creatine, and tivity with their potential diffusion in 1, 3(4), 227–232 (1982). sted of potentiometric titration with 0. umentation used was a PHM 26 er with glass and saturated calomel with phosphate buffer at pH 6.865, ad Stoke's description, at 25 °C. The p corrected for ionic strength. From th tues reported in Table 2 were obtainee s were derived from the pK_a values o one functional group in the molecule	n .1 N oK _a ne d. f
								Compound	pKa	
								1	$\begin{array}{cccc} 11.0\pm0.05 & 4.7\pm0.01 & (-0.31) \\ 12.07\pm0.09 & 2.79\pm0.03 \\ & 4.86\pm0.02^{\prime\prime} \end{array}$)
	357	Creatinine (C ₄ H ₇ N ₃ O) CH_3 NH NH O	4.68 ± 0.02	U	+H	Potentiometric	H ₂ O <i>t</i> = 25.0	physico-chemical parame		
	358	Cresol red (C ₂₁ H ₁₈ O ₅ S) $\downarrow \downarrow $	1.05	U	-H	Spectro	H ₂ O RT		r., First pK _a values of some acid-base 9 , 1683–1685 (1970). NB: See Bromocre	

359	$\begin{array}{c} \text{Cyanocobalamin (C_{63}H_{88}\text{CoN}_{14}\text{O}_{14}\text{P})} \\ & H_2N \\ & H_2N \\ & H_2N \\ & H_3C \\ $	3.28 ± 0.04	U	-H	¹ H-NMR	H ₂ O, D ₂ O t = 23 ± 0.5 I unspecified	 Brodie JC and Poe M, Proton magnetic resonance of vitamin B12 derivatives, <i>Biochemistry</i>, 11, 2534–2542 (1972). Cited in: Kirshchbaum J and Cyanocobalamin, <i>APDS</i>, 10, 183–235 (1981). ⁽¹¹H-NMR; Using the dependence of the proton-NMR chemical shift on pH, base atom B-2 gave a pK of 3.28 ± 0.04. This value is in excellent agreement with the previously-reported value of 3.3 (ref. 122). pK values for cobalamins and cobinamides have been discussed. The limiting conductance of the cyanocobalamin ion is 33 mhos. 122. Hill JA, Pratt JM and Williams RJP, The corphyrins, <i>J. Theor. Biol.</i>, 3, 423–445 (1962)." NB: Calibration of the glass electrode was performed in such a way that it was claimed that pK results in H₂O were identical to those in D₂O. Results reported here are for measurements in D₂O.
360	2-Cyanoguanidinophenytoin (C ₁₆ H ₁₂ N ₄ O) $ \begin{array}{c} $	5.3	U	-H	Spectro (λ = 236 nm)	2.5% aq. MeOH	 Lambert DM, Masereel B, Gallez B, Geurts M and Scriba GK, Bioavailability and anticonvulsant activity of 2-cyanoguanidinophenytoin, a structural analog of phenytoin, J. Pharm. Sci., 85, 1077–1081 (1996). NB: No details were given of temperature or ionic strength.
361	Cyclacillin (C ₁₅ H ₂₃ N ₃ O ₄ S) NH_2 H H H H O O	2.64 7.18	A U	-H +H	Potentiometric Potentiometric	H ₂ O t = 37 I = 0.5 (KCl)	Tsuji A, Nakashima E, Hamano S and Yamana T, Physicochemical properties of amphoteric β-lactam antibiotics, <i>J. Pharm. Sci.</i> , 67 , 1059–1066 (1978). NB: See Amoxicillin.
							(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
362	Cyclacillin	$\begin{array}{c} 2.68 \pm 0.04 \\ 7.50 \pm 0.02 \end{array}$	A U	-H +H	Potentiometric	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Hou JP and Poole JW, The aminoacid nature of ampicillin and related penicillins, J. Pharm. Sci., 58, 1510–1515 (1969). NB: See Ampicillin for details.
363	Cyclamic acid (C ₆ H ₁₃ NO ₃ S)	2.28	U	-H	Potentiometric	H_2O t = RT c = 0.056	Talmage JM, Chafetz L and Elefant M., Observation on the instability of cyclamate in hydro-alcoholic solution, J. Pharm. Sci., 57, 1073– 1074 (1968).
264	SO ₃ H						NB: The paper also gave the following apparent pK _a values in various %v/v ethanol-water mixtures: 20, 2.48; 40, 2.60; 60, 2.90; 80, 3.22; 100, 3.45.
364	Cycliramine (C ₁₈ H ₁₅ ClN ₂) Cl $N - CH_3$	$\begin{array}{c} 3.64 \pm 0.12 \\ 8.78 \pm 0.02 \end{array}$	U U	+H +H	Potentiometric	H ₂ O t undefined <i>I</i> = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). "The amines (free base, $3 - 5 \times 10^{-4}$ mol) were dissolved in 20 mL 0.05 N HCl + 100 mL 2% NaCl solution. The solutions (ionic strength 0.30) were titrated with 0.1N NaOH using a Metrohm E356 potentiograph The pK _a values were calculated from the titration curves by the method of Benet and Goyan This method yields the stoichiometric dissociation constant."
365	Cyclizine ($C_{18}H_{22}N_2$) (C_6H_3) ₂ CH — N N — CH ₃	$\begin{array}{c} 2.16 \pm 0.02 \\ 8.05 \pm 0.03 \end{array}$	A A	+H +H	Potentiometric	H_2O $t = 24.5 \pm 0.5$	Newton DW, Murray WJ and Lovell MW, pK _a determination of benzhydrylpiperazine antihistamines in aqueous and aqueous methanol solutions, <i>J. Pharm. Sci.</i> , 71 (12), 1363–1366 (1982). NB: See Chlorcyclizine for details.
366	Cyclizine	1.88 ± 0.12	U	+H	Potentiometric	H ₂ O	Testa B and Murset-Rossetti L, The partition coefficient of protonated
		8.32 ± 0.02	U	+H		t undefined $I = 0.30$ (NaCl)	histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details.
367	Cyclohexaamylose (α-cyclodextrin) (C ₃₆ H ₆₀ O ₃₀)	12.36	U	+H		H_2O t = 30	 Gelb RI, Schwartz LM, Bradshaw JJ and Laufer DA, Acid dissociation of cyclohexamylose and cycloheptaamylose, <i>Bioorg. Chem.</i>, 9, 299–304 (1980). NB: Cited in Larsen C, Macromolecular prodrugs. XIII. Determination of the ionization constant of dextran by potentiometric titration and from kinetic analysis of the hydrolysis of dextran indomethacin ester conjugates, <i>Int. J. Pharm.</i>, 52, 55–61

(1989).

368	1-Cyclohexyl-2-aminopropane (C ₉ H ₁₉ N)	10.14 ± 0.1	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i>, 73, 2611–2613 (1951).NB: See Amphetamine for details.
369	Cyclopentamine (C ₉ H ₁₉ N) H ₃ C NHCH ₃	10.47	U	+H	Potentiometric	H_2O t undefined $I \sim 0.01$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). NB: From reported $pK_b = 3.53$ (assumed $t = 25 \degree$ C).
370	Cyclopentolate (C ₁₇ H ₂₅ NO ₃)	7.93	U	+H	Potentiometric	H ₂ O	 Wang ESN and Hammarlund ER, Corneal absorption reinforcement of certain mydriatics, <i>J. Pharm. Sci.</i>, 59, 1559–1563 (1970). "An aqueous solution of known concentration of cyclopentolate HCl was neutralized with stoichiometric quantity of standardized NaOH solution to liberate free cyclopentolate. A titration curve of the free cyclopentolate was obtained by titrating the neutralized solution with standardized dilute HCl, using a Beckman Zeromatic pH meter. The mid-point of the titration curve was ascertained, and the pK_a value of cyclopentolate HCl was determined by finding the pH value that corresponded to this midpoint."
371	D-Cycloserine (C ₃ H ₆ N ₂ O ₂) O NH H ₂ N O O	4.388 7.346		-H +H	Potentiometric	H_2O t = 25.0 I = 0.1	El-Obeid HA and Al-Badr AA, D-cycloserine, <i>APDS</i> , 18 , 567–597 (1989). "Braibante <i>et al.</i> studied the equilibrium of D-cycloserine with protons in aqueous solutions, the equivalent of D-cycloserine (HL) with the ions of H, Co, Ni, Cu, and Zn were studied potentiometrically at 25 °C and 0.1 mol/dm ³ KCI. The protonation constants are log $K_1 = 7.346$ (5)(-NH3+) and log $K_2 = 4.388$ (6)(-OH); the corresponding enthalpy changes are -32.25 (15) and -14.52 (15) KJ/mol respectively."

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
372	iso-Cyclosporin A (C ₆₂ H ₁₁₁ N ₁₁ O ₁₂) (cyclosporin) i-Bu Me HN HN HN HN HN HN HN HN HN H	6.9	υ	+H	kinetic	H ₂ O t = 37.0 ± 0 0.2 l = 0.15 (KCl)	 Oliyai R and Stella VJ, Kinetics and mechanism of isomerization of cyclosporin A, <i>Pharm. Res.</i>, 9, 617–622 (1992). "The kinetics of isomerization of cyclosporine (cyclosporin A) to isocyclosporin A were studied in various nonaqueous solvents as a function of temperature and added methanesulfonic acid; the rate of conversion of isocyclosporin to cyclosporine was also determined. The isomerization of cyclosporine was acid-catalyzed over the acid concentration studied. The choice of organic solvent markedly altered the isomerization rate. Isocyclosporin isomerization was extremely rapid compared to the forward reaction. Isocyclosporin showed a kinetically generated pK_a value of 6.9 for the secondary amine moiety. From pH 8–10, the pH-rate profile was linear, with a slope almost equal to unity, indicating hydroxide ion catalysis. The isomerization rate in plasma was comparable to that in pH 7.4 buffer solution. It was concluded that isomerization kinetics of cyclosporine in nonaqueous soluton are acid-catalyzed and affected by the choice of organic solvent Due to the minimal aqueous solubility and lack of appropriate chromophoric properties of isoCsA, no attempt was made to determine the pK_a of isoCsA independently The kinetics of isoCsA to CsA coversion were studied in dilute aqueous solution as a function of pH, temperature and buffer concentration It was not possible to measure the apparent pK_a of isoCsA by other means The kinetically generated pK_a value of 6.9 is reasonable for an aliphatic amine of the type seen"
373	Cyclothiazide (C ₁₄ H ₁₆ ClN ₃ O ₄ S ₂)	9.1 10.5	U U	H H	Potentiometric	30% EtOH in H ₂ O	 Novello FC and Sprague JM, Structure-activity relations among the thiazide diuretics, <i>Ind. Chim. Belge.</i>, 32 (Special no.), 222–225 (1967). NB: Apparent pH at half-neutralization. NB: See also Whitehead CW and Traverso JJ, US Pat. 3,419,552 (1968), who reported 11.0 to 11.4 and 13.0 to 13.3 in 66% DMF.

374	Cyclothiazide	8.8	U	-H	Potentiometric	acetone/H ₂ O	 Henning VG, Moskalyk RE, Chatten LG and Chan SF, Semi-aqueous potentiometric determination of apparent pK_{a1} values for benzothiadiazines and detection of decomposition during solubility variation with pH studies, <i>J. Pharm. Sci.</i>, 70(3), 317–319 (1981). NB: See Flumethiazide for details.
375	Cysteine ($C_3H_7NO_2$)	1.88	U	-H +H	Potentiometric	H ₂ O	Zucconi TD, Janauer GE, Donahe S and Lewkowicz C, Acid
	SH	8.38 ± 0.02	А	+H		$t = 20.0 \pm 0.05$ I = 0.15	dissociation and metal complex formation constants of penicillamine, cysteine, and antiarthritic gold complexes at
	ſ					N_2 atmosphere	simulated biological conditions, J. Pharm. Sci., 68(4), 426–432
							(1979). ''The pH measurements were carried out in a 100-ml jacketed
							titration cell fitted with a magnetic stirrer and rubber stopper
	NH ₂ COOH						through which were inserted nitrogen and buret delivery tubes
							and glass and calomel electrodes. A research pH meter was used; the system was calibrated at pH 4 and 9.22. The ionic strength was
							0.15 in all cases (KNO ₃). The temperature was held to $\pm 0.05^{\circ}$ of
							the desired value Each acid function was titrated with
							increments of 0.1000 M KOH, carbonate free." NB: The pK _a value for benzoic acid test substance was found in a
							validation experiment to be 4.25 ± 0.02 at 25 °C, slightly higher
							than the literature value (4.21).

s

	p <i>K</i> _a at	20°, $\mu = 0.15$ (lit	t. value)	$p\textit{K}_{a}$ at 37°, $\mu=0.15$			
Compound	соон	NH ₃	SH	соон	NH ₃	SH	
Penicillamine	2	8.11 ± 0.02 (8.03)	10.82 ± 0.04 (10.83)	-	7.83 ± 0.01	$10.34~\pm~0.04$	
Cysteine	1.88	8.38 ± 0.02 (8.32)	10.60 ± 0.03 (10.48)	-	8.04 ± 0.02	10.21 ± 0.06	
Thiomalic Acid	4.68 ± 0.03 (4.68)	-	10.51 ± 0.03 (10.55)	$4.68\pm~0.04$	-	10.24 ± 0.02	
Thioglucose	-	-	11.67 ± 0.05	-	-	11.51 ± 0.03	

 148	No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
	376	Daunorubicin (C ₂₇ H ₂₉ NO ₁₀) O OH	4.92 ± 0.16	U	+H	CZE/pH	H_2O $t = 25 \pm 0.5$	Hu Q, Hu G, Zhou T and Fang Y, Determination of dissociation constants of anthracycline by capillary zone electrophoresis with
		CH ₃ O O OH O	4.99 ± 0.06	U	+H	Spectro $(\lambda = 495 \text{ nm})$	I = 0.03 H ₂ O $t = 25 \pm 0.5$ I = 0.03	amperometric detection, J. Pharmaceut. Biomed. Anal., 31 , 679–684 (2003). $\mu_{a} = pH - \log\left(\frac{\mu_{e}}{\mu_{a} - \mu_{e}}\right) + \frac{0.5805z^{2}\sqrt{1}}{1 + 0.3281a\sqrt{1}} $ (1)
		H ₃ C NH ₂ HO						$pK_{a} = pH + \log\left(\frac{\mu_{e}}{\mu_{b} - \mu_{e}}\right) - \frac{0.5805z^{2}\sqrt{I}}{1 + 0.3281a\sqrt{I}} $ (2) where μ_{a} is the electrophoretic mobility of the fully deprotonated acid, μ_{b} the electrophoretic mobility of the fully protonated base and μ_{e} is the electrophoretic mobility observed at the experimental pH.
		Idarubicin (C ₂₆ H ₂₇ NO ₉) O OH O U U U	4.73 ± 0.21	U	+H	CZE/pH	H_2O $t = 25 \pm 0.5$ I = 0.03	Before each injection, the capillary was flushed with the buffer solution for 5 min. Phenol was chosen as a neutral marker The neutral marker was dissolved in deionized water (0.1 mol/l) and
		O OH O OH OH OH	3 4.04 ± 0.05 0 411 5]	Spectro ($\lambda = 495 \text{ nm}$)	H_2O $t = 25 \pm 0.5$ I = 0.03	added to the sample solutions to measure electro-osmotic flow (EOF). The concentraton of neutral marker was adjusted to obtain a measurable reference peak, a separation potential of 14 kV was used. All samples were injected electro-kinetically, applying 14 kV for 10s. Data pairs of pH and μ _e were imported into MATHCAD where		
								$\mu_{\rm e}$ ($\mu_{\rm b}$) and pK _a we determined by performing a non-linear fit to Eqs. (1) and (2). Spectrophotometric pK _a values were determined using 1 cm cuvettes at 25 ± 0.5 °C. The experimental results showed that the three analytes were fully protonated and deprotonated at about pH
		Pharmorubicin (C ₂₇ H ₂₉ NO ₁₁)	4.81 ± 0.13	U	+H	CZE/pH	H_2O $t = 25 \pm 0.5$ I = 0.03	2.50 and 9.00, respectively Absorbance measurements were taken at a wavelength which showed a significant difference as a
		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	4.92 ± 0.03	U	+H	Spectro $(\lambda = 495 \text{ nm})$	H_{2O} H_{2O} $t = 25 \pm 0.5$ I = 0.03	function of pH for each solute," NB: Corrections for ionic strength effects were made with the Debye- Huckel equations as illustrated by Eqs (1) and (2). The meaning of these results must be considered very carefully. The authors have treated the ionizing group for daunorubicin (and its congeners, idarubicin, and pharmorubicin) as a base, for the raw results showed decreasing mobility with increasing pH, as expected where the more mobile form was protonated and the less mobile form was deprotonated. However, the results are in serious disagreement with all other anthracycline pK_a values. It is possible that a systematic error has been made in the calculations, and that the results are really

377	Daunorubicin	8.2	U	+H			Polycyanoacrylaten preparation, morpho J. Pharm. Pharmacol.,	anocaps ological, 31 , 331–	<i>I</i> , Guiot P, Bauduin P and Speise ules as potentional lysoomotropi and sorptive properties, 332 (1979). NB: Value quoted wi tail. There should be at least one -	c carriers: thout
378	Decyl carnitine (C ₁₇ H ₃₃ NO ₄) $C_nH_{(2n+1)}$ O CH_2COO- O $HH_nC H_{(2n+1)} H_nC H_{(2n+1)}$	$\begin{array}{l} 3.65 \ (n=9) \\ 3.60 \ (n=1) \\ 3.56 \ (n=3) \\ 3.60 \ (n=7) \end{array}$	Α	-H	Potentiometric	H_2O t = 25 l < 0.02 N_2 atmos CO_2 -free H_2O	Yalkowsky SH and Z and micellar acylca Compound purity concentration plots	ografi G irnitines was che did not	i, Potentiometric titration of mo- s, J. Pharm. Sci., 59 , 798–802 (19 cked by ensuring that surface to t display minima. The paper h effects of micellization on pK_a	onomeric 70). NB: ension <i>vs</i> as a
	2					-	Compound	p <i>K</i> a	Compound	р <i>К</i> а
							Butyric acid (C ₄ H ₈ O ₂)	4.83	Carnitine (C ₇ H ₁₅ NO ₃) (as chloride)	3.80
							γ-Butyrobetaine (GBB) (C ₇ H ₁₅ NO ₂)	4.02	Norcarnitine ($C_6H_{13}NO_3$) (as chloride)	3.81
							γ -Aminobutyric acid (GABA) (C ₄ H ₉ NO ₂)	4.01	β-hydroxy-γ-aminobutyric acid (C ₄ H ₉ NO ₃) (as cation)	3.80
379	Dehydroestrone, 6- (C ₁₈ H ₂₀ O ₂) H_0	10.17 ± 0.04	U	-H	Spectro	H ₂ O t = 23 ± 2		, J. Phar	ination of aqueous solubility a m. Sci., 66 , 624–627 (1977). ails.	nd pK _a

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
380	Demeclocycline (6-demethyl-7-chlorotetra- cycline) ($C_{21}H_{21}ClN_2O_8$) Cl OH N(CH ₃) ₂	3.30 7.16 9.25	U U U	-H -H +H	Potentiometric	H_2O $t = 25 \pm 0.05$ I = 0.01	 Benet LZ and Goyan JE, Determination of the stability constants tetracycline complexes, <i>J. Pharm. Sci.</i>, 54, 983–987 (1965). NB: See Chlortetracycline for details.
	OH O OH O OH						
381	Demeclocycline (6-demethyl-7-	3.85	U	-H	Potentiometric	H ₂ O	Doluisio JT and Martin AN, Metal complexation of the tetracyclic
	chlorotetracycline)	7.31 9.23	U U	-H +H		$t = 30.0 \pm 0.2$ I = 0.01 (KCl) N ₂ atmosphere	hydrochlorides, J. Med. Chem., 6, 16–20 (1963). NB: Metal-free solutions of the tetracycline were titrated with standard NaOF solution and the pH measured. No details were given of the pi meter calibration. Metal stability constants were determined fr identical titrations in the presence of varying concentrations of nickel(II), zinc(II) or copper(II) ions.
382	Deoxyepinephrine (Epinine) ($C_9H_{13}NO_2$) H_{02}	$\begin{array}{c} 8.64\pm0.04\\ 9.70\pm0.12\end{array}$	A U	−H, +H +H, −H	Potentiometric, Spectro	H_2O t = 37	Schüsler-van Hees, MTIW, Reactivity of Catechol(amine)s, Ph.D. thesis, Ctr for Biopharm. Sci., Leiden University, 1–93 (1983). N
	H ₂ C NHCH ₃					<i>I</i> = 1.0	Microscopic: 8.79 ± 0.01 ; 9.16 ± 0.11 ; 9.55 ± 0.16 ; 9.18 ± 0.04 . Schüsler-van Hees, MTIW, Beijersbergen van Henegouwen GMJ a Driever MFJ, Ionization constants of catechols and catecholamir <i>Pharm. Weekblad</i> , Sci. Edn., 5 , 102–108 (1983).
383	 OH Deramciclane (C ₁₉ H ₃₁ NO)	9.61 ± 0.03	U	+H	Potentiometric	H ₂ O	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pKa
	H ₃ C CH ₃ CH ₂ CH ₂					$t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	determination of water-insoluble compounds: Validation study methanol/water mixtures, Int. J. Pharm., 151 , 235–248 (1997). NB: By extrapolation from 34–53 %w/w aqueous MeOH. See Acetaminophen for full details.

384	Desferrioxamine (C ₂₅ H ₄₈ N ₆ O ₈) $ \begin{array}{c} $	$\begin{array}{l} 8.32 \pm 0.07 \\ 9.16 \pm 0.02 \\ 9.94 \pm 0.05 \\ 11.44 \pm 0.12 \end{array}$	U A U U	-H -H -H +H	Potentiometric	H ₂ O t = 25 I not specified but low N ₂ atmosphere	Ihnat P and Robinson DH, Potentiometric determination of the thermodynamic ionization constants of deferoxamine, <i>J. Pharm. Sci.</i> , 82 , 110–112 (1993). NB: Autotitrator used to titrate 100 mL of 0.001M deferoxamine mesylate (magnetically stirred) with 0.1M NaOH (standardized against potassium hydrogen phthalate). N ₂ passed through the titrand (shown by others to be more effective in removing CO ₂ than merely filling the headspace). The pH meter was standardized at <i>pH</i> = 4 and <i>pH</i> = 10. The iterative algorithm for fitting pH values to NaOH titre was expanded from earlier work by Lambert and Dalga (<i>Drug Dev. Ind. Pharm.</i> , 16 , 719–737 (1990)), and calculations were cycled until successive results for all four <i>pK</i> _a values differed by <0.01 log unit. The results were compared to literature values (Schwarzenbach G, Schwarzenbach K, Hydroxamatkomplexe I. Die stabilität der Eisen(III)-Komplexe einfacher Hydroxamsäuren und des Ferrioxamins B, <i>Helv. Chim. Acta</i> , 46 , 1390–1400 (1963)): 8.39, 9.03, 9.70, >11 (20 °C, <i>I</i> = 0.1M). The high <i>pK</i> _a value for the terminal amino group (normally 10.60 to 10.65) was attributed by the authors to hydrogen bonding, presumably to one or more ionized hydroxamic acid groups. Unpublished molecular models by the present author suggest that a stable arrangement is formed when the protonated amine is equidistant from all three ionized hydroxamic acid groups.
385	Desipramine (C ₁₈ H ₂₂ N ₂)	10.21 (-)	U	+H	Spectro (277 nm)	H ₂ O t = 20.0	Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i> , 92 (1), 15–22 (1993). NB: See Acetaminophen for further details. An alternative graphical method gave $pK_a = 10.2$.
386	Desipramine	10.2	U	+H	Soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.
387	Desipramine	10.08	U	+H	Potentiometric	H ₂ O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46 (4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

Appendix	(A ((continued)	۱
----------	--------------	-------------	---

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)			
388	Desmethyldoxepin (C ₁₈ H ₁₉ NO)	9.75	U	+H	Soly	I = 0.00 t = 25.0	Embil K and Torosian G, Sc doxepin and desmethyld (1982).			
389	Desmethylpheniramine	$\begin{array}{c} 4.02 \pm 0.10 \\ 10.10 \pm 0.06 \end{array}$	U U	+H +H	Potentiometric	H_2O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti histamines, <i>Helv. Chim. A</i> Cycliramine for details.	. 1		1
390	Desmycosin (C ₃₉ H ₆₅ NO ₁₄) $(CH_3 \rightarrow CH_3 \rightarrow CH_$	8.36	U	+H	Potentiometric	H_2O t = 25 I = 0.167	McFarland JW, Berger CM, Jaynes BH, Jefson MR, Ka Reese CP and Vu CB, Qua among macrolide antibac against Pasteurella multo NB: See Azithromycin for d \pm 0.07 for the pK _a . Paper a desmycosin analogues, w aldehyde (-CHO) group v	amicker BJ, Lip antitative Struc terial agents: In cida, J. Med. C letails; average ilso reported p here these wer	pinski CA, Lur cture-activity n vitro and in v hem., 40 , 1340- e standard dev K_a values for t e obtained by	ndy KM, relationships vivo potency -1346 (1997). riation of he following
							Side chain:	pK _{a1}	pK _{a2}	pK _{a3}
							Me ₂ N(CH ₂) ₂ NMe Me ₂ N(CH ₂) ₃ NMe	5.61 7.45	8.19 8.43	8.95 9.77
391	Desmycarosylcarbomycin A ($C_{38}H_{72}N_2O_{12}$)	8.44	U	+H	Potentiometric	H_2O t = 25 I = 0.167	McFarland JW, Berger CM, Jaynes BH, Jefson MR, Ka Reese CP and Vu CB, Qua among macrolide antibac against Pasteurella multo	amicker BJ, Lip antitative Struc terial agents: I	pinski CA, Lur cture-activity i <i>n vitro</i> and <i>in</i> <i>hem.,</i> 40 , 1340-	ndy KM, relationships vivo potency

....

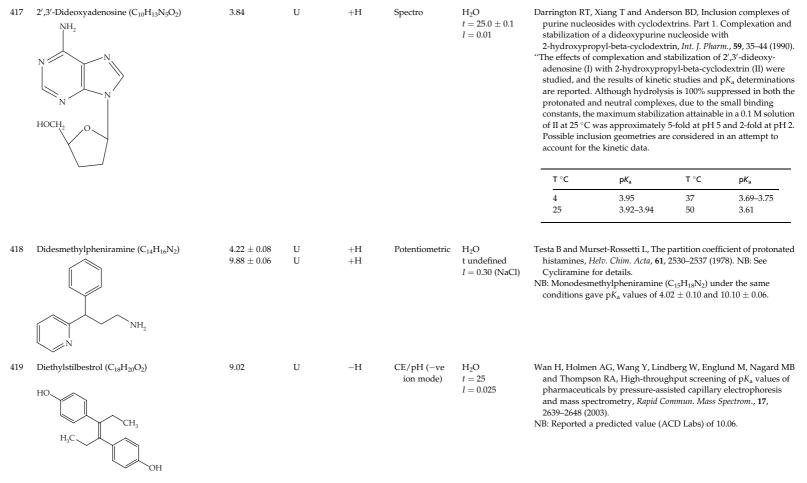
392	Dexamethasone-21-phosphate ($C_{22}H_{30}FO_8P$) $H_2PO_3CH_2$ CH_4 CH_4	1.89	U	-Н	partition	H ₂ O t unspecified I unspecified	Derendorf H, Rohdewald P, Hochhaus G, Mollmann H, HPLC determination of glucocorticoid alcohols, their phosphates and hydrocortisone in aqueous solutions and biological fluids, J. Pharm. Biomed. Anal., 4(2), 197–206 (1986).
	HO CH ₃ H F	1.9 6.38	U U	-H -H	Potentiometric		NB: Potentiometry was performed according to Albert and Serjeant (1971). pK _a values reported for triamcinolone acetonide phosphate were 1.70 (partition); corresponding values from potentiometry were 1.5 and 6.15.
393	Dexamphetamine (C ₉ H ₁₃ N)	9.77	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951).
394	Dextran T-70 grade (Mw = 74 kDa) T-500 grade (Mw = 488 kDa)	$\begin{array}{c} 11.78 \pm 0.02 \\ 11.78 \pm 0.02 \end{array}$	U U	-H -H	Potentiometric	H_2O t = 37	 Larsen C, Macromolecular prodrugs. Part 8. Determination of the ionization constant of dextran by potentiometric titration and from kinetic analysis of the hydrolysis of dextran indomethacin ester conjugates, <i>Int. J. Pharm.</i>, 52, 55–61 (1989). "The kinetics of hydrolysis of dextran indomethacin ester conjugates were studied in the pH range 6.81–9.13 at 37 °C, using high performance liquid chromatography The kinetic experiments were in agreement with the ionization constant of dextran, determined by potentiometric titration to be 10–11.78."
395	Dextrose (glucose) (C ₆ H ₁₂ O ₆)	12.38 ± 0.1	U	-H	Potentiometric	H ₂ O t = 25.0 ± 0.1 I < 0.0005	 Woolley EM, Tomkins J and Hepler LG, Ionization constants for very weak organic acids in aqueous solution and apparent ionization constants for water in aqueous solution and apparent ionization constants for water in aqueous organic mixtures, <i>J. Solution Chem.</i>, 1, 341–351 (1972). "Potential measurements were made as before (1) with a variety of wide-pH-range glass electrodes. The cells were maintained at 25.0 (± 0.1) °C, and potential readings were recorded when they became constant to ± 0.1 mV. Measurements were repeated at least three times with different combinations of electrodes, pH meters, and electrolyte concentrations ranging from 0.0005 to 0.01M" NB: Data cited by: Killion RB and Stella VJ, Nucleophilicity of dextrose, sucrose, sorbitol, and mannitol with p-nitrophenyl esters in aqueous solution, <i>Int. J. Pharm.</i>, 66, 149–155 (1990). "In order to better understand the nucleophilicity of carbohydrates and polyhydric alcohols, the reactivities of dextrose, sucrose, sorbitol, and mannitol with a few simple p-nitrophenyl esters were studied at 25 °C and ionic strength 1.0 (KCI) in aqueous solution.

4 Appendix A (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
							Based on the pH dependency of the catalytic rate constants, the reactivity of the polyhydric alcohols was attributed to the anion derived from ionization of a hydroxy group in the polyhydric alcohol. The second-order rate constants representing the nucleophilic reactivity of the polyhydric alcohol anions were determined. Results showed that the nucleophilic reactivity of dextrose, sucrose, sorbitol and mannitol is similar to other alcohols of comparable $pK_{a_1} \dots$ "
396	Dextrose	11.81	U	-H	Potentiometric	H_2O t = 37	Bundgaard H and Larsen C, Kinetics and mechanism of reaction of benzylpenicillin and ampicillin with carbohydrates and polyhydric alcohols in aqueous solution, <i>Arch. Pharm. Chemi</i> , Sci. Edn., 8, 184–200 (1978).
397	Diamorphine (heroin) (C ₂₁ H ₂₃ NO ₅) CH ₃ CH ₃ COO CH ₃ COO CCOCCH ₃	7.95	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) Ar atmosphere	 Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med. Chem.</i>, 39, 4377–4381 (1996). NB: See Morphine for further details.
398	Diamorphine	7.6	U	+H	Spectro	H ₂ O t = 23 c = 0.01	Schoorl N, Dissociation constants and titration exponents of several less common alkaloids, <i>Pharm. Weekblad</i> , 76 , 1497–1501 (1939); CA 34:1900. Cited in Perrin Bases 2915 ref. S16. NB: The study used the indicator spectrophotometric (colorimetric) method as described by Kolthoff (1925). Reported also the pK_b values for the following monobasic alkaloids: Dicodide (hydrocodone) (6.05; $pK_a = 7.95$); Dilaudid (hydromorphone) (6.2; $pK_a = 7.8$); β -Eucaine (4.65; $pK_a = 9.35$); Eucodal (oxycodone) (5.4; $pK_a = 8.6$); Homatropine (4.3; $pK_a = 9.7$); Scopolamine (6.5; $pK_a = 7.95$); Stovaine (amylocaine) (6.1; $pK_a = 7.5$). The following dibasic alkaloids had

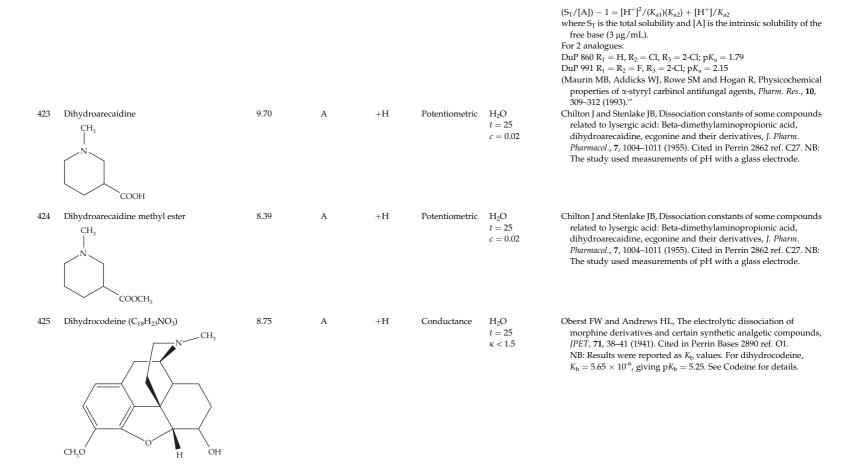
the reported p K_b values: Alypine (amydricaine) (4.5, 10.2; p $K_a = 9.5, 3.8$); optochine (ethylhydrocupreine) (5.5, 9.95;

 $pK_a = 8.5, 4.05$); yohimbine (6.55, 11; $pK_a = 7.45, 3$).


399	Diazepam (C ₁₆ H ₁₃ ClN ₂ O)	3.3	U	+H	CE/pH (+ve ion mode)	H ₂ O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 3.4.
400	Diazepam	3.42	U	+H	Spectro	H_2O t = 25 I = 0.025	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta, 434, 157–167 (2001). NB: Reported a predicted value (ACD Labs) of 3.4.
401	Diazepam	3.3	U	+H	Spectro	5% MeOH in H ₂ O t = 20 I = 0.15	 Barrett J, Smyth WF and Davidson IE. Examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry, <i>J. Pharm.</i> <i>Pharmacol.</i>, 25, 387–393 (1973). NB: See 1,4-Benzodiazepines for details.
402	Diazepam	3.3	U	+H			Konishi M, Hirai K and Mari Y, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, J. Pharm. Sci., 71 (12), 1328–1334 (1982). NB: See Triazolam.
403	Diazoxide (C ₈ H ₇ ClN ₂ O ₂ S)	8.75 ± 0.02	U	+H	Potentiometric	40% EtOH t = 25.0	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, ArzneimForsch., 34, 407–409 (1984).
	CI S NH CI CH ₃	9.49	U	+H		H ₂ O	NB: See Aprindine for details.
404	Dibenzepine (C ₁₈ H ₂₁ N ₃ O) $CH_2N(CH_3)_2$ $($ O N $($ O N $($ CH_3 $)$ CH_3	3.451 8.275	A U	+H +H	Potentiometric	H ₂ O t = 25 I = 0.00	Lukkari S, Ionization of some dibenzazepine derivatives, dibenzepine and opipramol, in aqueous solutions, <i>Farm. Aikak.</i> , 80 (4-5), 210–215 (1971). "The acid ionization constants of dibenzepine HCl and opipramol HCl were determined potentiometrically in aqueous solutions at 25 °C. The values $pK_1 = 8.275$ and $pK_{1,2} = 3.451$ respectively, were obtained for the acid ionization constants at zero ionic strength. The value $pK_1 = 8$ was obtained for opipramol at the ionic strength I = 0.01. The effect of ionic strength on the ionization constant, as adjusted with sodium chloride, was determined."

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
405	Dibenzepin	8.25 ± 0.05	U	+H	Potentiometric	H_2O $t = 21.0 \pm 1.0$	Egli A and Michaelis WR, Dibenzepin hydrochloride, <i>APDS</i> , 9, 181–206 (1980). NB: No reference was given. "Titration of a 0.003 M solution in water at 20–22 °C yielded as pK_a 8.25 ± 0.05 for the 3'-nitrogen."
406	Dibucaine (cinchocaine) (C ₂₀ H ₂₉ N ₃ O ₂)	8.83 ± 0.03	A	+H	Potentiometric	H_2O t = 20.0 I = 0.10 (KCl) N_2 atmosphere	 Buchi J and Perlia X, Beziehungen zwischen de physikalisch- chemische Eigenschaften und der Wirkung von Lokalanasthetica, <i>ArzneimForsch.</i>, 10, 745–754 (1960). NB: See Cocaine for details.
407	Dibucaine (cinchocaine) homologues O-R				Potentiometric, Spectro	H_2O t = 20.0 I = 0.10 (KCl)	Buchi J and Perlia X, Beziehungen zwischen de physikalisch- chemische Eigenschaften und der Wirkung von Lokalanasthetica, ArzneimForsch., 10, 745–754 (1960).
	CH ₃ C ₂ H ₅ C ₃ H ₇ C ₄ H ₉ C ₅ H ₁₁ C ₅ H ₁₁ C ₅ H ₁₂	1.60; 8.82 1.94; 8.89 1.89; 8.69 1.92; 8.87 1.91; 8.83 1.91; 8.83	А	+H; +H		N ₂ atmosphere	NB: See Cocaine for details.
408	3,5-Dichlorophenol (C ₆ H ₄ Cl ₂ O)	8.48	U	-H	CE/pH (–ve ion mode)	H_2O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 8.04.

409 Cl	Diclofenac (C ₁₄ H ₁₁ Cl ₂ NO ₂) CH ₂ COOH NH Cl	3.99 ± 0.01	Α	-H	Potentiometric	H ₂ O $t = 25 \pm 0.5$ I = 0.15 (KCl)	pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, <i>Pharm. Res.</i> , 15 (2) 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol-water) and log P (dioleylphosphatidyl-choline unilamellar vesicles). The same result was reported in Sirius Technical Application Notes, vol. 2, p. 146–147 (1995). Sirius Analytical Instruments Ltd., Forest Row, East. Sussex, RH18 5DW, UK. NB: Concentration of analyte, 0.46–0.70 mM.
		4.01	U	-H	Potentiometric	H_2O t = 37 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999).
410	Diclofenac	4.2	U	-Н	Potentiometric	H_2O t = 20 I undefined but very low	Rainer VG, Krüger U and Klemm K. Syntheses und physicalisch- chemische Eigenschaften von Lonazolac-Ca einem neuen Antiphlogistikum/Antirheumatikum, <i>ArzneimForsch.</i> , 31 (4), 649– 655 (1981). NB: See Indomethacin for details.
411	Diclofenac	4.7	U	-H	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. See Azapropazone and Ibuprofen for details. The exact pK_a determination should be optimized by another method because of the irregularity in the dA/dpH verses mean pH plot at ~pH 4.
412	Diclofenac	4.0	U	-H	Potentiometric	H ₂ O <i>t</i> = 25	Maitani Y, Nakagaki M and Nagai T, Determination of the acid dissociation constants in ethanol-water mixtures and partition coefficients for diclofenac, <i>Int. J. Pharm.</i> , 74(2,3), 105–114 (1991). "Plot given of pK _a vs EtOH concentration (almost linear from 90% down to 18%), however precipitation of diclofenac at EtOH% <50% needed approximate treatment of the titration curves; value from extrapolation to 0% EtOH. Also, there was an approximately linear plot of apparent pK _a and the reciprocal of the dielectric constant, which led to a similar value. The dissociation constants of diclofenac sodium in ethyl alcohol were determined using the titration method. The acid dissociation constant of the drug was decreased by the increase in the concentration of ethanol in the aqueous solution It is suggested that ethanol, which is used as an enhancer for percutaneous absorption, assumes another role, increasing the proportion of unionized form of the drug and forming ion pairs in low dielectric media The distribution behavior of diclofenac is affected in the presence of added cations. Above pH 7, ion pair formation promotes the distribution of the drug into lipophilic environment."


Appendix A (continued)

<u>∞</u>							
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
413	Diclofenac	4.21	U	-H	CE/pH (-;ve ion mode)	H_2O t = 25 l = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 4.18.
414	Dicloxacillin (C ₁₉ H ₁₇ Cl ₂ N ₃ O ₅ S) $Cl \rightarrow Cl \rightarrow Cl \rightarrow Cl \rightarrow CH_3 \rightarrow CH_3 \rightarrow CH_3 \rightarrow COOH$	2.67	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ c = 0.006	 Hou JP and Poole JW, The aminoacid nature of ampicillin and related penicillins, <i>J. Pharm. Sci.</i>, 58, 1510–1515 (1969). NB: Apparent pK_a values were extrapolated to 0 % alcohol.
415	Dicyclomine (C ₁₉ H ₃₅ NO ₂)	9.0	U	+H			Foye 3rd; see Azatadine; from McEvoy.
416	Didanosine (C ₁₀ H ₁₂ N ₄ O ₃)	9.12 ± 0.02	U	+H	Potentiometric	H2O RT	 Nassar MN, Chen T, Reff MJ and Agharkar SN, Didanosine, <i>APDS</i>, 22, 185–227 (1993). 'The apparent pK_a value of didanosine, uncorrected for activity coefficients, was obtained by titration of a 0.01 M solution of didanosine in water with standardised solution of 0.1N NaOH at room temperature. The apparent pK_a of didanosine was found to be 9.12 ± 0.02 (7) 7. Anderson BD, Wygant MB, Xiang T-X, Waugh WA and Stella VJ, Preformulation solubility and kinetic studies of 2',3'-dideoxypurine nucleosides: potential anti-AIDS agents, <i>Int. J. Pharm.</i>, 45, 27–37 (1988).''

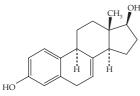
	Append	lix A (continued)
--	--------	---------	-----------	---

				Ionization		Conditions	
No.	Name	pK _a value(s)	Data quality	type	Method	t°C; I or c M	Comments and Reference(s)
420	Diflunisal (C ₁₃ H ₈ F ₂ O ₃)	3.3	U	-H	soly	H_2O I = 0.1	Cotton ML and Hux RA, Diflunisal, <i>APDS</i> , 14 , 491–524 (1985). "From the solubility data in acetate buffers and the limiting
	F OH	14	U	-H	Spectro		solubility of the free acid in hydrochloric acid solution, a pK_a value of 3.3 was estimated for solutions of 0.1 ionic strength. The pK_a of the phenolic group has been estimated by a spectrophotometric method to be 14. These values correlate reasonably well with pK_a values for salicylic acid of 3.0 and 13.9." DeMarco JD, Merck Sharp and Dohme Laboratories, West Point, PA, unpublished data.
421	Diflunisal	4.91	U	-H	soly	H ₂ O	Najib NM and Suleiman MS, Kinetics of dissolution of diffunisal and
	1:1 dispersion in PEG 1:3 dispersion in PEG	5.07 5.15	U U	-H -H		t = 37 I = 0.5 (KCl)	diflunisal-polyethylene glycol solid dispersion, Int. J. Pharm., 57, 197–203 (1989).
	1:5 dispersion in PEG	5.19	U	-H			" solid dispersion of diflunisal (I) in polyethylene glycol (4000) (II)
	1:7 dispersion in PEG	5.21	U	-H			was prepared and studied to determine the effects of II on the dissociation constant, dissolution kinetics, diffusion coefficient and hydrodynamic layer thickness of I; the influence of pH was also evaluated. Dispersing I in II reduced its (apparent) dissociation constant"
422	eq:a-(2,4-Difluorophenyl)-\$	$\begin{array}{c} 1.68 \pm 0.14 \\ 4.93 \pm 0.096 \end{array}$	U U	+H +H	soly	H_2O t = 22 I undefined	Maurin MB, Vickery RD, Gerard CA and Hussain M, Solubility of ionization behavior of the antifungal α-(2,4-difluorophenyl)-α-[1- (2-(2-pyridyl)phenylethenyl)]-1H-1,2,4-triazole-1-ethanol bismesylate (XD405), Int. J. Pharm. 94, 11–14 (1993).
	R_3 OH N						"Solubility studies were carried out by placing excess XD405 into a suitable container with deionized water, adding various amounts of either hydrochloric acid or sodium hydroxide to adjust the pH and rotating end-to-end for 24 h at room temperature (22 °C) Preliminary experiments indicated that 24 h provided sufficient time to reach equilibrium. The suspension was passed through a 0.45 µm filter (Acrodisc [®] LC13 PVDF, Gelman Sciences) with the first portion discarded to ensure saturation of the filter. An aliquot of the filtrate was diluted and analyzed by HPLC and the remainder of the filtrate was employed for pH determination The (solubility-pH) data were analyzed by regression analysis with a zero intercept second order polynomial that was based on eqn. (5) and employed an intrinsic solubility of 3 µg/mL. The
	$R_3 = 4$						resulting polynomial had a correlation coefficient of 0.997 and provided ionization constants \pm standard error of p $K_{a1} = 1.68 \pm$ 0.14 and p $K_{a2} = 4.93 \pm 0.096$.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
426	Dihydrodesoxycodeine (C ₁₈ H ₂₃ NO ₂)	8.83	U	+H	Potentiometric	H ₂ O t undefined I undefined	Rapaport H and Masamune S, The stereochemistry of 10-hydroxycodeine derivatives, <i>JACS</i> , 77 , 4330–4335 (1955). Cited in Perrin Bases Supplement 7466 ref. R3. NB: The study used measurements of pH with a glass electrode and liquid junction potentials.
427	Dihydrodesoxynorcodeine (C ₁₇ H ₂₁ NO ₂)	9.62	U	+H	Potentiometric	H ₂ O	Rapaport H and Masamune S, The stereochemistry of 10-hydroxycodeine derivatives, <i>JACS</i> , 77, 4330–4335 (1955). Cited in Perrin Bases Supplement 7467 ref. R3. NB: The study used measurements of pH with a glass electrode and liquid junction potentials.
428	Dihydroequilin, 17 α - (C ₁₈ H ₂₂ O ₂) CH ₃ $\stackrel{OH}{\longrightarrow}$ HO	10.29 ± 0.02	Α	-H	Spectro	H_2O $t = 23 \pm 2$	Hurwitz AR and Liu ST, Determination of aqueous solubility and p <i>K</i> _a values of estrogens, <i>J. Pharm. Sci.</i> , 66 , 624–627 (1977). NB: See 17α-Estradiol for details.

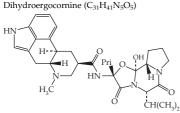
+H

+H

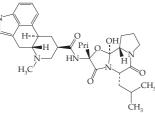

H₂O $t = 23 \pm 2$

H₂O

t = 24

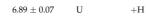

I < 0.01

Hurwitz AR and Liu ST, Determination of aqueous solubility and pKa values of estrogens, J. Pharm. Sci., 66, 624-627 (1977). NB: See 17α-Estradiol for details.



 6.91 ± 0.07 U

Α


431 Dihydroergocriptine (C32H43N5O5)

Dihydroergocristine (C35H41N5O5) 432

H.

HN

Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700-701 (1970). NB: See Dihydroergocornine and methysergide for details. Ritschel gave 6.74, also cited Maulding and Zoglio; this is the apparent value in 10% 7HPT.

HN

430

 6.89 ± 0.07 U Potentiometric H₂O t = 24I < 0.01

Potentiometric

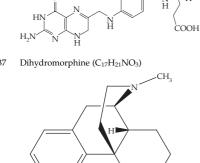
Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700-701 (1970). NB: Solubility increased by complexation with 7-β-hydroxypropyltheophylline (7HPT) and the apparent pK_a values extrapolated to [7HPT] = 0. Solutions were titrated with carbonate-free KOH solution. See methysergide for further details. Ritschel gave 6.76, also cited Maulding and Zoglio; this is the apparent value in 10% 7HPT.

Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700-701 (1970). NB: See Dihydroergocornine and methysergide for details. Ritschel gave 6.74, also cited Maulding and Zoglio; this is the apparent value in 10% 7HPT.

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
433	Dihydroergonovine (C ₁₉ H ₂₅ N ₃ O ₂) HN H H H H H HN CH ₃	7.38	U	+H	Potentiometric	H_2O t = 24 c = 0.002	Craig LC, Shedlovsky T, Gould RG and Jacobs WA, The ergot alkaloids. XIV. The positions of the double bond and the carboxyl group in lysergic acid and its isomer. <i>J. Biol. Chem.</i> , 125 , 289–298 (1938). Cited in Perrin Bases 2894 ref. C54. NB: The study used an asymmetric cell with a glass electrode and liquid junction potential. The pK _a value is the pH reported at half-neutralisation. Values are also reported for several other lysergic acid derivatives.
434	Dihydroergotamine (C ₃₃ H ₃₇ N ₅ O ₅) HN H	6.90 ± 0.07	U	+H	Potentiometric	H ₂ O t = 24 I < 0.01	 Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, <i>J. Pharm. Sci.</i>, 59, 700–701 (1970). NB: See Dihydroergocornine and Methysergide for details. Ritschel gave 6.75, also cited Maulding and Zoglio; this is the apparent value in 10% 7HPT.
435	Dihydroergotoxine A 1:1:1 mixture of dihydroergocornine, dihydroergocristine and dihydroergocryptine	6.9 ± 0.07		+H	Potentiometric	H_2O t = 24.0 I undefined	 Schoenleber WD, Jacobs AL and Brewer GA, Jr., Dihydroergotoxine methanesulfonate, APDS, 7, 81–147 (1978) (Wehrli A, Sandoz Ltd., personal communication). "Maulding and Zoglio have reported the ionization constants for the dihydroergotoxine components at 24° in water as:
							dihydroergocornine 6.91 ± 0.07 dihydroergocristine 6.89 ± 0.07

 $\begin{array}{ll} dihydroergocristine \\ dihydroergokryptine \\ \end{array} \begin{array}{ll} 6.89 \pm 0.07 \\ 6.89 \pm 0.07 \end{array}$

The pK_{aMCS} values (MCS = methyl cellosolve) according to the method of Simon have been determined as:


dihydroergocornine	5.84
dihydroergocristine	5.83
dihydro-α-ergokryptine	5.81

dihydro-ß-ergocryptine 5.84"

Poe M, Acidic dissociation constants of folic acid, dihydrofolic acid and methotrexate, J. Biol. Chem., 252(11), 3724-3728 (1977). NB: The compound aqueous solubility was insufficient to measure the pK_a values for the two carboxyl groups. Furthermore, dihydrofolic acid is relatively unstable in acidic solutions. See methotrexate for additional details.

Oberst FW and Andrews HL, The electrolytic dissociation of morphine derivatives and certain synthetic analgetic compounds, [PET, 71, 38-41 (1941). Cited in Perrin Bases 2893 ref. O1. NB: Results were reported as K_b values. For dihydromorphine, $K_{\rm b} = 2.26 \times 10^{-6}$, giving p $K_{\rm b} = 5.65$. See Codeine for details.

2.45 ± 0.06	U	+H	soly	H ₂ O	Peck CC and Benet LZ, General method for determining
8.12 ± 0.05	U	-H	-	t = 37.0	macrodissociation constants of polyprotic, amphoteric
11.4 ± 0.2	U	-H		I = 0.1	compounds from solubility measurements, J. Pharm. Sci., 67, 12-16
2.49	U	+H	Spectro		(1978).
8.09	U	-H			"A general method for estimating dissociation values, given a set of
11.5	U	-H			solubility and pH measurements for tyrosine and 2,8-
					dihydroxyadenine, is presented. Equations are derived extending
					solubility, pH and dissociation constant relationships from weak
					acids and bases to polyprotic, amphoteric compounds. Included in
					the estimation procedure is a subroutine for approximating
					thermodynamic dissociation constants."

Ò

2,8-Dihydroxyadenine (C5H5N5O2) NH.

H

-OH

437

HO

HO

438

Dihydrofolic acid (C19H21N7O6)

1.38

3.84

9.54

0.28

9.35

0

COOH

`Η

он

VU

VU

VU

VU

А

+H

+H

-H

+H

+H

Spectro

Conductance

H₂O

 H_2O

t = 25

 $\kappa < 1.5$

t = 25

I = 0.10

I = 0.1 to 4

Append	lix A ((continued))

No.	Name	p <i>K</i> _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
439	3,5-Di-iodo-L-tyrosine (C ₉ H ₉ I ₂ NO ₃) HO HO CH_2 CH $_2$ CH $_2$ C	2.10 6.46 7.52	บ บ บ	-H +H -H		H ₂ O t = 37.0	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962). NB: $pK_a = 2.10$ from $pK_b = 11.52$ where $pK_w = 13.621$ at 37 °C; secondary source W&G assumed the result was at 25 and used $pK_w = 14.00$.
440	Dilazep ($C_{31}H_{44}N_2O_{10}$) CH_3O CH	$5.14 \pm 0.11 \\ 8.25 \pm 0.08 \\ {}^{\rm H_3}$	U U	+H +H	Potentiometric	$\begin{array}{l} H_2O\\ t=25.0\pm0.1\\ I=0.1\\ N_2 \text{ atmosphere} \end{array}$	IJzerman AP, Limiting solubilities and ionization constants of sparingly soluble compounds: Determination from aqueous potentiometric data only, <i>Pharm. Res.</i> , 5 (12), 772–775 (1988). NB: Nitrogen atmosphere; glass electrode; KOH titrant; $S_o = 320 \pm 3 \mu$ M.
441	Dilazep	$\begin{array}{c} 4.46 \pm 0.03 \\ 8.14 \pm 0.02 \\ 5.19 \\ 8.88 \end{array}$	U U U U	+H +H +H +H	Potentiometric	$\begin{array}{l} 40\% \ \text{EtOH} \\ >t = 25.0 \\ \text{H}_2\text{O} \end{array}$	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonists and related compounds, <i>ArzneimForsch.</i> , 34, 407–409 (1984). NB: See Aprindine for details.
442	Diltiazem (C ₂₂ H ₂₆ N ₂ O ₄ S) H	7.32 ± 0.02 8.06	U U	+H +H	Potentiometric	$40\% \text{ EtOH}$ $t = 25.0$ H_2O	 Mannhold R, Rodenkirchen R and Bayer R, Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i>, 34, 407–409 (1984). NB: See Aprindine for details.
	S H OOCCH ₃ / O CH ₂ CH ₂ N(Me) ₂						
443	Dimethoxyamphetamine (C ₁₁ H ₁₇ NO ₂)	9.60 ± 0.05	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details. From $pK_b = 4.40$.

OCH₃

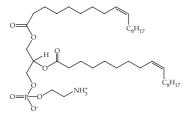
444	1-(3,4-Dimethoxyphenyl)-2-N- methylaminopropane (C ₁₂ H ₁₉ NO ₂) CH ₃ O CH ₃ O OCH ₃	9.81 ± 0.02	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and E adrenergic amines, JACS, 7: NB: see Amphetamine for det was insufficiently soluble ir performed in a series of eth extrapolated back to 0 % eth
445	(3,4-Dimethyl-5-isoxazolyl)-4-amino-1, 2-naphthoquinone (C ₁₅ H ₁₂ N ₂ O ₃) $\downarrow \qquad \qquad$	1.10	U	+H	kinetic	H ₂ O t = 70 I = 0.5	Longhi MR and De Bertorello chemical stability of a new aqueous solution, <i>J. Pharm.</i> "The chemical degradation of amino-1,2-naphthoquinone temperature. In acid and ne were identified No sign the buffer species used. The acid catalysis which was im inflection point at pH 1.1 cc Arrhenius plots, the activat 17.8+-0.3 kcal/mol. It was undergoes irreversible acid naphthoquinone ring, with leaving group; specific acid plateau occurs from pH 3.5 NB: Further details in Longhi Nacional de Cordoba (1989)
446	5,5-Dimethyl-3-(α,α,α , 4-tetrafluoro- <i>m</i> -tolyl) hydantoin (C ₁₂ H ₁₀ F ₄ N ₂ O ₂)	12.14 ± 0.04	U	-H	dissolution rate/ pH	H_2O t = 25 I = 0.1	Hansen JB and Hafliger O, De constant of a weak acid usin <i>Sci.</i> , 72 , 429–431 (1983).
	H CH ₃ CH ₃ O CH ₃ O CH ₃ O CH ₃	12.11 ± 0.03	U	-H	Spectro		"A method for the determinat monoprotic acid, based on t transport for dissolution pr the study of 5,5-dimethyl-3- The method includes measu as a function of pH, using th determination of the intrins with an established spectrop agreement."

NB: see Amphetamine for details. From $pK_b = 4.19$. This compound was insufficiently soluble in water; pH measurements were performed in a series of ethanol-water solutions, which were then extrapolated back to 0 % ethanol.

Longhi MR and De Bertorello MM, Isoxazoles. Part 6. Aspects of the chemical stability of a new naphthoquinone-amine in acidic aqueous solution, *J. Pharm. Sci.*, **79**, 754–757 (1990). The chemical degradation of N-(3,4-dimethyl-5-isoxazolyl)-4-amino-1,2-naphthoquinone was studied as a function of pH and temperature. In acid and neutral pH, 4 main degradation products were identified. . . . No significant buffer effects were observed for the buffer species used. The pH rate profile exhibited a specific acid catalysis which was important at pH values under 3.5 and an inflection point at pH 1.1 corresponding to a pK_a value. From

Arrhenius plots, the activation energy was found to be 17.8+-0.3 kcal/mol. It was concluded that the compound undergoes irreversible acid hydrolysis on the carbon-4 of the naphthoquinone ring, with the aminoisoxazolyl substituent as the leaving group; specific acid catalysis with a pH-independent plateau occurs from pH 3.5 to 7.3."

NB: Further details in Longhi MR, Ph.D. Thesis, Universidad Nacional de Cordoba (1989).


Hansen JB and Hafliger O, Determination of the dissociation constant of a weak acid using a dissolution rate method, *J. Pharm. Sci.*, **72**, 429–431 (1983).

"A method for the determination of dissociation constants of a weak monoprotic acid, based on theories of diffusion controlled mass transport for dissolution processes, was developed and applied to the study of 5,5-dimethyl-3-(α,α,α,4-tetrafluoro-m-tolyl)hydantoin. The method includes measurements of the initial dissolution rate as a function of pH, using the rotating disk technique and determination of the intrinsic solubility. Comparison of results with an established spectrophotometric technique showed good agreement."

Append	lix A ((continued)	

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
447	Dimethylamphetamine (C ₁₁ H ₁₇ N) CH ₃ H ₃ C CH ₃	9.40 ± 0.05	U	+H	Potentiometric	$\begin{array}{l} H_2O \\ t = 25.0 \pm 0.2 \\ I \leq 0.001 \end{array}$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details. From $pK_b = 4.60$. NB: This is the actual value reported by Leffler <i>et al</i> . The values citee in the next two entries are claimed to come from Leffler <i>et al.</i> , but i is clear that they didn't come from this source.
448	Dimethylamphetamine	8.16	U	+H			Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–13 (1951). Cited in: Ritschel; Beckett et al., <i>JPP</i> , 20 , 92–97 (1968).
449	Dimethylamphetamine	9.80	U	+H			Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, JACS, 73, 2611–13 (1951). Cited in: Vree, Muskens and van Rossum, JPP, 21, 774–775 (1969).
450	Dimethyloxytetracycline (C ₂₄ H ₂₈ N ₂ O ₉) HO CH ₃ OH H N(CH ₃) ₂ OH O OCH ₃ OCH ₃ OH O OCH ₃ O O	7.5 9.4	U U	-H +H	Potentiometric	H_2O t = 25 c = 0.005	Stephens C, Murai K, Brunings K and Woodward RB, Acidity constants of the tetracycline antibiotics, <i>JACS</i> , 78 , 4155–4158 (1956) Cited in Perrin 3326 ref S73. NB: The study used pH measurement with a glass electrode and liquid junction potentials.
451	Dinoprost (prostaglandin F _{2α}) (C ₂₀ H ₃₄ O ₅) HO HO OH	4.90	U	-Н	Potentiometric	H_2O t = 25 c < CMC $(\sim 10^{-2} M)$ $N_2 \text{ atmos}$ Activity corrections	Roseman TJ and Yalkowsky SW, Physicochemical properties of prostaglandin F2 α (tromethamine salt). Solubility behaviour, surface properties and ionization constants, <i>J. Pharm. Sci.</i> , 62 , 1680–1685 (1973). NB: pK _a value increases to 5.53 \pm 0.04 at $c = 2 \times 10^{-1}$ M. Solubility <i>versus</i> pH at $t = 25$ °C gave pK _a = 4.99.

452	1,2-Dioleoylphosphatidylethanolamine	
	(DOPE) (C ₄₁ H ₇₈ NO ₈ P)	

77 01		
7.7 ± 0.1	U (– DNA)	+H
8.8 ± 0.1	U (+ DNA)	+H

А

+H

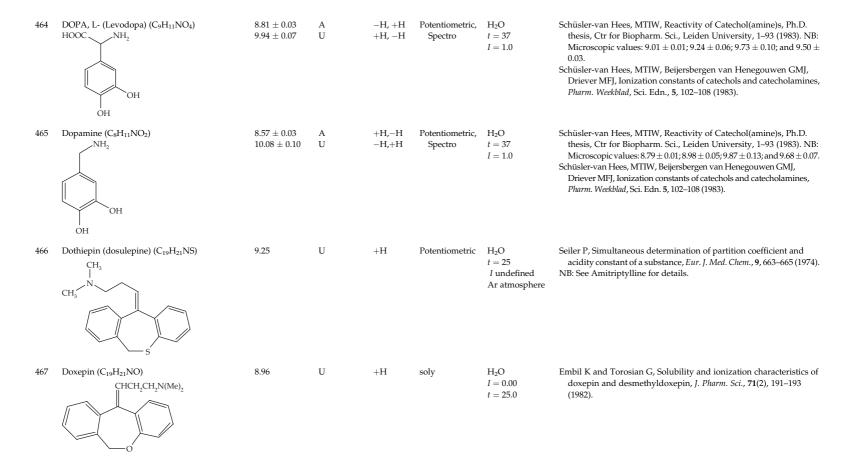
 7.55 ± 0.01

potentio	H ₂ O
(buffer	$t=25.0\pm0.1$
capacity	I = 0.01
vs pH)	
ITC versus pH	I = 0.15
ITC versus pH	

Lobo BA, Koe GS, Koe JG and Middaugh CR, Thermodynamic analysis of binding and protonation in DOTAP/DOPE (1:1): DNA complexes using isothermal titration calorimetry, *Biophys. Chem.*, 104, 67–78 (2003).

NB: ITC = isothermal titration microcalorimetry. The enthalpy of ionization was plotted as a function of solution pH; – DNA = titration performed in the absence of DNA; + DNA = titration performed in the presence of DNA complexed with DOPE.

453	Dipeptides				Potentiometric	H ₂ O	Vallat P	. Gaillard G	. Carrupt P-	A, Tsai R-S a	and Testa B.	Structure-
	Ala-Phe	3.08; 7.91		-H; +H		$t = 25 \pm 1$			1	arity relation		
	Ala-Ile	3.34; 8.01		-H; +H		I = 0.1 (KCl)	1 1	2	1	2	1	3: pK_a values
	Ala-Leu	3.35; 8.02		-H; +H		Ar atmosphere	1			PCA101 aut		
	Phe-Phe	2.98; 7.17		-H; +H		1		here (Avdee	ef A, Kearne	y DL, Browi	n JA and Ch	emotti AR,
	Phe-Gly	3.60; 7.38		-H; +H								oncentration
	Phe-Leu	3.41; 7.20		-H; +H); Avdeef A,
	Phe-Ser	3.02; 7.48		-H; +H								ing ion-pair
	Phe-Tyr	3.19; 7.14		-H; +H						cients of mu		
	Gly-Phe	2.93: 8.12		-H; +H				1		10-517 (1992	1	
	Gly-Gly	3.10; 8.08		-H; +H								es of 6.69. All
	Gly-Trp	3.14; 8.06		-H; +H				1 2		ty of U, as n	2	
		,								ed pK_a valu		
						_		1		I a		
							Dipeptide	р <i>К</i> а1; рКа2	Ionization	Dipeptide	р <i>К</i> а1; р <i>К</i> а2	Ionization
							Leu-Phe	3.25; 7.70	-H: +H	Ser-Leu	3.35: 7.30	-H; +H
							Leu-His	2.76; 7.78	-H; +H	Val-Gly	3.21; 8.00	-H; +H
							Leu-Tyr	3.32; 7.69	-H; +H	Val-Tyr	3.23; 7.78	-H; +H
							Met-Leu	3.39; 7.31	-H; +H	Trp-Phe	3.20; 7.30	-H; +H
							Ser-Phe	2.93; 7.23	-H; $+H$	Trp-Gly	3.12; 7.76	-H; +H
		2 20 + 0.01	٨				C: : T	1.1.1.4	1:	1.0	((100E) C	
	Phe-Phe	3.20 ± 0.01	А	-H		H ₂ O				otes, vol. 2, p		
		7.18 ± 0.01	Α	+H		t = 25.0		tical Instrur	nents Ltd., I	orest Row,	East Sussex,	RH18 5DW,
						I = 0.15 (KCl)	UK.					
	Phe-Phe-Phe	3.37 ± 0.01	А	-H								
		7.04 ± 0.01	А	+H								

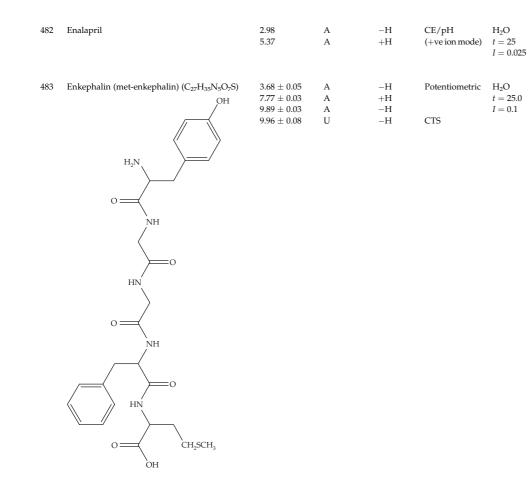

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
454	Diphenhydramine (C ₁₇ H ₂₁ NO) (C ₆ H ₅) ₂ CHOCH ₂ CH ₂ N(Me) ₂	9.12	U	+H		$\begin{array}{l} H_2O\\ t=25.0 \end{array}$	Andrews AC, Lyons TD, O'Brien TD and JCS, 1776–80 (1962). NB: Cited in Holcomb IJ, Fusari SA, Diphenhydramine hydrochloride,
		9.67	U	+H		H ₂ O t = 0.0	<i>APDS</i> , 3 , 173–232 (1974). "Andrews determined the ionization constant of diphenhydramine at 0°, $pK'_a = 9.67$, and 25°, $pK'_a = 9.12$ in water. These values compare well with those obtained by Lordi (NB: Lordi NG and Christian JE, Physical properties and pharmacological activity: antihistaminics, <i>J. Am. Pharm. Assn.</i> , Sci. Edn., 45 , 300–305 (1956)) of $pK'_a = 9.00$ in water. DeRoos (NB: deRoos AM, Rekker RF and Nauta WT, ArzneimForsch., 20, 1763–65 (1970)) has determined the pK'_a at 20° to be 9.06 in water. The pK_a of diphenhydramine USP has been determined in a water:methanol (1:1) system to be 8.4 (Spurlock CH and Parke Davis & Co., personal communication). Since the pK'_a varies slightly with the alcohol content, the value obtained is acceptable."
455	Diphenhydramine	9.00	U	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Lordi NG and Christian JE, Physical properties and pharmacological activity: antihistaminics, <i>J. Am. Pharm. Assn., Sci. Edn.</i> , 45 , 300–305 (1956). NB: pK' _a = 9.00 in water. See Chlorpheniramine (no. 1704) for details.
456	Diphenhydramine Analogues	9.02 ± 0.09	U	+H	Potentiometric	H_2O t = 20.0	deRoos AM, Rekker RF and Nauta WT, The base strength of substituted 2-(diphenylmethoxy)-N,N-dimethylethylamines,
	2-methyl	8.91 ± 0.11	U			1 = 20.0	ArzneimForsch., 20, 1763–1765 (1970).
	3-methyl	8.95 ± 0.10	U				"The dissociation constants were established potentiometrically. As
	4-methyl	9.03 ± 0.11	U				on titration in an aqueous medium the base liberated from the salt
	2,2'-dimethyl	8.99 ± 0.04	U				would precipitate, the pK_a was detemined in several alcohol-water
	4,4'-dimethyl	9.18 ± 0.09	U				mixtures $(80/20, 70/30, \text{ etc.})$. The straight line through the
	2,6-dimethyl	9.02 ± 0.12	U				measuring (sic) points was obtained by the method of least squares
	3,5-dimethyl	8.88 ± 0.15	U				using equidistant X values. Next the pK_a value in water was
	2,2′,6-trimethyl	8.77 ± 0.11	U				determined by extrapolation. In the same way the experimental
	2,2',6,6'-tetramethyl	8.55 ± 0.10	U				error was calculated."
	3,3',5,5'-tetramethyl	9.11 ± 0.16	U				NB: As is well-known, this method of extrapolation often leads to
	2,2'-diethyl	8.52 ± 0.21	U				errors due to the non-linearity of these plots, especially for amines
	2,6-diethyl	8.53 ± 0.15	U				at low alcohol percentages. It is a pity that the raw data (apparent
	2,2′,6,6′-tetraethyl	8.33 ± 0.02	U				pK_a vs alcohol-water composition) was not available, so that more
	2-t-butyl	9.01 ± 0.09	U				recent procedures, such as the Yasuda-Shedlovsky equation, could
	4-methyl-3'-bromo	8.84 ± 0.13	U				be used in an attempt to extract more reliable pK_a values.
	4-methyl-3'-trifluoromethyl	8.70 ± 0.15	U				NB: The substitutions indicated in the first column that are primed
	4-methyl-4'-chloro	8.84 ± 0.06	U				numbers refer to one phenyl ring, while unprimed numbers are the corresponding positions on the other ring.

	4-methyl-4'- trifluoromethyl 4-methyl-4'-nitro 4-methoxy 3,3'-dimethoxy 4,4'-dimethoxy 2-trifluoromethyl 3-bromo 4-fluoro 4-fluoro 4-nitro 4-methoxy-4'-chloro	$\begin{array}{c} 8.77 \pm 0.13 \\ 8.72 \pm 0.18 \\ 9.04 \pm 0.07 \\ 8.86 \pm 0.13 \\ 9.19 \pm 0.09 \\ 8.98 \pm 0.08 \\ 8.80 \pm 0.10 \\ 8.84 \pm 0.05 \\ 8.73 \pm 0.08 \\ 9.03 \pm 0.01 \end{array}$	U U U U U U U U U U U U				
457	Diphenic acid $(C_{14}H_{10}O_4)$ HO \downarrow	3.20 5.06	U U	-H -H	Potentiometric	H ₂ O t = 23.0	Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i>, 76, 611–620 (1987).NB: See Benzoic acid for further details.
458	Diphenoxylate (C ₃₀ H ₃₂ N ₂ O ₂)	7.07	U	+H	Potentiometric	H ₂ O t = 25	 Peters JJ, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i>, 67, 127–129 (1978). NB: The paper recognized the problem of long extrapolations from aqueous-organic solvent mixtures to estimate pK_a values of poorly water-soluble substances. No activity corrections were applied. See Cinnarizine for further details.
459	Diphenylpyraline (C ₁₉ H ₂₃ NO) H ₃ C-N-OCH	8.90 ± 0.06	U	+H	Potentiometric	H_2O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details.

Appendix A	(continued)
------------	-------------

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
460	Disopyramide (C ₂₁ H ₂₉ N ₃ O)	< 2.0 10.2	U U	+H +H	Potentiometric	H ₂ O t = 20-23	 Czeisler JL and El-Rashidy RM, Pharmacologically active conformation of disopyramide: Evidence from apparent pK_a measurements, <i>J. Pharm. Sci.</i>, 74, 750–754 (1985). "Autotitrator (Parke and Davis method) Evidence for an intramolecular hydrogen bond between the amido and pyridin groups of disopyramide is presented, and effects of the resultar constraint on the rotation of the pyridine ring on anti-arrhythm activity and suppression of anticholinergic activity are discussed ""
		10.45	U	+H	Potentiometric	H ₂ O t undefined	Hinderling PH, Bres J and Garrett ER, Protein binding and erythrocyte partitioning of disopyramide and its monodealkylate metabolite, J. Pharm. Sci., 63, 1684 (1974). NB: This paper reporte pK ₂ = 10.45, also from the Parke and Davis differential method.
461	Disopyramide	8.36	U	+H			Anon: Norpace (disopyramide phosphate) Prescribing information brochure 7N17, Searle Laboratories, Chicago, IL, 1977.
462	Disopyramide	7.76 U	U	+H	soly	H ₂ O t = 27	Calculated by this author from the following solubility-pH data in Wickham A and Finnegan P, Disopyramide phosphate, <i>APDS</i> , 1 183–209 (1984):
							pH solubility (mg/mL) pH solubility (mg/mL)
							3.93 62.0 7.98 4.32
							5.85 32.0 9.86 3.78 7.45 8.71 12.7 1.29
463	DMP-777 (C ₃₁ H ₄₀ N ₄ O ₆) H_{10} H_{10}	7.04	U	+H	Potentiometric	H ₂ O t undefined <i>I</i> undefined	 Raghavan KS, Gray DB, Scholz TH, Nemeth GA and Hussain MA, Degradation kinetics of DMP-777, an elastase inhibitor, <i>Pharm. Res.</i>, 13, 1815–1820 (1996). "The apparent dissociation constant of the protonated piperazine nitrogen in DMP 777 was determined at 22 °C by potentiometric titration in a mixture of water and methanol, and extrapolating the pK_a values so obtained to 100% water. The pK_a of the protonated piprazine nitrogen in DMP 777 was estimated to be 7.04."

Append


Appendix	Α	(continued)
----------	---	-------------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
468	Doxepin	9.4	U	+H	Potentiometric	mixed solvs	Thoma K and Albert K, Kuramitteilungen Schnell-methode zur potentiometrischen Bestimmung von pK _a -Werten in gemischten Lösungsmittelsystemen, <i>Arch. Pharm.</i> , 314 (12), 1053–1055 (1981). "Doxepin-HCl, Amitriptylin-HCl, und Imipramin-HCl errechmen sich Dissoziationskanstanten von 9,4, 9,5, bzw. 9,7."
469	Doxorubicin (Adriamycin) C27H29NO11)	-5.9 ± 0.05	U	+H	Spectro	H ₂ O	Vigevani A and Williamson MJ, Doxorubicin, APDS, 9, 245-274 (1980
	О ОН	8.15 ± 0.07	U	-H			"Solutions of doxorubicin show indicator-like properties, turning fro
	CH ₃ O O OH O H ₃ C O H ₀ NH ₂	10.16 ± 0.09	U	+H			orange-red to blue-violet about $pH = 9$ (ref 13). Values of -5.9 , 8.
		13.2 ± 0.2	U	-H			10.2, and 13.2 for pK_{1} , pK_{2} , pK_{3} , and pK_{4} , determined by spectrophotometric methods, have been reported (Ref 19). A pK_{3}
		8.22	U	-H	Potentiometric	: H ₂ O	8.22 was determined for the hydrochloride with N/20 sodium hydroxide.
							 Arcamone F, Cassinelli G, Franceschi G, et al., Intl. Symposium of Adriamycin, Carter SK, DiMarco A, Ghione M, et al. (eds.), Springe Nuclear Berlin - 102 (1072)
						Verlag, Berlin, 1–22 (1972). 19. Sturgeon R and Schulman SG, <i>J. Pharm. Sci.</i> , 66 , 958–961 (1977).'' NB: See below.	
470	Doxorubicin	8.22 10.2	U U	-H +H	Spectro	H ₂ O	Sturgeon R and Schulman SG, Electronic absorption spectra and protolytic equilibria of doxorubicin: Direct spectrophotometric determination of microconstants, J. Pharm. Sci., 66, 958–961 (197
471	Doxycycline ($C_{22}H_{24}N_2O_8$)	3.21	U	-H	Potentiometric	H ₂ O	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K an
4/1		7.56	U	-H	1 oterniometric	t = 25	Artursson P, Absorption classification of oral drugs based on
	CH ₃ OH N(CH ₃) ₂	8.85	U	-H +H			molecular surface properties, J. Med. Chem., 46(4), 558–570 (2003
	H H O OH CONH ₂	8.85 11.54	U	+n –H			NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
472	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	5.24 ± 0.04	А	-H	Spectro	H ₂ O	Prankerd RJ and Stella VJ, Equilibria and kinetics of hydrolysis o
	(-1) 22 (-1)	(25)			-1	t = 25	ebifuramin (NSC-201047), an azomethine-containing structure
	0	5.16 ± 0.03 (t = 37)		-H		t = 25 t = 37 I = 0.1 (NaCl or	exhibiting a reversible degradation step in acidic solutions, <i>Int. J. Pharm.</i> , 52 , 71–78 (1989).
	N N N O N H H O OEt					KCl)	"Spectrophotrometric and potentiometric pK _a values were obtain by standard methods (Albert and Serjeant, 1971). UV-vis spect (200–500 nm) were obtained with HP8451A Diode Array or Shimadzu UV-260 spectrophotometers. pH values were measur with Fisher Accumet 610A or Brinkman Metrohm 632 pH mete The following buffer systems (µ = 0.1M; NaCl or KCl) were

							acetate (pH 4.0–3.4), potassium succinate (pH 5.9), sodium phosphate (pH 6.9, 7.5) and Tris-HCl (pH 8.0). Aliquots (25 uL) of stock solutions (2.4×10^{-2} M) of I and III (in dilute methanesulfonic acid) and II (in 95% ethanol) were diluted to 25.0 mL immediately before spectra were determined. Time-dependent observations showed that no significant degradation occurred during measurements. IV was titrated with standard HCl (Fisher Certified) at an ionic strength of 0.1M."
473	Ecgonine (C ₉ H ₁₅ NO ₃) CH ₃	10.21	U	+H	Potentiometric	H_2O t = 25 c = 0.02	Chilton J and Stenlake JB, Dissociation constants of some compounds related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, J. Pharm.
	OH COOH	11.15	U	+H	Spectro		<i>Pharmacol.</i> , 7, 1004–1011 (1955). Cited in Perrin 2862 ref. C27. NB: The potentiometric study used pH measurements with a glass electrode and junction potentials. See Aconitine for details of the spectrophotometric study.
474	Ecgonine	11.1	U	+H	optical rotation versus pH	H ₂ O	Avico U, Optical rotation of ecgonine and anhydroecgonine. Rend 1st Super. Sanita 26, 1024–30 (1963); CA 61:11361b. Cited in Perrin Bases Supplement 7472. NB: Reported $pK_b = 11.2$ for ecgonine. For anhydroecgonine, reported $pK_a = 9.8$ and $pK_b = 10.2$.
475	Ecgonine methyl ester (C ₁₀ H ₁₇ NO ₃) CH_3 COOMe OH	9.16	U	+H	Potentiometric	H_2O t = 25 c = 0.02	Chilton J and Stenlake JB, Dissociation constants of some compounds related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, <i>J. Pharm.</i> <i>Pharmacol.</i> , 7 , 1004–1011 (1955). Cited in Perrin 2862 ref. C27. The study used pH measurements with a glass electrode and liquid junction potentials.
476	Edetic acid (EDTA) (C ₁₀ H ₁₆ N ₂ O ₈)	2	U	-H			Belal F and Al-Badr AA, Edetic Acid, <i>APDS</i> , 29 , 63, 2002. NB: See also
	CH ₂ COOH	2.67	U	-H			Connors KA, A Textbook of Pharmaceutical Analysis, 3 rd Edn.,
		6.16	U	-H			Wiley-Interscience, New York, p. 78 (1982).
	HOOCCH ₂ N CH ₂ COOH	10.26	U	-H			NB: Also called ethylenediaminetetraacetic acid.
477	Elastase inhibitor See DMP-777	7.04	U	+H	Spectro	H ₂ O	Raghavan KS, Gray DB, Scholz TH, Nemeth GA and Hussain MA, Degradation kinetics of DMP-777, an elastase inhibitor, <i>Pharm.</i> <i>Res.</i> , 13 , 1815–1820 (1996). NB: The pK _a for the protonated piperazine nitrogen was estimated to be 7.04.

acetate (pH 4.0-5.4), potassium succinate (pH 5.9), sodium

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
478	Emetine (C ₂₉ H ₄₀ N ₂ O ₄) CH ₃ O H H H H H H CH ₃ O OCH ₃ OCH ₃ OCH ₃	7.20 8.07	U U	+H +H		H ₂ O t = 40.0 (K _w = 13.535) <i>I</i> undefined	 Feyns LV and Grady LT, Emetine hydrochloride, <i>APDS</i>, 10, 289–322 (1981). NB: The following pK_b values have been reported for water: at 15 ° 5.77 and 6.64 (refs 22, 60); at 40° 5.47 and 6.54 (ref 61 Other (pK_b) values reported: 5.73 and 6.74 (no indication on the temperature) (ref. 59). 22. Beilstein's Handbuch der Organischen Chemie, 4 Aufl., 2. ErgWerk, Bd. XXIII, Springer-Verlag, Berlin, 1954, p. 449 59. Das Gupta V and Herman HB, Selection of best pH range for extraction of amine-bromthymol blue complexes, <i>J. Pharm. Sci.</i>, 62(2), 311–313 (1973); this reference merely cited Parrott's Pharmaceutical Technology or Martin's Physical Pharmacy. 60. Auterhoff H and Moll F, The general importance of the reaction o alkaloids of the secondary amine type with formaldehyde, <i>Arch. Pharm.</i>, 293, 132–141 (1960) (see below, no. 479). 61. Volpi A, Relation between physical constants therapeutic doses o some organic bases, <i>Boll. Chim. Farm.</i>, 115, 466–474 (1976).
479	Emetine	7.71 8.58	U U	+H +H		H_2O t = 15.0 ($K_w = 14.346$) <i>I</i> undefined	Auterhoff H and Moll F, The general importance of the reaction of alkaloids of the secondary amine type with formaldehyde, <i>Arch. Pharm.</i> , 293 , 132–141 (1960). NB: This paper also reported K _b values for the following bases: piperidine (1.6 x 10 ⁻³ at 25 °C); coniine (1.3 x 10 ⁻³ at 25 °C); conhydrine (2 x 10 ⁻⁴ at 18 °C); theophylline (1.9 x 10 ⁻¹⁴ at 25 °C); theobromine (1.3 x 10 ⁻¹⁴ at 25 °C); yohimbine (1 x 10 ⁻¹¹ and 2.8 x 10 ⁻⁷ at 23 °C).
480	Emetine	7.56 8.43	U U	+H +H	Spectro	H_2O t = 15.0 c = 0.003 to 0.005	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases 2901. NB: See Aconitine for details of the spectrophotometric method. The data were not corrected for overlapping pK_a values. The potentiometric study used hydrogen electrodes in an asymmetric cell with liquid junction potentials.
		8.22	U	+H	Potentiometric	H_2O t = 16.0	NB: $pK_w = 14.346$ at 15 °C; $pK_w = 14.382$ at 16 °C
481	Enalapril (C ₂₀ H ₂₈ N ₂ O ₅) H COOEt H CH ₃ N H COOH	2.97 5.35	A A	-H +H	Potentiometric	H ₂ O t = 25.0	 Ip DP and Brenner GS, Enalapril Maleate, APDS, 16, 207–243 (1987). "Aqueous acidic/basic potentiometric titration yielded pK_a values of 2.97 and 5.35 at 25 °C for enalapril." McCauley JA, Merck, Sharp and Dohme Research Laboratories, personal communication.

Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, *Rapid Commun. Mass Spectrom.*, **17**, 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 3.17 and 5.42. Ishimitsu T and Sakurai H, Stucture-ionization relationships of

enkephalin and related fragments in aqueous solution, *Int. J. Pharm.*, **12**(3), 271–274 (1982).

"The micro-constants of enkephalin and tyrosine peptides... were determined according to the modified method of complementary tri-stimulus colorimetry (CTS method) (Flaschka H, Applications of complementary tri-stimulus colorimetry – I. Analysis of binary and ternary colorant systems, *Talanta*, **7**, 90–106 (1960). The acid dissociation and micro-constants thus determined are summarized in Table 1 and Table 2.

Table 1: Acid Dissociation constants of Tyrosine - Containing Peptides^a

	Titration CTS									
Cpd	рК _{соон}	р <i>К</i> 1	pK ₂	pK2 ^b						
Enkephalin	$3.68 {\pm} 0.05$	7.77±0.03	9.89±0.03	9.96±0.08						
Tyr-gly-gly	3.21 ± 0.03	7.75 ± 0.02	$9.78 {\pm} 0.06$	9.92±0.09						
Gly-tyr-gly	$3.10 {\pm} 0.04$	$8.06 {\pm} 0.03$	$9.78 {\pm} 0.05$	$9.97 {\pm} 0.08$						
Gly-gly-tyr	$3.18 {\pm} 0.03$	$8.17 {\pm} 0.07$	9.75 ± 0.09	$9.94{\pm}0.07$						
Tyr-gly	3.51 ± 0.02	$7.77 {\pm} 0.04$	10.04 ± 0.02	9.97±0.07						
Gly-tyr	3.24 ± 0.06	$8.23 {\pm} 0.04$	$10.55 {\pm} 0.06$	10.39 ± 0.04						

^a μ=0.1 (NaClO₄) 25 °C.

^b The pK₂ value, which corresponds to the proton dissociation of aromatic hydroxyl group, determined by CTS method.

Table 2: Microscopic Acid Dissociation Constants and Tautomeric

Constants of Tyrosine Peptides

Compound	р <i>К</i> 1	р <i>К</i> 2	р <i>К</i> 12	р <i>К</i> 21	<i>K</i> t ^a (k₂∕k₁)
Enkephalin	8.61 ±0.03	7.99 ±0.04	9.63 ±0.04	10.03	4.2

^a Kt-value was calculated from the ratio k₂/k₁.

Appendix A	(continued)
------------	-------------

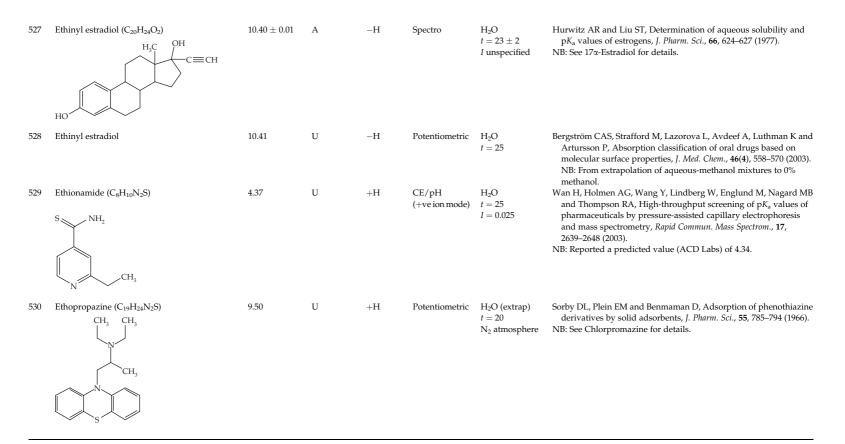
 178					Ionization		Conditions	
	No.	Name	pK _a value(s)	Data quality	type	Method	t°C; / or c M	Comments and Reference(s)
	484	Ephedrine (C ₁₀ H ₁₅ NO) CH ₃ HO CH NHCH ₃	9.68 ± 0.01	Α	+H	Potentiometric	H_2O t = 20.0 I = 0.00	Everett DH and Hyne JB, Dissociation constants of the isomeric (-)- ephedrinium and (+)- ψ -ephedrinium ions in water from 0° to 60°, <i>J. Chem. Soc.</i> , 1636–1642 (1958). Cited in Ali, S.L., Ephedrine hydrochloride, <i>APDS</i> , 15 , 233–283 (1986). NB: High quality work done with electrometric cells with liquid junction potentials. Thermodynamic ionization functions calculated.
	485	Ephedrine	9.54 ± 0.01	А	+H	Potentiometric	H_2O t = 25.0 I = 0.00	Everett DH and Hyne JB, Dissociation constants of the isomeric (-)- ephedrinium and (+)-ψ-ephedrinium ions in water from 0° to 60°, <i>JCS</i> , 1636–1642 (1958).
	486	Ephedrine	9.64 ± 0.03	А	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: $pK_a = 9.60 \pm 0.02$ by extrapolation from 15.7–64.6 %w/w aqueous MeOH. See Acetaminophen for full details.
	487	Ephedrine	9.63	А	+H	Potentiometric	H_2O t = 25.0 ± 0.5 I = 0.01	Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, J. Assoc. Off. Anal. Chem., 54, 1179–1191 (1971). NB: See Amphetamine for further details.
	488	Ephedrine	9.64 ± 0.03	Α	+H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a = 9.65 \pm 0.01$ at I = 0.15 (KCl). The same result was reported in Sirius Technical Application Notes, vol. 2 , pp. 131–132 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK NB: Concentration of analyte, 2.0 – 3.3 mM.
	489	Ephedrine	9.58 ± 0.02	А	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). Cited in: Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal.</i> <i>Chem.</i> , 34 , 1495–1501 (1962). NB: See Amphetamine for details. From $pK_b = 4.42$.
	490	Ephedrine	$GLpK_a$: 9.66 ± 0.01 A&S: 9.65 ± 0.07	A U	+H +H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details.

491	Epianhydrotetracycline CH_3 H_3C CH_3 H_4 O H_4 O O O O O O O O	3.48 5.87 8.86	บ บ บ	-H -H +H	Potentiometric	H_2O $t = 25 \pm 0.05$ I = 0.01	 Benet LZ and Goyan JE, Determination of the stability constants of tetracycline complexes, <i>J. Pharm. Sci.</i>, 54, 983–987 (1965). NB: See Chlortetracycline for details.
492	Epianhydrotetracycline (anhydro-4- epitetracycline)	4.38 - 8.95	U U U	H H +H	Potentiometric	H_2O $t = 30.0 \pm 0.2$ I = 0.01 (KCl) N_2 atmosphere	Doluisio JT and Martin AN, Metal complexation of the tetracycline hydrochlorides, <i>J. Med. Chem.</i> , 6 , 16–20 (1963). NB: Metal-free solutions of the tetracycline were titrated with standard NaOH solution and the pH measured. No details were given of the pH meter calibration. Metal stability constants were determined from identical titrations in the presence of varying concentrations of nickel(II), zinc(II), or copper(II) ions.
493	Epichlortetracycline H_3C CH_3 H_3C H_3C CH_3 H_3C H_3C H_3C CH_3 H_3C	3.65 7.65 9.2	บ บ บ	-H -H +H	Potentiometric	H_2O $t = 25 \pm 0.05$ I = 0.01	 Benet LZ and Goyan JE, Determination of the stability constants of tetracycline complexes, <i>J. Pharm. Sci.</i>, 54, 983–987 (1965). NB: See Chlortetracycline for details.
494	Epichlortetracycline (7-chloro-4- epitetracycline)	4.07 7.56 9.26	U U U	-H -H +H	Potentiometric	H_2O $t = 30.0 \pm 0.2$ I = 0.01 (KCl) N_2 atmosphere	Doluisio JT and Martin AN, Metal complexation of the tetracycline hydrochlorides, <i>J. Med. Chem.</i> , 6 , 16–20 (1963). NB: Metal-free solutions of the tetracycline were titrated with standard NaOH solution and the pH measured. No details were given of the pH meter calibration. Metal stability constants were determined from identical titrations in the presence of varying concentrations of nickel(II), zinc(II), or copper(II) ions.
495	Epicillin (C ₁₆ H ₂₁ N ₃ O ₄ S) NH_2 H O O O O O O O O	2.77 7.17	U U	-H +H	Potentiometric Potentiometric	H ₂ O t = 35 I = 0.5 (KCl)	Tsuji A, Nakashima E, Hamano S and Yamana T, Physicochemical properties of amphoteric β-lactam antibiotics, <i>J. Pharm. Sci.</i> , 67 , 1059–1066 (1978). NB: See Amoxicillin for details.

80					Ionization		Conditions	
1	No.	Name	pK _a value(s)	Data quality	type	Method	t°C; / or c M	Comments and Reference(s)
	496	Epinastine (C ₁₆ H ₁₅ N ₃)	11.2	U	+H	Potentiometric	H ₂ O t = 20	 Walther G, Daniel H, Bechtel WD and Brandt K, New tetracyclic guanidine derivatives with H₁-antihistaminic properties: chemistry of epinastine, <i>ArzneimForsch.</i>, 40, 440–446 (1990). "The pK_a values were determined potentiometrically at 20 °C using the method Ebel <i>et al.</i> (Ebel S, Binder A, Mohr H, Metrohm Monographien, p. 24, Metrohm AG, Herisau, 1977)." NB: The paper also reported a pK_a value of 7.5 for Mianserin.
	497	Epinephrine (adrenaline) (C ₉ H ₁₃ NO ₃) HO \rightarrow CH ₂ NHCH ₃ \leftarrow OH OH	8.69 9.90	U U	-H, +H +H, -H	Spectro	H ₂ O t = 25 I = 0.1	 Martin RB, Zwitterion formation upon deprotonation in L-3,4- dihydroxyphenylalanine and other phenolic amines, <i>J. Phys.</i> <i>Chem.</i>, 75, 2657–2661 (1971). Cited in Szulczewski DH, Hong W-H and Epinephrine, <i>APDS</i>, 7, 193–229 (1978); other references were also given. microscopic: 8.79; 10.10; 8.88; 9.51 t = 25, I ~ 0 microscopic: 8.66; 9.95; 8.72; 9.57 t = 25, I = 0.1 microscopic: 8.67; 9.90; 8.81; 9.39 t = 20, I = 0.1 NB: Also gave corresponding data for p-tyramine, tyrosine ethyl ester, tyrosine, DOPA, dopamine, norepinephrine, and isopropylnorepinephrine.
	498	Epinephrine (adrenaline)	8.42 ± 0.02 9.66 ± 0.10 8.73 10.14	U U U U	-H, +H +H, -H	Potentiometric, Spectro	H ₂ O t = 37 I = 1.0	Schüsler-van Hees MTIW, Reactivity of Catechol(amine)s, Ph.D. thesis, Ctr for <i>Biopharm. Sci.</i> , Leiden University, 1–93 (1983). NB: Gave also several literature refs. Microscopic: 8.56 ± 0.01 ; 8.99 ± 0.06 ; 9.52 ± 0.10 ; 9.09 ± 0.03 ; macroscopic: 8.73 and 10.14 . Schüsler-van Hees, MTIW, Beijersbergen van Henegouwen GMJ and Driever MFJ, Ionization constants of catechols and catecholamines, <i>Pharm. Weekblad</i> , Sci. Edn., 5 , 102–108 (1983).
	499	Epinephrine (adrenaline)	8.73 10.14	U U	-H, +H +H, -H	Spectro	H_2O $t = 25.0 \pm 0.05$ I = 0.10	Ijzerman AP, BultsmaT, Timmerman H and Zaagsma J, The ionization of β-adrenoceptor agonists: A method for unravelling ionization schemes, J. Pharm. Pharmacol., 36 (1), 11–15 (1984). NB: Microscopic: 8.69 and 10.14; macroscopic: 8.73 and 10.14. See Isoprenalin.
Į	500	Epinephrine (adrenaline)	8.75 9.89	U U	−H, +H +H, −H	Spectro Potentiometric	$pK_{a1}: H_2O$ t = 25 I undefined $pK_{a2}: H_2O$ t = 35 I undefined	 Kappe T and Armstrong MD, Ultraviolet absorption spectra and apparent acidic dissociation constants of some phenolic amines, <i>J. Med. Chem.</i>, 8, 368–374 (1965). Cited in: Schwender CF, Levarterenol bitartrate, <i>APDS</i>, 1, 339–361 (1972). NB: See Levarterenol (Norepinephrine) for details.

501	Epinephrine	8.50	U	+H	Potentiometric	$\begin{array}{l} H_2O \\ t = 25.0 \pm 0.2 \\ I \leq 0.001 \end{array}$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details; from $pK_b = 5.50$; no attempt made to unravel microconstants.
502	Epinephrine	8.55	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis, 1945.
503	4-Epitetracycline	4.8	U	-H	NMR,	MeOH/H ₂ O	Rigler NE, Bag SP, Leyden DE, Sudmeier JL and Reilley CN,
		8.0	U	-H	Potentiometric	$(1:1) t = 30 \pm 2$	Determination of a protonation scheme of tetracycline using
		9.3	U	+H		(NMR) $t = 26 \pm 1$ (potentio)	nuclear magnetic resonance, Anal. Chem., 37 , 872–875 (1965). NB: See Tetracycline for details.
504	Equilenin (C ₁₈ H ₁₈ O ₂)	9.72	U	-H	Soly	H ₂ O	Hurwitz AR and Liu ST, Determination of aqueous solubility and
	0					$t=25.0\pm0.02$	pK _a values of estrogens, J. Pharm. Sci., 66, 624–627 (1977).
	HO	9.75 ± 0.06	U	-H	Spectro	H_2O $t = 23 \pm 2$	NB: Spectroscopic study used 2 cm cells for improved sensitivity. See 17α-Estradiol for further details.
505	Equilin ($C_{18}H_{20}O_2$)	10.26 ± 0.04	U	-H	Spectro	H ₂ O	Hurwitz AR and Liu ST, Determination of aqueous solubility and
	HO				openio	$t = 23 \pm 2$	pK_a values of estrogens, <i>J. Pharm. Sci.</i> , 66 , 624–627 (1977). See 17α -Estradiol for details.
506	Ergonovine (C ₁₉ H ₂₃ N ₃ O ₂)	6.73	U	+H	Potentiometric	H_2O t = 24 c = 0.002	Craig LC, Shedlovsky T, Gould RG and Jacobs WA, The ergot alkaloids. XIV. The positions of the double bond and the carboxyl group in lysergic acid and its isomer, J. Biol. Chem., 125, 289–298
	HOCH ₂ H	6.80	U	+H	Potentiometric	t = 22	 (1938). Cited in Perrin Bases 2905 ref. C54. The studies used glass electrode measurements of the pH of solutions containing equal concentrations of the base and salt. NB: Several other ergot alkaloids were reported in Perrin Bases - nos. 2902 to 2905; see also Perrin Bases Suppl. 7473 to 7475.
507	CH ₃ Ergonovine	6.91	U	+H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46 (4) 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

» <u> </u>				Ionization		Conditions	
No.	Name	pK _a value(s)	Data quality	type	Method	t°C; I or c M	Comments and Reference(s)
508	Ergostine (C ₃₃ H ₃₉ N ₅ O ₅) H H H H H H H H H H	6.30 ± 0.04	U	+H	Potentiometric	H ₂ O t = 24 I < 0.01	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700–701 (1970). NB: See Methysergide for details. This is the apparent value found in 15–20% 7HPT solution.
509	Ergostine	6.45 ± 0.09	U	+H	Potentiometric	H_2O t = 24 I < 0.01	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, <i>J. Pharm. Sci.</i> , 59 , 700–701 (1970). NB: See Methysergide for details. This is the value found after extrapolation to 0% 7HPT. Also cited in Perrin Bases Suppl. no. 7473.
510	Ergotamine (C ₃₃ H ₃₅ N ₅ O ₅) H H H H H H H H H H	6.25 ± 0.04	U	+H	Potentiometric	H ₂ O t = 24 I < 0.01	Naulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700–701 (1970). NB: See Methysergide for details. This is the apparent value found in 15–20% 7HPT solution.
511	Ergotamine	6.40 ± 0.09	U	+H	Potentiometric	H_2O t = 24 I < 0.01	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, <i>J. Pharm. Sci.</i> , 59 , 700–701 (1970). NB: See Methysergide for details. This is the value found after extrapolation to 0% 7HPT. Also cited in Perrin Suppl. no. 7474.
512	Ergotaminine (C ₃₃ H ₃₅ N ₅ O ₅)	6.72 ± 0.04	U	+H	Potentiometric	H_2O t = 24 I < 0.01	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700–701 (1970). NB: See Methysergide for details. This is the apparent value found in 15–20% 7HPT solution. Structure Learner of acceleration.

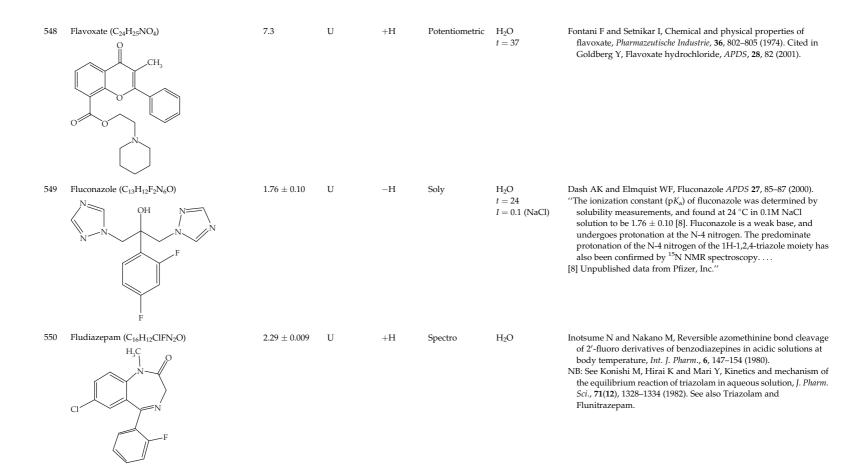

513	Ergotaminine	6.87 ± 0.09	U	+H	Potentiometric	H_2O t = 24 I < 0.01	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700–701 (1970). NB: See Methysergide for details. This is the value found after extrapolation to 0% 7HPT.
514	Erythromycin (C ₃₇ H ₆₇ NO ₁₃) H_3C CH_3 OH H_3C OH CH_3 HO OH H_3C CH_3 HO OH H_3C CH_3 HO OH H_3C CH_3 OH HO OH H_3CO CH_3 OH HO OH H_3CO HO OH HO HO	8.6	υ	+H		66% aqueous DMF	Also cited in Perrin Suppl. no. 7475. Kobrehel G, Tamburasev Z and Djokic S, Erythromycin series. IV. Thin layer chromatography of erythromycin, erythromycin oxime, erythromycyclamine and their acyl derivatives, <i>J. Chromatogr.</i> , 133 , 415–419 (1977).
515	CH ₃ Erythromycin	9.1	U	+H	NMR	$10\% D_2O$ in H_2O t = 30 <i>I</i> undefined	Goldman RC, Fesik SW and Doran CC, Role of protonated and neutral forms of macrolides in binding to ribosomes from Gram-positive and Gram-negative bacteria, <i>Antimicrob. Agents Chemother.</i> , 34 , 426–431 (1990). NB: Also reported $pK_a = 8.6-8.9$ from aqueous titration.
516	Erythromycin	8.8	U	+H	NMR	D_2O t = 20 I undefined	Gharbi-Benarous J, Delaforge M, Jankowski CK and Girault J-P, A comparative NMR study between the macrolide antibiotic roxithromycin and erythromycin A with different biological properties, J. Med. Chem., 34, 1117–1125 (1991).
517	Erythromycin (C ₃₇ H ₆₇ NO ₁₃)	8.88	U	+H	Potentiometric	H_2O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative Structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a value.
518	Erythromycin	8.36	U	+H	soly	H_2O t = 37	Nakagawa Y, Itai S, Yoshida T and Nagai T, Physicochemical properties and stability in the acidic solution of a new macrolide antibiotic, clarithromycin, in comparison with erythromycin, <i>Chem. Pharm. Bull.</i> , 40 , 725–728 (1992).
519	Erythromycin	8.80	U	+H	Potentiometric	H ₂ O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> 46(4) 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
520	Erythromycyclamine $(C_{37}H_{70}N_2O_{12})$ H H ₃ C HO H ₃ C HO H ₃ C C H ₃ C HO H ₃ C C H ₃ C C C H ₃ C C C C H ₃ C C C H ₃ C C C C H ₃ C C C H ₃ C C C C H ₃ C C C C C C C C C C C C C C C C C C C	8.96 9.95	U U	+H +H	Potentiometric	H ₂ O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative structure-activity relationship among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potenci against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997) NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a value. The paper also cited Massey EH, Kitchel BS, Martin LD and Gerzon K, Antibacterial activity of 9(S)- erythromycyclamine-aldehyde condensation products, <i>J. Med.</i> <i>Chem.</i> , 17 , 105–107 (1974), who reported pK _{a1} = 8.8, pK _{a2} = 9.8 in 66% aqueous DMF (titration), but no other details. A second pape (Kobrehel G, Tamburasev Z and Djokic S, Erythromycin series. IV Thin layer chromatography of erythromycin, erythromycin sories erythromycyclamine and their acyl derivatives, <i>J. Chromatogr.</i> , 133 415–419 (1977), which reported pK _{a1} = 8.4, but no other details.
521	Erythromycyclamine-11,12-carbonate $(C_{38}H_{68}N_2O_{13})$ H_3C - CH ₃ OH - CH ₃ OH - CH ₃ H_3C - CH ₃ OH - CH ₃ H_3C - CH ₃ OH - CH ₃ O	8.31 9.21	U U	+H +H	Potentiometric	H ₂ O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative structure-activity relationship: among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997) NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a value.
522	Estazolam (C ₁₆ H ₁₁ ClN ₄)	2.84	U	+H		H ₂ O	Koyama H, Yamada M and Matsuzawa T, Physicochemical studies or a new potent central nervous system depressant, 8-chloro-6-phenyl 4H-s-triazolo[4,3-a][1,4]benzodiazepine (D-40TA), <i>J. Takeda Res. Lab.</i> , 32, 77–90 (1973). Cited in Konishi M, Hirai K and Mari Y, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, <i>J. Pharm. Sci.</i> , 71(12), 1328–1334 (1982). NB: See also Inotsume N and Nakano M, Reversible ring-opening reactions of triazolobenzo- and triazolothienodiazepines in acidic media at around body temperature, <i>Chem. Pharm. Bull.</i> , 28, 2536–2540 (1980).

523	Estradiol, 17 α - (C ₁₈ H ₂₄ O ₂) H ₃ C OH H ₃ C OH H ₄ C OH	10.46 ± 0.03	U	-H	Spectro (λ. = 240, 248, 295, 300 nm; 5 cm cell)	H ₂ O (0.12 - 0.5% EtOH) $t = 23 \pm 2$ <i>I</i> unspecified but low	Hurwitz AR and Liu ST, Determination of aqueous solubility and pK_a values of estrogens, <i>J. Pharm. Sci.</i> , 66 , 624–627 (1977). "The thermodynamic ionization constants of 9 phenolic steroids were studied by UV spectrophotometry. A solubility method was employed to determine the ionization constant of equilenin. Aqueous solubility values of estrone, estradiol, equilin, and equilenin were also determined by either UV or GLC methods. No evidence was obtained for long range D to A ring electronic transmission affecting pK_a . Significant differences in pK_a values resulted only when conjugated unsaturation was added into the B ring of estrone or estradiol Stock solutions of estrogens, 3.0×10^{-3} , M were prepared by dissolving weighed amounts in 100 mL of pure ethanol. Aliquots of $0.12 - 0.5$ mL were then diluted to 100 mL with distilled water The solution pH was adjusted with 0.1 N HCl or 0.1 N NaOH. The UV spectrum of the solution was recorded immediately after a stable pH reading was obtained. Spectrophotometric determinations were carried out at $23 \pm 2^{\circ}$ C" NB: This paper reported otherwise good work that was compromised by poor temperature and ionic strength control. The remark regarding lack of evidence for long range D to A ring electronic transmission related to: Legrand M, Delaroff V and Mathieu J, Distance effects in the steroid series, <i>Bull. Soc. Chim. Fr.</i> , 1346–1348 (1961), in which such effects were claimed. This claim appeared to be weakly supported, but was subsequently shown to
	Estradiol, 17β-	10.71 ± 0.02	А	-H	spectro (λ = 297 nm; 1 cm cell)	H ₂ O (0.1% p-dioxane) $t = 25 \pm 0.1$ I = 0.03 (KCl)	Lewis KM and Archer RD, pK_a values of estrone, 17β-estradiol and 2-methoxyestrone. <i>Steroids</i> , 34 (5), 485–499 (1979). NB: Care was taken to exclude both carbon dioxide and oxygen. The pH meter was calibrated with multiple pH standards. The spectrophotometer was checked for wavelength and absorbance accuracy (Haupt J, <i>J. Res. Nat. Bur. Stand.</i> , 48 , 414 (1952)). Also reported estrone, 10.77 \pm 0.02 (see below) and 2-methoxyestrone ($\lambda = 300$), 10.81 \pm 0.03 (A).
524	Estriol (C ₁₈ H ₂₄ O ₃) $(H_{18}H_{24}O_{3})$	10.38 ± 0.02	U	-H	Spectro (λ. = 240, 248, 295, 300 nm) (5 cm cell)	H_2O $t = 23 \pm 2$ I unspecified	Hurwitz AR and Liu ST, Determination of aqueous solubility and pK_a values of estrogens, <i>J. Pharm. Sci.</i> , 66 , 624–627 (1977). NB: See 17α -Estradiol for details.

				Ionization		Conditions	
No.	Name	pK _a value(s)	Data quality	type	Method	t°C; I or c M	Comments and Reference(s)
525	Estrone (C ₁₈ H ₂₂ O ₂) H ₃ C H_3 C H_3 C	10.77 ± 0.02	А	-H	Spectro ($\lambda = 297 \text{ nm};$ 1 cm cell)	H ₂ O	Lewis KM and Archer RD, pK _a values of estrone, 17β-estradiol and 2-methoxyestrone. Steroids, 34(5), 485–499 (1979). Cited in Both D, Estrone, <i>APDS</i> , 12 , 135–174 (1983)
	HO		-H	Spectro (λ = 240, 248, 295, 300 nm) (5 cm cell)	H_2O $t = 23 \pm 2$ <i>I</i> unspecified	 "The reported acid ionization constant (pK_a) of estrone shows great variation ranging from 9.36 to 11.0 (132, 133). Previous methods of measurement included: back titration, conductimetric and most recently U.V. spectrophotometric. Recent work (99, 134) places the pK_a between 10.34 and 10.914. The most recent spectrophotometric determination (135) reported the pK_a to be 10.77 ± 0.02 with seven determinations." 99. Hurwitz AR and Liu ST, Determination of aqueous solubility and pK_a values of estrogens, <i>J. Pharm. Sci.</i>, 66, 624–627 (1977). NB: This 	
					 paper reported otherwise good work that was compromised by poor temperature and ionic strength control. 132. Marrian GF, Chemistry of estrin. IV. The chemical nature of crystalline preparations, <i>Biochem. J.</i>, 24, 1021–1030 (1930). NB: Historical value only. 133. Butenandt A, The female sexual hormone. XI. Constitution of the follicular hormone. 2. The degree of saturation and the aromatic character of the follicular hormone, <i>Z. Physiol. Chem.</i>, 223, 147–14 (1934). NB: Historical value only. Gave K = 0.44 x 10⁻⁹, i.e., pK_a = 9.36 (U). 		
							 134. Kirdani RY and Burgett M, The pK of five estrogens in aqueous solutions, Arch. Biochem. Biophys., 118(1), 33–36 (1967). NB: From spectroscopic work, reported estrone (pK_a = 10.91), 17α-estradiol (pK_a = 10.098), 17β-estradiol (pK_a = 10.078), 6-hydroxyestradiol (pK_a = 9.744) and 6-ketoestradiol (pK_a = 9.079). These values appear to be systematically low (U). 135. Lewis KM and Archer RD, pK_a values of estrone, 17β-estradiol and 2-methoxyestrone, Steroids, 34(5), 485–499 (1979). NB: Reported estrone (pK_a = 10.77), 17β-estradiol (pK_a = 10.71) and 2-methoxyestrone (pK_a = 10.81) (A).
526	Ethambutol (C $_{10}H_{24}N_2O_2$) HOCH ₂ CH ₃ CH ₂ HN HN CH ₂ CH ₂ OH HN CH ₂ CH ₃	6.6 9.5	U U	+H +H		H ₂ O	 Shepherd RG, Baughn C, Cantrall ML, Goodstein B and Wilkinson RG, Structure-activity studies leading to ethambutol, a new type of antituberculous compound. <i>Ann. NY Acad. Sci.</i> 135, 686–710 (1966). NB: See also Lee C and Benet, LZ, Ethambutol hydrochloride, <i>APDS</i>, 7, 231–249(1978); C. Lee, Ph.D. thesis, Univ. Calif. San Francisco.

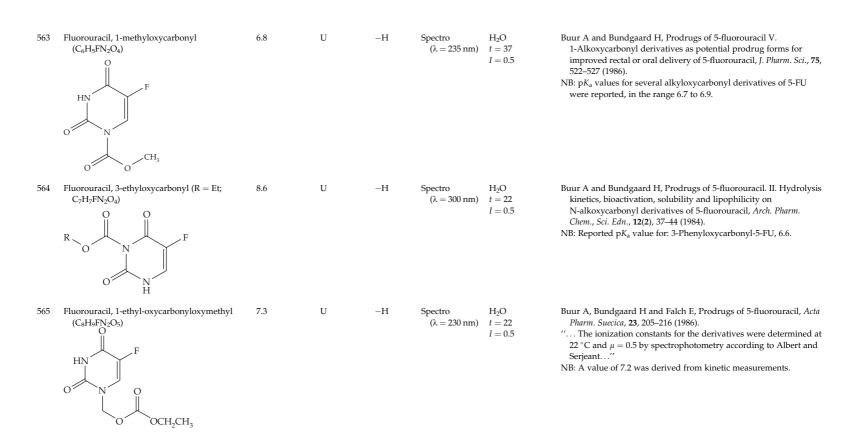
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
531	Ethox(a)zolamide (C ₉ H ₁₀ N ₂ O ₃ S ₂) C_2H_5O SO ₂ NH ₂	8.12	U	-Н	soly; Potentiometric	H ₂ O t = 25.0	Eller MG, Schoenwald RD, Dixson JA, Segarra T and Barfknecht CF Topical carbonic anhydrase inhibitors III: Optimization model for corneal penetration of ethoxzolamide analogues, J. Pharm. Sci., 74(1), 155–160 (1985).
	N N						Compound pK _a Compound pK _a
							6-Hydrogen 7.91 6-Nitro 7.38 6-Hydroxy $pK_1 = 7.81$; 6-Ethoxy (ethoxzolamide) 8.12 $pK_2 = 9.26$
							6-Chloro 7.69 6-Hydroethoxy 7.88
							4,6-Dichloro 7.64 6-Benzyloxy 8.14 6-Amino 8.03 6-Acetamido 7.93
532	α-Ethyl n-amylpenilloate	1.25	U	-H	Method not	H ₂ O	Woodward RB, Neuberger A and Trenner NR, in Clarke H, Johnsor
		4.12	U	+H	given	t = 5	JR, Robinson Sir R (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422, 1949.
533	α-Ethyl n-amylpenilloate	1.31	U	-H	Method not	H ₂ O	Woodward RB, Neuberger A, Trenner NR, in Clarke H, Johnson JR,
		3.95	U	+H	given	t = 25	Robinson Sir R (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422, 1949.
534	α-Ethylphenylpenilloate	1.34	U	-H	Method not	H ₂ O	Woodward RB, Neuberger A and Trenner NR, in Clarke H, Johnson
		4.11	U	+H	given	t = 5	JR, Robinson Sir R (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422, 1949.
535	α-Ethylphenylpenilloate	1.35	U	-H	Method not	H ₂ O	Woodward RB, Neuberger A and Trenner NR, in Clarke H, Johnson
		3.92	U	+H	given	t = 25	JR, Robinson Sir R (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422, 1949.
536	Ethylmorphine (C ₁₉ H ₂₃ NO ₃)	8.08	U	+H	Spectro	H_2O t = 15	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162, 289–353 (1925). NB: Cited in
	CH ₃ CH ₂ O	8.2	U	+H		c = 0.005 to 0.01	 Perrin Bases no. 2906. The spectrophotometric method used colorimetric determination of the extent of ionization by use of ar indicator of known pK_a value. NB: pK_w = 14.35 at 15 °C.
	HO NCH3						


537	Etidocaine (C ₁₇ H ₂₈ N ₂ O) C_2H_5 C_2H_5 C_2H_5 C_3H_7 C_3H_7 C_1H_3 C_2H_5	7.86	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ I = 0.01 (NaCl)	 Johansson P-A, Liquid-liquid distribution of lidocaine and some structurally related anti-arrythmic drugs and local anaesthetics, <i>Acta Pharm. Suec.</i>, 19, 137–142 (1982). NB: See Lidocaine for details.
538	Etilefrine (ethylphenylephrine) (C ₁₀ H ₁₅ NO ₂) HO NHC ₂ H ₅ OH	9.0 8.9	U U	+H +H	Potentiometric	H2O 90.7% MeOH	Wagner J, Grill H and Henschler D, Prodrugs of etilefrine: Synthesis and evaluation of 3'-(O-acyl) derivatives, J. Pharm. Sci., 69 (12), 1423–1427 (1980). "(3-hydroxy)phenylethanolamines in solution represent a mixture of the uncharged form and ionic species (cation, anion, and zwitterion). At half-neutralization, these compounds are in a specific equilibrium, which is represented by an apparent average pK_a value. The pK_a value is dependent on the substituent at the amino nitrogen and is increased from 8.67 (norfenefrine) to 8.9 (phenylephrine) or 9.0 (etilefrine) for the 3'-hydroxyphenylethanol-amines when introducing a methyl or ethyl radical into the amino group. The same value also was obtained for etilefrine in 1.5×10^{-3} M aqueous solution." NB: See also $3'-(O-Pivaloyl)-etilefrine.$
539	Etomidate (C ₁₄ H ₁₆ N ₂ O ₂) H_3C EtOOC	4.24	U	+H	Potentiometric, Spectro	H ₂ O t = 25	 Peters JJ, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i>, 67, 127–129 (1978). NB: The paper recognizes the problem of long extrapolations from aqueous-organic solvent mixtures to estimate pK_a values of poorly water-soluble substances. No activity corrections were applied. See Cinnarizine for further details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
540 Etopo	Etoposide ($C_{29}H_{32}O_{13}$) H H ₃ C $\downarrow O$ $\downarrow O$	9.8	U	-H	Spectro	1% MeOH t = 25 I = 0.1	Beijnen JH, Holthuis JJM, Kerkdijk HG, van der Houwen OAGJ, Paalman ACA, Bult A and Underberg WJM, Degradation kinetics of etoposide in aqueous solution, <i>Int. J. Pharm.</i> , 41 , 169–178 (1988). Cited in Holthius JJM, Ketlenes-van-den Bosch JJ, Bult A, Etoposide, <i>APDS</i> , 18 , 121–151 (1989).
	HO OH H ₃ CO OH OH	10.1	U	-H	kinetic	1.5% MeOH t = 25 I = 0.1	 "Absorbances of 0.1mM solutions of etoposide in 0.05 M sodium borate buffers containing 4% methanol were recorded at 264 nm with a Shimadzu UV-140 double beam spectrometer." NB: Also reported pK_a = 10.8 for <i>cis</i>-etoposide from kinetic measurements.
541	β-Eucaine (C ₁₅ H ₂₁ NO ₂) H ₃ C H ₃ C CH ₃ O	9.35	U	+H	Spectro	H_2O t = 23 c = 0.005	Schoorl N, Dissociation constants and titration exponents of several less common alkaloids, <i>Pharm. Weekblad</i> , 76 , 1497–1501 (1939); CA 34:1900. Cited in Perrin Bases no. 2908 ref. S16. NB: The method used colorimetric determination of the extent of ionization by use of an indicator of approximately known pK_a value. See Diamorphine for details.

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
542	Famotidine (C ₈ H ₁₅ N ₇ O ₂ S ₃)	6.76	U	-H	Spectro	H_2O t = 23	Islam MS and Narurkar MM, Solubility, stability and ionization behavior of famotidine, J. Pharm. Pharmacol., 45, 682–686 (1993).
		6.98	U	-H	Soly		"Famotidine was studied <i>in vitro</i> to determine the solubility,
	H_2N $S-NH_2$	6.89	U	-H	Partition		stability, and ionization behavior. Using spectrophotometric, solubility, and partitioning methods, the pKa at 23 °C was 6.76,
	H ₂ N NH ₂	6.6	U	-H	Potentiometric	H ₂ O t = 37	6.98, and 6.89, respectively. The pH-solubility profile indicated a intrinsic solubility of 2.7 mM at 23 °C. At pH 1–11, drug degradation followed pseudo-first-order kinetics at 37 °C and ionic strength of 0.5. The pH-rate profile was accounted for by specific acid and base catalyzed reactions and water-catalyzed decomposition of protonated and free drug. A pK _a of 6.6, determined by potentiometry at 37 °C, was used in kinetic calculations. Maximum stability occurred at pH 6.3. Studies indicated a partition coefficient of 0.23 for free drug at 23 °C. It was concluded that famotidine shows poor lipophilicity, poor aqueou solubility, and susceptibility to gastric degradation."
543	Famotidine	6.45	U	-Н	Soly	H ₂ O t = 37 I = 0.5 (KCl)	Najib NM and Suleiman MS, Determination of some parameters influencing the dissolution rate of famotidine, <i>Int. J. Pharm.</i> , 61 , 173–178 (1990). "The influence of pH, temperature and stirring rates on the dissolution of famotidine (I) was studied. The dissociation constant, intrinsic solubility, diffusion coefficient, hydrodynamic layer thickness and activation energy of dissolution of I were determinedintrinsic solubility is 0.278 mg.ml ⁻¹ ."
		6.56	U	+H	Potentiometric	H ₂ O	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning
		11.02	U	-H		t = 37 I = 0.15 (KCl)	as a tool for the prediction of human passive intestinal absorption Pharm. Res., 16, 882–888 (1999).
544	Fenbufen (C ₁₆ H ₁₄ O ₃)	4.3	U	-Н	Spectro	H ₂ O <i>t</i> undefined <i>I</i> undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. See Azapropazone and Ibuprofen for details.

Append	lix A ((continued)	۱
--------	---------	-------------	---


	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
545	Fendiline (C ₂₃ H ₂₅ N)	8.59 ± 0.03	U	+H	Potentiometric	40% EtOH t = 25.0	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i> , 34 , 407–409 (1984).
	CH ₃	9.33	U	+H		H ₂ O	NB: See Aprindine for details.
546	Fenoprofen (C ₁₅ H ₁₄ O ₃)	4.5	U	-Н	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. See Azapropazone and Ibuprofen for details.
547	Fentanyl (C ₂₂ H ₂₈ N ₂ O) CH ₃ CH ₂	8.99	U	+H	Soly	H ₂ O <i>t</i> = 35.0	 Roy SD and Flynn GL, Solubility behavior of narcotic analgesics in aqueous media: solubilities and dissociation constants of morphine, fentanyl, and sufentanil, <i>Pharm. Res.</i>, 6(2), 147–151 (1989). "Dissociation constants and corresponding pK' values of the drugs were obtained from measured free-base solubilities (determined at birth for the drugt free base solubilities).
							high pH's) and the concentrations of saturated solutions at intermediate pH's. Morphine, fentanyl, and sufentanil exhibited pK_a ' values of 8.08, 8.99, and 8.51, respectively. Over the pH range of 5 to 12.5 the apparent solubilities are determined by the intrinsic solubility of the free base plus the concentration of ionized drug necessary to satisfy the dissociation equilibrium at a given pH."

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
551	Flufenamic acid (C ₁₄ H ₁₀ F ₃ NO ₂)	5.0	VU	-H	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal anti-inflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. See Azapropazone and Ibuprofen for details. The pK_a determination supports only the region of the possible value.
552	Flufenamic acid	5.84	U	-H	Potentiometric	5-10% aq. acetone $t = 25 \pm 0.1$ I = 0.11	Terada H and Muraoka S, Physicochemical properties and uncoupling activity of 3'-substituted analogues of N-phenylanthranilic acid, <i>Mol. Pharmacol.</i> , 8 , 95–103 (1972).
	Substituted fenamic acids:						"For determinations of pK_a values, 2–3 mg of the compound to be
	3'-Н	5.28	U				tested were dissolved in water or in dilute NaOH solution
	3'-Me	5.84	U				containing 5–10% acetone. The solution was titrated with 1 N H
	3'-NH ₂	4.72	U				using a pH-stat. The influence of organic solvents on pK values
	3'-OMe	5.17	U				was regarded as negligible, since this effect has been reported to
	3′-acetyl	5.05	U				significant only when the solution contains at least 20% (v/v) organic solvent (Mizutani M, Z. Phys. Chem., 118 , 318–326 (1925 <i>ib</i> . 327–341; Cavill GWK, Gibson NA and Nyholm RS, Dissociati constants of some p-alkoxybenzoic acids, JCS, 2466–2470 (1949)
53	Flufenamic acid	3.85	U	-H	Soly	$\begin{array}{l} H_2O\\ t=25\pm0.1 \end{array}$	Terada H, Muraoka S and Fujita T, Structure-activity relationships fenamic acids, J. Med. Chem., 17, 330–334 (1974).
						I = 0.11	NB: Methodology used a three hour equilibration time, which is
	Substituted fenamic acids:						possibly not long enough. These values are very different to the
	3'-Me	4.15	U				found in an earlier paper, where titration in dilute acetone-wat
	3'-NH ₂	4.35	U				mixtures was used. Could postulate internal H-bond giving eith
	3'-OMe	3.95	U				stabilization or destabilization of the anion. Further computed
	3'-acetyl	3.90	U				values were suggested, based on a structure-reactivity relations! (LFER) using sigma values: 3'-Cl, 3.86; 3'-NO ₂ , 3.59; 3'-OH, 4.05; N(CH ₃) ₂ , 4.31; 3'-COC ₆ H ₅ , 3.87; 3'-C ₆ H ₅ , 4.10; 2',3'-(CH) _{4⁻} , 4.11
554	Flufenamic acid	5.94	VU	+H	Potentiometric	50% EtOH t undefined I undefined	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test, ArzneimForsch., 24, 494–499 (1974).
		6.0	VU	+H		80% Me cellosolve	NB: Literature values obtained from the pH of half-neutralization (Parke-Davis). Also gave a value of 7.5 in water. This last value clearly in error.

555	Flumequine ($C_{14}H_{12}FNO_3$)	6.38 ± 0.04	А	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$	determi	wak K, Box KJ and Ave nation of water-insolub	ele compounds: Va	lidation study in
	F OH	6.35 U –H Spectro	I = 0.1 (NaCl)	methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: By extrapolation from 3–44%w/w aqueous MeOH. See Acetaminophen for full details. Takacs-Novak K and Avdeef A Interlaboratory study of log P determination by shake-flask an potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996) also reported $pK_a = 6.27 \pm 0.01$ at I = 0.15 M (NaCl) (potentio).						
556	Flumequine	6.42	А	-H	CE/pH (-ve ion mode)	H_2O t = 25 I = 0.025	and Tho pharmac and mas	olmen AG, Wang Y, Lin mpson RA, High-throu ceuticals by pressure-as ss spectrometry, <i>Rapid</i> (03). NB: Reported a pro-	ughput screening o ssisted capillary el Commun. Mass Spe	of pK _a values of ectrophoresis <i>ctrom.</i> , 17 , 2639–
557	Flumequine	GLp K_a : 6.31 ± 0.02 A&S: 6.35 ± 0.05	U A	-H -H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	Tam KY ar determin 157–167	nd Takacs-Novac K, Mu nation of acid dissociati	ılti-wavelength sp	ectrophotometric
558	Flumethiazide (C ₈ H ₆ F ₃ N ₃ O ₄ S ₂) H_2NSO_2 F_3C N H_2	6.3	U	-H	Potentiometric	acetone /H ₂ O	Henning V potentio benzothi solubilit (1981). "Four cond and 0.00 The acet respectiv pH was titrant. T	(G, Moskalyk R.E, Chai metric determination c iadiazines and detection y variation with pH stu- centrations of each ben: (2M) were prepared fro- tone-water ratios were vely. The solutions were measured after the ad. (The apparent pK_{a1} valu ation techniques	of apparent pK_{a1} v. on of decompositio udies, <i>J. Pharm. Sci</i> zothiadiazine (0.00 om 0.02 M acetone 5:45, 10:40, 15:35, <i>i</i> e titrated with 0.5 dition of each 0.1 r	alues for n during ., 70 , 317–319 005, 0.001, 0.0015, stock solutions. and 20:30 ml, N NaOH and the nl increment of ned by the usual
									Literature Aq. Poten. Tit.	Semiaq Poten. Tit.
105								Benzothiadiazine Flumethiazide Hydrochlorothiazide Cyclothiazide Trichloromethiazide Methyclothiazide(II) Polythiazide	6.44 7.0, 7.9, 8.6, 8.8 8.9, 8.45 - - - -	6.3 8.7 8.5 8.8 6.9 9.5 9.1

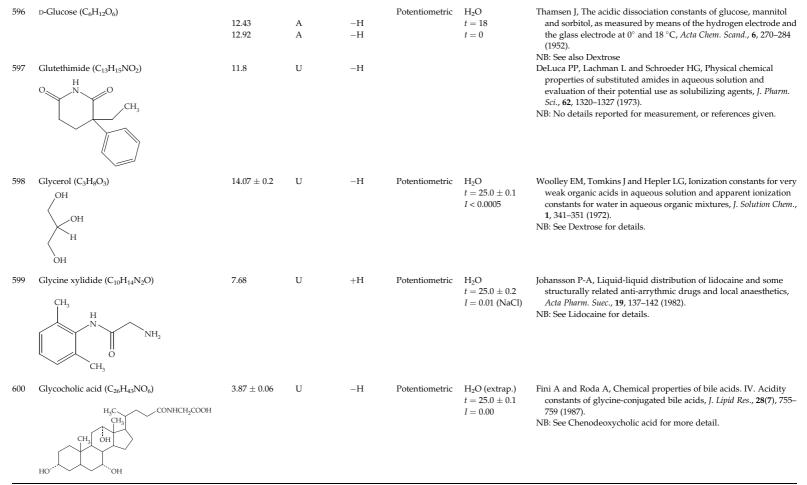
	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
559	Flunitrazepam (C ₁₆ H ₁₂ FN ₃ O ₃) H ₃ C N N	1.71 ± 0.003	U	+H +H	Spectro	H ₂ O H ₂ O	 Inotsume N and Nakano M, Reversible azomethinine bond cleavage of 2'-fluoro derivatives of benzodiazepines in acidic solutions at body temperature, <i>Int. J. Pharm.</i>, 6, 147–154 (1980). NB: Methodology referred to Albert and Serjeant 1971. Absorbances were read immediately following solution preparation to minimize the effect of reaction at the azomethine bond. Boxenbaum H, data on file, Hoffman La Roche, cited in Boxenbaum
	O ₂ N F				1	t undefined $I = 0.01$	HG, Posmanter HN, Macasieb T and Geitner KA, <i>et al.</i> , Pharmacokinetics of flunitrazepam following single- and multiple-dose oral administration to healthy human subjects, <i>J. Pharmacokin. Biopharm.</i> , 6 , 283–293 (1978).
560	Flunitrazepam	1.71	U	+H			 Konishi M, Hirai K and Mari Y, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, <i>J. Pharm. Sci.</i>, 71(12), 1328–1334 (1982). NB: See Triazolam.
561	Fluorescein (C ₂₀ H ₁₂ O ₅) HO O O O O O O O O O	$\begin{array}{c} 2.24 \pm 0.06 \\ 4.36 \pm 0.06 \end{array}$	U U	-H -H	Soly	H ₂ O t = 20.0 I = 0.10	 Asuero AG, Evaluation of acidity constants of two-step overlapping equilibria of amphoteric substances from solubility measurements <i>J. Pharmaceut. Biomed. Anal.</i>, 6(3), 313–316 (1988). NB: Intrinsic solubility (S_o) = (3.38 ± 0.30) × 10⁻⁴ M. Also called fluorescein yellow.
562	5-Fluorouracil (C ₄ H ₃ FN ₂ O ₂) H O H H H	$\begin{array}{c} 8.0 \pm 0.1 \\ 13.0 \pm 0.1 \end{array}$	U U	-H -H	Spectro	H ₂ O	Rudy BC and Senkowski BZ, Fluorouracil, <i>APDS</i> , 2 , 221–244 (1973). "When the pK _a 's for uracil were determined in a similar manner they were found to be 9.4 ± 0.1 and >13.5. These latter values are in good agreement with the pK _a 's reported by Shugar and Fox for uracil. The above values for 5-FU are from Berens and Shugar, <i>Acta</i> <i>Biochem. Pol.</i> , 10 , 25 (1963)." Motchane A, Hoffman-La Roche Inc., unpublished data.

Appendix A (continued)

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
566	Fluorouracil, 3-ethyl-oxycarbonyloxymethyl	7.9	U	-H	Spectro $(\lambda = 306 \text{ nm})$	H_2O t = 22 I = 0.5	Buur A, Bundgaard H and Falch E, Prodrugs of 5-fluorouracil, Acta Pharm. Suecica, 23, 205–216 (1986). NB: See Fluorouracil, 1-ethyl-oxycarbonyloxymethyl, for details.
567	Fluorouracil, 1-phenyl-oxycarbonyloxymethyl (C ₁₂ H ₉ FN ₂ O ₅) O HN F O O O O O O O O O O	7.3	U	-H	Spectro (λ = 306 nm)	H_2O t = 22 I = 0.5	 Buur A, Bundgaard H and Falch E, Prodrugs of 5-fluorouracil, Acta Pharm. Suecica, 23, 205–216 (1986). NB: See Fluorouracil , 1-ethyl-oxycarbonyloxymethyl, for details. A value of 7.2 was derived from kinetic measurements.
568	Fluorouracil, 3-phenyl-oxycarbonyloxymethyl (C ₁₂ H ₉ FN ₂ O ₅)	7.9	U	-H	Spectro $(\lambda = 306 \text{ nm})$	H_2O t = 22	Buur A, Bundgaard H and Falch E, Prodrugs of 5-fluorouracil, Acta Pharm. Suecica, 23, 205–216 (1986).
569	Fluorouracil, 1-acetyl-oxymethyl (C ₇ H ₇ FN ₂ O ₄) O HN F O O O O O O O O	7.3	U	-H	Spectro ($\lambda = 236 \text{ nm}$)	I = 0.5 H ₂ O t = 22 I = 0.5	 NB: See Fluorouracil , 1-ethyl-oxycarbonyloxymethyl, for details. Buur A, Bundgaard H and Falch E, Prodrugs of 5-fluorouracil IV. <i>In J. Pharm.</i>, 24, 43–60 (1985). "The ionization constants for the derivatives I-IV and VII were determined at 22 °C and µ = 0.5 by spectrophotometry, accordin to Albert and Serjeant (1971)." NB: Also reported the same result for 1-propionyloxymethyl-5-FU; 1-butyryloxymethyl-5-FU; and 1-pivaloyloxymethyl-5-FU.
570	Fluorouracil, 3-acetyl-oxymethyl (C ₇ H ₇ FN ₂ O ₄)	8.0	U	-H	Spectro $(\lambda = 300 \text{ nm})$	H_2O t = 22 I = 0.5	 Buur A, Bundgaard H and Falch E. Prodrugs of 5-fluorouracil IV, In J. Pharm., 24, 43–60 (1985). "The ionization constants for the derivatives I-IV and VII were determined at 22 °C and µ = 0.5 by spectrophotometry, accordin to Albert and Serjeant (1971)."

571	Flupenthixol (C ₂₃ H ₂₅ F ₃ N ₂ OS) OH	3.362 6.18	U U	+H +H	Potentiometric	H ₂ O <i>I</i> = 0.00 <i>t</i> = 25	 Lukkari S, Ionization of some thiaxanthene derivatives, clopenthixol and flupenthixol, in aqueous solutions, <i>Farm. Aikak.</i>, 80(4-5), 237–242 (1971). NB: See Clopenthixol for details.
572	Fluphenazine (C ₂₂ H ₂₆ F ₃ N ₃ OS) OH	7.98 ± 0.03	U	+H	partition/pH	H_2O $t = 20 \pm 0.5$	Vezin WR and Florence AT, The determination of dissociation constants and partition coefficients of phenothiazine derivatives, <i>Int. J. Pharm.</i>, 3, 231–237 (1979).NB: I was not reported but pK_a was stated to be independent of I. See Promethazine for details.
573	Fluphenazine	3.90 8.05	U U	+H +H	Potentiometric	H_2O (extrap.) t = 20 N_2 atmosphere	 Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazine derivatives by solid adsorbents, J. Pharm. Sci., 55, 785–794 (1966). NB: See Chlorpromazine for details.
574	Flu(o)promazine (C ₁₈ H ₁₉ F ₃ N ₂ S)	9.2	U	+H	Soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	 Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i>, 19, 10–16 (1967). NB: See Amitriptylline for details. Same structure as trifluopromazine.
575	Flurbiprofen (C ₁₅ H ₁₃ FO ₂)	4.9	U	-H	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. See Azapropazone and Ibuprofen for details.

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
576	Folic acid ($C_{19}H_{19}N_7O_6$) $H_2N \xrightarrow{H}_{N} \xrightarrow{H}_{N} \xrightarrow{H}_{N}$	2.35 ± 0.1 8.38	U U	+H -H	Spectro	H_2O t = 25 I = 0.10	Poe M, Acidic dissociation constants of folic acid, dihydrofolic acid and methotrexate, <i>J. Biol. Chem.</i> , 252 (11), 3724–3728 (1977). NB: The compound aqueous solubility was insufficient to measure the pK_a values for the two carboxyl groups. See Methotrexate for additional details.
	Ö – – – – – – – – – – – – – – – – – – –	0.20 <-1.5	U U	$^{+\mathrm{H}}_{+\mathrm{H}}$		I = 0.1 to 4	
577 578	Folic acid analogues Folinic acid (Leucovorin) ($C_{20}H_{23}N_7O_7$) $H_{N_2}M_{23}N_7O_7$)	3.1 4.8 10.4	U U U	-H -H -H	Potentiometric	H ₂ O t undefined I undefined	See Pteridines Flynn EH, Bond TJ, Bardos TJ and Shive W, <i>JACS</i> , 73 , 1979–1982 (1951); May M, Bardos TJ, Barger FL, Lansford M, Ravel JM, Sutherland GL and Shive W, Synthetic and degradative investigations of the
	HOOCH ₂ CH ₂ C H	10.4	0	-11		<i>i</i> undenned	and since w, synthetic and degradative investigations of the structure of folinic acid-SF, <i>ib.</i> , 3067–75. Cited in Pont LO, Cheung APK and Lim P, Leucovorin Calcium, <i>APDS</i> , 8 , 315–350 (1979). "Three pK_a values have been reported for leucovorin (free acid); they are 3.1, 4.8, and 10.4, as determined by electrometric titration. The first two values are attributed to the glutamyl carboxyls, and 10.4 is assigned to the hydroxyl group at the 4 position, by comparison to model compounds."
579	Folinic acid	3.10	U	-H	Potentiometric	H ₂ O	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and
		4.56 10.15	U U	-H +H		<i>t</i> = 25	 Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
580	Formic acid (CH ₂ O ₂) HCOOH	3.742	R	-H	Potentiometric	H_2O t = 25.0 I = 0.00	Bates RG, Siegel GL and Acree SF, Dissociation constants and titration curves at constant ionic strength from electrometric titrations in cells without liquid junction, <i>J. Res. Nat. Bur. Stand.</i> , 30 , 347–359 (1943).
		3.772	А	-H	Conductance	H_2O t = 25.0 I = 0.00	NB: Very careful work using hydrogen and silver-silver chloride half cells. Also reported acetic acid $pK_a = 4.754$, cf. Acetic acid, no. 12 (above), $pK_a = 4.756$ by conductance and potentiometry. Bell RP and Miller WBT, Dissociation constants of formic acid and d-formic acid, <i>Trans. Farad. Soc.</i> , 59 , 1147–1148 (1963). NB: Reported values for the title compounds of 3.772 \pm 0.001 and 3.737 \pm 0.001, respectively.


581	Furosemide (frusemide) (C ₁₂ H ₁₁ ClN ₂ O ₅ S) COOH H ₂ NS O Cl	3.9 ± 0.1	U	-H	Potentiometric	H ₂ O	 Hadju P and Haussler A, Untersuchungen mit dem Salidiureticum 4-chlor-N-(2-furylmethyl)-5-sulfamyl-Anthranilsaure, <i>Arzneim.</i>- <i>Forsch.</i>, 14, 709–710 (1964). NB: Potentiometric titrations of 0.5–2.0 mM solutions in one equivalent of NaOH with 0.01N HCl, as previously described for Rastinon (Haussler A and Hadju P, Dissociation constants and solubility of <i>N</i>-butyl-<i>N</i>-(<i>p</i>-tolylsulphonyl)urea, <i>Arch. Pharm.</i> <i>Weinheim</i>, 291, 531–535 (1958)).
582	Furosemide (frusemide)	3.65 ± 0.15	U	-H	partition/pH	H ₂ O	Hadju P and Haussler A, Untersuchungen mit dem Salidiureticum 4-chlor-N-(2-furylmethyl)-5-sulfamyl-Anthranilsaure, <i>Arzneim</i> <i>Forsch.</i> , 14 , 709–710 (1964).
							NB: Partitioned between ether and citrate or phosphate buffers.
583	Furosemide (frusemide)	3.64	U	-H	CE/pH	H ₂ O	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB
		10.6	U	+H	(-ve ion mode)	t = 25 I = 0.025	and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003).
							NB: Reported predicted values (ACD Labs) of 3.04 and 9.79. The assignment in this paper of the second ionization as a base seems erroneous, as this value is more likely to be ascribed to the sulfonamido group.
584	Furosemide (frusemide)	GLpK _a :			Spectro	H ₂ O	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric
		3.65 ± 0.02	А	-H	•	t = 25	determination of acid dissociation constants, Anal. Chim. Acta, 434,
		10.24 ± 0.04	U	-H		I = 0.15 (KCl)	157–167 (2001).
		A&S:				Ar atmosphere	NB: See Clioquinol for details.
		3.74 ± 0.12	U	-H		1	1
		10.37 ± 0.09	U	-H			
585	Furosemide (frusemide)	3.6 ± 0.15	U	-H	Soly	$\begin{array}{l} H_2O\\ t=27 \end{array}$	Hadju P and Haussler A, Untersuchungen mit dem Salidiureticum 4-chlor-N-(2-furylmethyl)-5-sulfamyl-Anthranilsaure, Arzneim Forsch., 14, 709–710 (1964).
							NB: Solubilities were determined in Britton-Robinson buffers. Although the solubilities increased in buffer solutions containing 2–5% w/v urea, the pK _a value remained constant. See Glibenclamide for further details.

202

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
586	Furosemide (frusemide)	3.8 7.5	U U	-H -H	Potentiometric	$\begin{array}{l} H_2O\\ t=20 \end{array}$	 Orita Y, Ando A, Urakabe S and Abe H, A metal complexing property of furosemide and bumetanide: Determination of pK and stability constant, <i>ArzneimForsch.</i>, 26(1), 11–13 (1976). NB: See Bumetanide for details.
		3.61 10.24	U U	-H -H	Potentiometric	H_2O t = 37 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption <i>Pharm. Res.</i> , 16, 882–888 (1999).
587	Gallic acid	$\begin{array}{l} \mathrm{GLp}K_{\mathrm{a}}:\\ \mathrm{4.21}\pm0.01 \end{array}$	А	-H	Spectro	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta, 434,
		8.54 ± 0.04 A&S: 4.20 ± 0.15	U U	-H -H		I = 0.15 (KCl) Ar atmosphere	157–167 (2001). NB: See Clioquinol for details. Cited Palm VA, Table of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol I, Viniti, Moscow, 1975, with values of 4.4, 8.7, 11.4 and 13.0.
588	Gelatin	3.7 to 4.5	U	-H	Potentiometric	H_2O t = 25 I = 0.00 N_2 atmosphere	Ofner CM and Schott H, Shifts in the apparent ionization constant of the carboxylic acid groups of gelatin, <i>J. Pharm. Sci.</i> , 74 , 1317–1321 (1985).
		3.8 to 4.4	U			<i>I</i> = 0.1	"The shifts in the apparent dissociation constants of carboxylic acid groups of gelatin as a function of the degree of ionization and the presence of an added electrolyte are discussed. The shifts were ascribed to changes in the electrostatic interference of neighboring ionic groups with the ionization process of the carboxylic acid groups. Cationic groups enhanced the ionization while carboxylate ions hampered it. The added electrolyte reduced the magnitude of both types of interference."
589	Glafenine (C ₁₉ H ₁₇ ClN ₂ O ₄) HO \downarrow	7.2	U	+H	Spectro	H ₂ O t = 20	Badwan AA, Zughul MB and Al Omari M, Glafenine, <i>APDS</i> , 21 , 197–232 (1992). "The pK _a was determined spectrophotometrically at 20 °C in accordance with an earlier reported method (5). Stock solution of glafenine in 10 ⁻³ N HCl was prepared and diluted with suitable buffer solutions ranging from pH 6–10 to obtain a final glafenine concentration of 10µg/mL. The absorbance of theses solutions was measured at the maximum of 342.5 nm. This method yielded 7.2 as the pK _a of glafenine at 20 °C (4)."

							 Badwan AA and Al-Omari MM, Unpublished data, The Jordanian Pharmaceutical Manufacturing Co., Jordan Takla PG and Dakas CJ, A study of interactions of chloroquine with ethanol, sugars and glycerol using ultraviolet spectrophotometry, <i>Int. J. Pharm.</i>, 43, 225–232 (1988).
590	Glibenclamide (glyburide) (C ₂₃ H ₂₈ ClN ₃ O ₅ S)	5.3 ± 0.1	U	-H	Potentiometric	H ₂ O	Hadju P, Kohler KF, Schmidt FH and Spingler H, Physicalisch- chemische und analytische untersuchungen an HB 419, Arzneim Forsch., 19, 1381–1386 (1969). Cited in Takla, P.G., Glibenclamide, APDS, 10, 337–352 (1981).
	CH ₃ OCH ₃						"Glibenclamide is a weak acid. It has been concluded that it has the same dissociation constant as tolbutamide (5.3 ± 0.1) , since both compounds show the same dissociation at half-neutralization in solvent mixtures such as methylcellosolve and water or methanol and water. The direct determination of its pK _a in water is impossible owing to its low solubility."
							NB: The poor water solubility of glibenclamide indicates that it is a good candidate for pK _a determination by the solubility-pH method (see no. 591)
591	Glibenclamide	5.3 ± 0.1	U	-H	Potentiometric	H ₂ O	Hadju P, Kohler KF, Schmidt FH and Spingler H, Physicalisch- chemische und analytische untersuchungen an HB 419, Arzneim Forsch., 19, 1381–1386 (1969).
		6.3	U	-H	Partition/pH	H ₂ O	NB: Solubility-pH dependence in Britton-Robinson buffer solutions
		6.8 ± 0.15	U	-H	Soly	<i>t</i> = 27	was used to estimate the pK_a value, after equilibration, filtration and appropriate dilution with 0.01N NaOH, followed by UV
							absorption measurements (λ_{max} not specified). Partition-pH dependence measurements were between ether and Britton- Robinson buffers in the pH range 2.4–10.4. The substantially different values from each type of measurement (see also no. 592) deserves further investigation.
592	Glibenclamide (glyburide)	5.22	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 4.99.

	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
593	Gluconic acid (C ₆ H ₁₂ O ₇) COOH HO HO HO CH ₂ OH	3.62 ± 0.02	Α	-H	Potentiometric	H ₂ O t = 25	Skibsted LH and Kilde G, Strength and lactone formation of gluconic acid, <i>Dansk. Tidsskr. Farm.</i> , 45 (9), 320–324 (1971). "The strength of gluconic acid in water at 25 °C has been determined by the measurement of hydrogen ion activity using a glass electrode in gluconic acid/sodium gluconate buffer solutions. The hydrogen ion activity immediately after mixing the buffer solutions indicated that the acid ionization constant of gluconic acid is pK _a = 3.62 (estimated standard deviation 0.02). However, the activity changes with time and when equilibrium is reached the apparent acid ionization constant of gluconic acid is pK _{app} = 3.84 (0.04). The constants have been extrapolated to zero ionic strength. The difference between the 2 acid ionization constants is attributed to lactone formation, and for the equilibrium 'lactone \Leftrightarrow acid' a value of $K = 0.60 (0.05)$ has been determined."
594	D-Glucosamine (C ₆ H ₁₃ NO ₅) HO OH OH HO NH ₂	8.04	Α	+H	Potentiometric	H_2O t = 15.5 I = 0.00 N ₂ atmosphere	Zimmerman HK, Studies on glucosammonium chloride. II. Protolysis constants and the stability of glucosamine in weakly alkaline aqueous solution, <i>J. Phys. Chem.</i> , 62 , 963–965 (1958). Cited in Perrin Bases 3407 ref. Z3. NB: Used pH measurements with a glass electrode and liquid junction potentials. Results at various ionic strengths were extrapolated to zero. For the same conditions, also gave 7.75 ($t =$ 23.9); 7.71 ($t =$ 25.5); 7.50 ($t =$ 29.0); 7.35 ($t =$ 39.0); 7.19 ($t =$ 51.0) (all A).
595	D(+)-Glucosamine-6-phosphate (C ₆ H ₁₄ NO ₈ P) OH	6.10 8.14	A A	-H +H	Potentiometric	H_2O t = 26.3 c = 0.001 N ₂ atmosphere	 Brown DH, Action of phosphoglucomutase on D-glucosamine-6-phosphate, <i>J. Biol. Chem.</i>, 204, 877–889 (1953). Cited in Perrin Bases 3408 ref. B111. NB: Used pH measurements with a glass electrode and liquid junction potentials. Correction of the reported apparent pK_a' values of 6.08 and 8.10 led to the given pK_a values (Perrin). The first dissociation constant of the phosphate group could not be determined at the very low concentrations used.

	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
601	Glycodeoxycholic acid (C ₂₆ H ₄₃ NO ₅) H_3^{C} OH $CONHCH2COOH$ H_4^{C} OH H_4^{C}	3.87 ± 0.06	U	-H	Potentiometric	H ₂ O (extrap.) $t = 25.0 \pm 0.1$ I = 0.00	 Fini A and Roda A, Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids, <i>J. Lipid Res.</i>, 28(7), 755–759 (1987). NB: See Chenodeoxycholic acid for more detail.
602	Guanazole prodrugs HN — R' R N				Spectro	H_2O t = 25.0 I = < 0.1	 Alhaider AA, Selassie CD, Chua S and Lien EJ, Measurements of ionization constants and partition coefficients of guanazole prodrugs, <i>J. Pharm. Sci.</i>, 71(1), 89–94 (1982). "A previously described procedure (Albert and Serjeant, 1972) wa used for the determination of ionization constants. Its accuracy was checked with an authentic sample of salicylic acid (at 25°), at the result (2.94) was in close agreement with that reported (2.97)"
	3,5-diacetamido-1,2,4-triazole (C ₄ H ₉ N ₅ O ₂) 3,5-dipropionamido-1,2,4-triazole (C ₆ H ₁₃ N ₅ O ₂)	9.35 9.34	U U	-H -H			Further guanazole prodrug p K_a values:

Compound	R	R'	р <i>К</i> а
3,5-di(trifluoroaceta mido)-1,2,4-triazole	COCF ₃	COCF ₃	5.90
3-amino-5-heptafluoro butyramido-1,2,4- triazole	Η	COCF ₂ CF ₂ CF ₃	6.10
3,5-dibenzamido-1,2,4- triazole	COC ₆ H ₅	COC ₆ H ₅	10.21
3,5-di(p-nitrobenza mido)-1,2,4-triazole	COC ₆ H ₄ NO ₂	COC ₆ H ₄ NO ₂	8.64

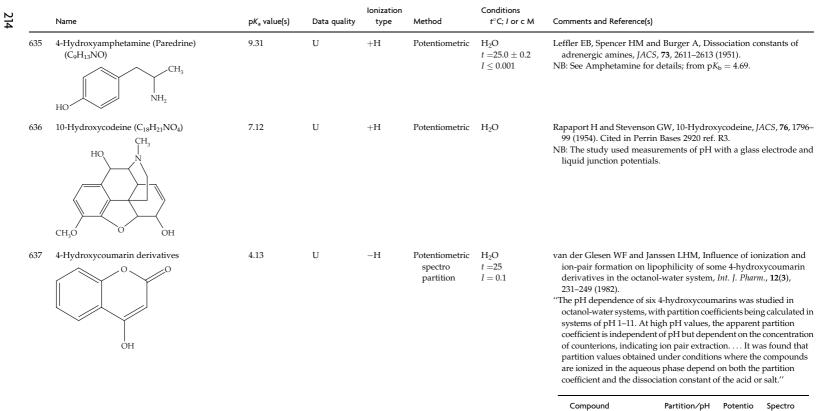
603	Haloperidol (C ₂₁ H ₂₃ ClFNO ₂)	8.96	U	+H	CE/pH (+ve ion mode)	H ₂ O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639– 2648 (2003). NB: Reported a predicted value (ACD Labs) of 8.25.
604	Haloperidol	8.65 ± 0.05	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 40–60% w/w aqueous MeOH. See Acetaminophen for full details.
605	Heliotridane (C ₈ H ₁₅ N)	11.40	A	+H	Potentiometric	H_2O t = 27 c = 0.02	Adams R, Carmack M and Mahan JE, <i>JACS</i> , 64, 2593 (1942). Cited in Perrin 2913 ref. A5. NB: Used pH measurements on equimolar solutions of the base and salt with a glass electrode and liquid junction potentials. Use of a temperature coefficient for amine pK_a values (Hall and Sprinkle, <i>JACS</i> , 54 , 3469 (1932)) gave the value at t = 25 of 11.48.
606	Heliotridene (C ₈ H ₁₃ N)	10.55	Α	+H	Potentiometric	H_2O t = 25.5 c = 0.02	Adams R, Carmack M and Mahan JE, <i>JACS</i> , 64 , 2593 (1942). Cited in Perrin 2913 ref. A5. Used pH measurements on equimolar solutions of the base and salt with a glass electrode and liquid junction potentials. Use of a temperature coefficient for amine pK_a values (Hall and Sprinkle, <i>JACS</i> , 54 , 3469 (1932)) gave the value at $t = 25$ of 10.60. pK_a values for several related compounds were also reported.
607	Hexachlorophene (C ₁₃ H ₆ Cl ₆ O ₂) OH OH Cl (Cl (Cl (Cl (Cl (Cl (Cl (Cl (Cl (Cl	$\begin{array}{c} 4.89 \pm 0.02 \\ 10.83 \pm 0.02 \end{array}$	U U	-H -H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 42–60 %w/w aqueous MeOH. See Acetaminophen for full details.

Appendix	A	(continued)
Appendix	А	(continueu)

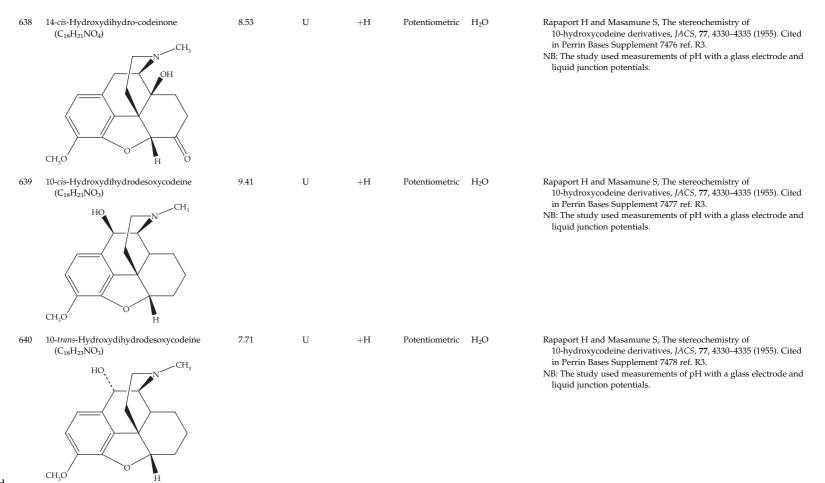
	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
608	Hexachlorophene	$\begin{array}{l} GLpK_{a}:\\ 5.21 \pm 0.01\\ 10.27 \pm 0.09 \end{array}$	U U	Spectro +H +H	H_2O t = 25 I = 0.15 (KCl)	Ar atmosphere	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i> , 434, 157–167 (2001). NB: See Clioquinol for details; extrapolated from partially aqueous
							mixtures, using the Yasuda-Shedlovsky approximation.
609	Hexachlorophene	5.65	U	-H	Soly	$\begin{array}{l} H_2O\\ t=25\pm0.1 \end{array}$	Terada H, Muraoka S and Fujita T, Structure-activity relationships of fenamic acids, J. Med. Chem., 17, 330–334 (1974).
610	Hexetidine (C ₂₁ H ₄₅ N ₃)	8.3	U	+H	Potentiometric	I = 0.11 50% aqueous EtOH	NB: See Fluphenamic acid for details. Satzinger G, Herrmann W and Zimmermann F, Hexetidine, APDS, 7, 277–295 (1978).
	H ₃ C NH ₂ CH ₃ H ₃ C CH ₃ CH ₃						NB: Apparent pH of half-neutralization on titration with 0.1 M HCl.
611	Hexetidine	7.9	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard ME and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639– 2648 (2003).
(12	Haushanding (C. H. N.O.)	4.52 ± 0.01	٨	+H	Potentiometric	цо	NB: Reported a predicted value (ACD Labs) of 8.74.
612	Hexobendine $(C_{30}H_{44}N_2O_{10})$	4.52 ± 0.01 8.47 ± 0.01	A A	+Η +Η	Potentiometric	H_2O I = 0.1 $t = 25.0 \pm 0.1$	IJzerman AP, Limiting solubilities and ionization constants of sparingly soluble compounds: Determination from aqueous potentiometric data only, <i>Pharm. Res.</i> , 5(12), 772–775 (1988).
	CH ₃ O CH ₃ O C(CH ₂) ₃ CH ₃ H ₅ C OCH ₃					N ₂ atmosphere	NB: Glass electrode; KOH titrant. So = 567 \pm 8 μ M.
613	Hexobendine	4.04 ± 0.02	U	+H	Potentiometric	40% EtOH	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance
		7.94 ± 0.02	U	+H		t = 25.0	of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i> , 34 , 407–409 (1984).
		5.09	U	+H		H ₂ O	NB: See Aprindine for details.

614	Histamine (C ₅ H ₉ N ₃) HN N	6.04 9.75	A A	+H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.00 N ₂ atmosphere	 Paiva TB, Tominaga M and Pavia ACM, Ionization of histamine, <i>N</i>-acetylhistamine and their iodinated derivatives, <i>J. Med. Chem.</i>, 13, 689–692 (1970). NB: Cited by Al-Badr AA and El-Subbagh HI, Histamine Phosphate, <i>APDS</i>, 27, 168 (2000).
	CH ₂ CH ₂ NH ₂						lonization $t = 15^{\circ}$ C $t = 20^{\circ}$ C $t = 25^{\circ}$ C $t = 30^{\circ}$ C $t = 35^{\circ}$ C
							$\begin{array}{cccccccccccccccccccccccccccccccccccc$
							^a spectrophotometric.
615	Histamine	5.784	R	+H	Potentiometric	H ₂ O	Von Schalien SNR, Potentiometric studies on histamine and its metal
		9.756	R	+H		t = 25 I = 0.01 to 0.5	chelates. II. Cd and Ni chelates of histamine in aqueous solutions, <i>Suomen Kemistilehti</i> , 32B , 148–153 (1959); CA 54:27393. Cited in Perrin Bases no. 1396 ref. V18. NB: Data from titrations using a glass electrode in an unsymmetrical cell with liquid junction potentials. Graphical extrapolation to zero ionic strength was used. Also reported $t = 37, 5.595 \& 9.386; t = 50,$ 5.358 & 9.047. Numerous other approximate (A) and uncertain (U) values were also reported by Perrin.
616	Histamine, monoiodo (C5H8IN3)	4.06	А	+H	Potentiometric	H ₂ O	Paiva TB, Tominaga M and Pavia ACM, Ionization of histamine,
	\land	9.20	А	+H		$t=25.0\pm0.1$	N-acetylhistamine and their iodinated derivatives, J. Med. Chem.,
	HN N	11.88	А	+H		I = 0.00 N ₂ atmosphere	13, 689–692 (1970).
	I CH ₂ CH ₂ NH ₂					- 1	
							$pK_3 - 12.32$ 12.11 11.88 11.72 11.60 11.38

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
617	Histamine, diiodo (C ₅ H ₇ I ₂ N ₃)	2.31 8.20 10.11	A A A	+H +H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.00 N ₂ atmosphere	Paiva TB, Tominaga M and Pavia ACM, Ionization of histamine, N-acetylhistamine and their iodinated derivatives, <i>J. Med. Chem.</i> 13 , 689–692 (1970).
	HN N I CH ₂ CH ₂ NH ₂						pK_1 2.51 2.44 2.38 2.31 2.25 2.12 pK_2 8.52 8.45 8.29 8.20 8.08 7.93 pK_3 10.58 10.47 10.28 10.11 9.97 9.72
618	Histapyrrodine (C ₁₉ H ₂₄ N ₂)	$\begin{array}{c} 2.99 \pm 0.12 \\ 7.95 \pm 0.02 \end{array}$	U U	+H +H	Potentiometric	H_2O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i>, 61, 2530–2537 (1978).NB: See Cycliramine for details.
619	HNB-1 (C ₂₇ H ₂₆ NO ₄) HO O O O O O O O O O O	$\begin{array}{c} 8.49 \pm 0.02 \\ 9.20 \pm 0.05 \end{array}$	U U	+H -H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 33–60 %w/w aqueous MeOH. See Acetaminophen for full details.


620	HNB-5 ($C_{26}H_{25}N_2O_4$) HO O O H N O H N	$\begin{array}{c} 4.31 \pm 0.05 \\ 8.64 \pm 0.05 \\ 9.42 \pm 0.05 \end{array}$	U U U	+H +H -H	Potentiometric	H ₂ O t = 25.0 ± 0.1 I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 24–44 %w/w aqueous MeOH. See Acetaminophen for more details.
621	Hydralazine (C ₈ H ₈ N ₄) NHNH ₂ N	$\begin{array}{c} 7.1 \\ 6.820 \ \pm 0.005 \end{array}$	U U	+H +H	Potentiometric Conductance	H ₂ O H ₂ O <i>t</i> = 25 <i>I</i> undefined	Evstratova KI and Ivanova AI, <i>Farmatsiya</i> (Moscow) 17 (2), 41–45, (1968); CA 69:46128a; Evstratova KI, Goncharova NA and Solomko VY, <i>Farmatsiya</i> (Moscow) 17 (4), 33–36, (1968); CA 69:99338a (1968). "Evstratova and Ivanova reported a pK_a of 7.1. Evstratova <i>et al.</i> reported a pK_a of 7.1 in water, a pK_a of 4.7 in aqueous 90 percent acetone, and a pK_b of 15.6 in the latter solvent. Naik <i>et al.</i> reported a pK_a of 6.9 for the dissociation of the monohydrochloride and 0.5 for dissociation of the dihydrochloride, determined absorptiometrically. Artamanov <i>et al.</i> reported a pK_a of 7.2." Artamonov BP, Konenkova TY and Maiofis SL, Conductimetric analysis in the manufacture and control of drugs. III. Conductimetric titration and some physicochemical characteristics of Apressin, <i>Med. Prom. SSSR</i> , 19 (9), 57–9 (1965); CA 63:17800f. Cited in: Orzech CE, Nash NG and Daley RD, Hydralazine hydrochloride, <i>APDS</i> , 8 , 283–314 (1979).
622	Hydralazine	0.5 6.9	U U	$^{+\mathrm{H}}_{+\mathrm{H}}$		H ₂ O	W&G: Naik DV, Davis BR, Minnet KM and Schulman SG, Fluorescence of hydralazine in concentrated sulfuric acid, J. Pharm.
							Sci., 65, 274–6 (1976).
623	Hydrochlorothiazide ($C_7H_8ClN_3O_4S_2$)	8.6 9.9	U U	-H -H	Potentiometric	H_2O $t = 60.0 \pm 0.05$	Mollica JA, Rehm, CR, Smith JB and Govan HK, Hydrolysis of benzothiadiazines, J. Pharm. Sci., 60, 1380–1384 (1971). Ref. 26 in
		9.9	0	-11		$I = 00.0 \pm 0.03$ I undefined	Deppeler HP, Hydrochlorothiazide, <i>APDS</i> , 10 , 405–436 (1981).
	H ₂ NSO ₂ Cl NH	8.7 ± 0.05	U	-H	Spectro	H_2O $t = 25.0 \pm 0.05$ <i>I</i> undefined	 NB: Potentiometric titration data was analysed according to the method of Noyes for substances with two ionizing groups with pK_a values less than 2.7 units apart. Also reported pK_a values under the same conditions for N1-ethylhydrochlorothiazide, 9.5 ± 0.05; C2-ethylhydrochlorothiazide, 8.8 ± 0.05.
		$\begin{array}{c} 8.81 \pm 0.05 \\ 10.4 \pm 0.1 \end{array}$	U U	-H -H	Spectro	H ₂ O t undefined I undefined	Stahl PH, Ciba-Geigy Ltd., Basle, data on file (1978).

N Appendix A (continued)


	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
624	Hydrochlorothiazide	8.5	U U U	-H -H	Potentiometric	,	 Henning VG, Moskalyk RE, Chatten LG and Chan SF, Semiaqueous potentiometric determination of apparent pK_{a1} values for benzothiadiazines and detection of decomposition during solubility variation with pH studies, <i>J. Pharm. Sci.</i>, 70(3), 317–319 (1981). NB: See Flumethiazide for details. The second pK_a value was not
							reported.
625	Hydrochlorothiazide	8.57 ± 0.04	U	-H (ring)	Potentiometric	H_2O $t = 25.0 \pm 0.1$	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK _a determination of water-insoluble compounds: Validation study in
		10.22 ± 0.02	U	–H (side)		<i>I</i> = 0.1 (NaCl)	methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: By extrapolation from 23–37 %w/w aqueous MeOH. See Acetaminophen for full details.
626	Hydrochlorothiazide	GLpK _a :			Spectro	H ₂ O	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric
		8.78 ± 0.01	А	+H		t = 25	determination of acid dissociation constants, Anal. Chim. Acta, 434,
		9.96 ± 0.02	U	+H		I = 0.15 (KCl)	157–167 (2001).
		A&S:		. 11		Ar atmosphere	NB: See Clioquinol for details.
		8.90 ± 0.08	U U	$^{+H}_{+H}$			
627	Hydrocortisone hydrogen succinate $(C_{25}H_{34}O_8)$	$\begin{array}{c} 10.20 \pm 0.07 \\ 5.10 \\ 5.64 \end{array}$	U	-H	Potentiometric	20% aq EtOH 50% aq EtOH	Garrett ER, Prediction of stability in pharmaceutical preparations. X. Alkaline hydrolysis of hydrocortisone hemisuccinate, <i>J. Pharm.</i>
							<i>Sci.</i> , 51 , 445–450 (1962).
628	Hydrocortisone, imidazole-1-carboxylic acid prodrug ($C_{25}H_{32}N_2O_6$) 0 HO HO HO HI HI HI HI HI	3.3	U	+H	kinetic	H_2O t = 25.0 I = 0.5 (KCl)	Klixbull U and Bundgaard H, Prodrugs as drug delivery systems. Part 29. Imidazole-1-carboxylic acid esters of hydrocortisone and testosterone, <i>Arch. Pharm. Chemi., Sci. Edn.</i> , 11 (4), 101–110 (1983). "The kinetics of hydrolysis of imidazole-1-carboxylic acid esters of hydrocortisone and testosterone were studied to assess their suitability as prodrug forms. The pH-rate profiles of the 2 derivatives were derived in the range pH 1–12 and were accounted for by assuming spontaneous hydrolysis of the protonated forms (pK_a 3.3–3.5) and hydroxide ion-catalyzed hydrolysis of the free base forms"

629	Hydroflumethiazide (C ₈ H ₈ F ₃ N ₃ O ₄ S ₂) H_2NSO_2 F_3C NH H	8.5	U U	-H -H	Potentiometric	mixed aq.	 Henning VG, Moskalyk R.E, Chatten LG and Chan SF, Semiaqueous potentiometric determination of apparent pK_{a1} values for benzothiadiazines and detection of decomposition during solubility variation with pH studies, <i>J. Pharm. Sci.</i>, 70, 317–319 (1981). NB: See Flumethiazide.
630	Hydroflumethiazide	8.9 10.7	U U	H H		RT	 Kobinger W and Lund FJ, Investigations into a new oral diuretic, rontyl (6-trifluoromethyl-7-sulfamyl-3, 4-dihydro-1,2,4-benzothiadiazine-1,1-dioxide), <i>Acta Pharmacol. Toxicol.</i>, 15, 265–274 (1959); CA 53:14332e. Cited in Orzech CE, Nash NG and Daley RD, Hydroflumethiazide, <i>APDS</i>, 7, 297–317 (1978). "Kobinger and Lund report a pK₁ of 8.9 and a pK₂ of 10.7 at room temperature."
631	Hydroflumethiazide	8.73 8.79	U U	-H -H	Spectro ($\lambda = 273 \text{ nm}$) fluoro ($\lambda_{ex} = 333 \text{ nm}$; $\lambda_{em} = 393 \text{ nm}$)	H ₂ O	 Smith RB, Smith RV and Yakatan GJ, Spectrofluorometric determination of hydroflumethiazide in plasma and urine, <i>J. Pharm. Sci.</i>, 65, 1208–1211 (1976). NB: A value of 10.5 is reported in Sunshine I, Handbook of analytical toxicology, CRC Press, Boca Raton, FL, USA. Cited by Orzech CE, Nash NG and Daley RD, Hydroflumethiazide, <i>APDS</i>, 7, 297–317 (1978).
632	Hydrogen peroxide (H ₂ O ₂) H-O-O-H	>11.3	U	-H	Conductance	H_2O t = 25	Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, International Critical Tables, vol 6, McGraw-Hill, NY 259–304 (1929).
633	Hydroquinone (C ₆ H ₆ O ₂) HO OH	8.87	U	-H	Spectro	H_2O t = 15 c = 0.0025 to 0.005	 Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i>, 162, 289–353 (1925). Cited in Perrin Bases 2919, ref. K47. NB: The method used colorimetric determination of the extent of ionization by use of an indicator of known pK_a value.
634	N-hydroxyamphetamine (C ₉ H ₁₃ NO)	5.77	U	+H		H_2O t =25 I = 1.0 (KCl)	 Lindeke B, Anderson E, Lundkvist G, Jonsson U and Eriksson SO, Autoxidation of <i>N</i>-hydroxyamphetamine and <i>N</i>- hydroxyphentermine: the formation of 2-nitroso-1-phenyl- propanes and 1-phenyl-2-propanone oxime, <i>Acta Pharm. Suec.</i>, 12(2), 183–198 (1975). NB: See <i>N</i>-hydroxyphentermine for full details.

Append	lix A	(continued))
--------	-------	-------------	---

Compound	Partition/pH	Potentio	Spectro
4-Hydroxycoumarin	4.13 (A)	4.10 (A)	-
Warfarin	5.02 (A)	5.00 (A)	_
Acenocoumarin	4.98 (A)	5.05 (A)	-
Phenprocoumon	4.02 (U)	4.20 (U)	_
Ethyl biscoumacetate	-	-	1.25 (U)
,	7.50 (A)	7.50 (A)	-
Coumetarol	_	-	0.65 (U)
	-	9.00 (U)	-

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
641	10-cis-Hydroxydihydronorcodeine (C ₁₇ H ₂₁ NO ₄) HO CH ₃ O HO HO HO HO HO HO HO HO HO HO HO HO HO	9.17	U	+H	Potentiometric	H ₂ O	 Rapaport H and Masamune S, The stereochemistry of 10-hydroxycodeine derivatives, <i>JACS</i>, 77, 4330–4335 (1955). Cited in Perrin Bases Supplement 7479 ref. R3. NB: The study used measurements of pH with a glass electrode and liquid junction potentials.
642	10-trans-Hydroxydihydronorcodeine (C ₁₇ H ₂₁ NO ₄) HO HO CH_3O H OH	8.72	U	+H	Potentiometric	H ₂ O	 Rapaport H and Masamune S, The stereochemistry of 10-hydroxycodeine derivatives, <i>JACS</i>, 77, 4330–4335 (1955). Cited in Perrin Bases Supplement 7480 ref. R3. NB: The study used measurements of pH with a glass electrode and liquid junction potentials.
643	4-(2-Hydroxy-3-isopropylamino-propoxy) indole (C ₁₄ H ₂₀ N ₂ O ₂) HO O NH	9.65 ± 0.1	U	-H	Potentiometric	H ₂ O t = 24	 Maulding HV and Zoglio MA, pK_a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, <i>J. Pharm. Sci.</i>, 60, 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.

644	3-Hydroxy- α -(methyl-amino)methylbenzene- methanol (C ₉ H ₁₃ NO ₂) OH H CH ₃ OH OH	9.48 9.71	U U	+H, -H -H, +H	Spectro	H_2O t = 20.0 ± 0.1 I = 0.16	Quintero B, Baena E, Cabeza MC, Thomas J and Alvarez JM, Determination of microscopic dissociation constants of 3-hydroxy- α -(methylamino) methylbenzenemethanol by a spectral deconvolution method, <i>J. Pharm. Pharmacol.</i> , 41(7), 485–488 (1989). "Microscopic dissociation constants of 3-hydroxy- α -(methylamino) methylbenzene-methanol have been calculated from the titration spectrophotometer data (c = 3.8 × 10 ⁻⁴ M. Ionic strength = 0.16; buffer system: H ₃ BO ₃ /KOH) by application of a spectral deconvolution method. The results found (pK _a = 9.48; pK _b = 9.71; pK _c = 10.12; pK _d = 9.88) are in good concordance with those obtained from the conventional regression linear method (pK _a = 9.45; pK _b = 9.77; pK _c = 10.14; pK _d = 9.81)."
645	5-[1-Hydroxy-2-[(1-methylethyl)amino]-ethyl]- 1,3-benzenediol (metaproterenol) (C ₁₁ H ₁₇ NO ₃)	8.84 10.28	U U	+H, -H -H, +H	Spectro	$\begin{array}{l} H_2O\\ I=0.02 \end{array}$	Quintero B, Lopez J and Thomas J, Determination of dissociation constants of 5-[1-hydroxy-2-[(1-methylethyl)-amino]ethyl]-1,3- benzenediol, J. Pharm. Sci., 74(1), 72–75 (1985).
	ОН	8.88	U	+H, −H			Hernandez Gaina A, Ph.D. Thesis, University of Granada, 1982.
	Н	10.28	U	-H, $+H$			
	HO CH ₃ CH ₃	11.70	U	-Н			
646	N-Hydroxyphentermine (C ₁₀ H ₁₅ NO)	6.03	U	+H	Potentiometric	H_2O t = 25 I = 1.0 (KCl)	Lindeke B, Anderson E, Lundkvist G, Jonsson U and Eriksson SO, Autoxidation of <i>N</i> -hydroxyamphetamine and <i>N</i> - hydroxyphentermine: the formation of 2-nitroso-1-phenyl- propanes and 1-phenyl-2-propanone oxime, <i>Acta Pharm. Suec.</i> , 12(2) , 183–198 (1975).
J	CH3	5.80	U	+H		29% EtOH t = 25 I = 0.1 (KCl)	"The autoxidation of <i>N</i> -hydroxyamphetamine (I) and <i>N</i> -hydroxyphentermine (II) was investigated. The oxidation rate, in aqueous solution, is pH dependent with a considerable oxidation taking place around pK _a The pK _a values were determined for <i>N</i> -hydroxyamphetamine and <i>N</i> -hydroxyphentermine. The reported constants are the stoichiometric ones, and were determined at 25 °C and fixed ionic strength, using methods earlier described [15] <i>N</i> -hydroxyamphetamine (0.2 meq) was titrated with HCl (0.5 M) and <i>N</i> -hydroxyphentermine-HCl (0.2 meq) was titrated from about 25 pH readings in the range –log [H+] = pK _a ± 0.7 and are expected to be correct within ± 0.02 units Beckett <i>et al.</i> have reported a pK _a value of 8.25 for

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
647	<i>p</i> -Hydroxy-norephedrine (C ₉ H ₁₃ NO ₂) $\downarrow \qquad \qquad$	8.70 ± 0.02	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $l \le 0.001$	 <i>N</i>-hydroxyamphetamine [5]. (Note added in proof: Since this paper was submitted Beckett <i>et al.</i> report a pK_a value of 8.1 for N-hydroxyphentermine. The pK_a values reported by Beckett <i>et al.</i> are in good agreement with what we consider to be the pK_b values.)" 5. Beckett AH and Al-Sarraj S, <i>J. Pharm. Pharmacol.</i>, 25, 328–334 (1973). NB: See no. 1922. 15. Eriksson S-O and Holst C, Hydrolysis of anilides. II. Hydrolysis of trifluoro- and trichloroacetanilide by hydroxyl ions and by some bifunctional catalysts. <i>Acta Chem. Scand.</i> 20, 1892–1906 (1966). NB: MO calculations of the electron density at nitrogen (R. Prankerd, unpublished results) support the Beckett value as the pK_a and Lindeke's values as pK_b values. Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i>, 73, 2611–13 (1951). NB: See Amphetamine for details; from pK_b = 5.30.
648	7-(2-Hydroxypropyl)theophylline (C ₁₀ H ₁₄ N ₄ O ₃) $CH_3 \longrightarrow H \\ O \longrightarrow H \\ O \longrightarrow H \\ CH_2 CHOHCH_3$						 Maulding HV and Zoglio MA, pK_a determinations utilizing solutions of 7-(2-hydroxypropyl)-theophylline, <i>J. Pharm. Sci.</i>, 60, 309–311 (1971). "A method exhibiting applicability in the evaluation of ionization constants of certain difficultly soluble compounds by potentiometric titration is discussed. The neutral xanthine derivative, 7-(2-hydroxypropyl)theophylline, is employed as an aid in dissolution of poorly soluble molecules, allowing their subsequent titration with acid or base in the usual manner. Examples of the utility of this treatment are given and pertinent data included as they apply to several structural prototypes"

649	4-Hydroxysalicylic acid (C ₇ H ₆ O ₄)	3.23	U	-Н	Potentiometric	$\begin{array}{l} H_2O\\ t=25\pm0.1 \end{array}$			tate decomposition of para- n. Sci., 64 , 1931–1935 (1975).
	но соон						Substituent (X)	pKa for p- XC6H₄COOH	рК _a for p-XC ₆ H ₃ (o-OH) COOH
	OH						$-H$ $-OC_2H_5$ $-OH$ $-N(Me)_2$ $-N(Et)_2$	4.21 4.45 4.59 5.05 (6.01) (6.19)	2.90 ^a 3.16 3.23 3.76 3.84
							Organic Acids in Ionization Consta (1979) reported	Water, IUPAC (196 ants of Organic Acids three pK_{a1} values fo at 25°C and $I = 0.1$	ssow, Dissociation Constants of 1). NB: Serjeant and Dempsey, <i>in Water</i> (Supplement), IUPAC r 4-Hydroxysalicylic acid in the M. Reported pK _{a2} values were
650	Hydroxyzine (C ₂₁ H ₂₇ ClN ₂ O ₂) Cl H	$\begin{array}{c} 1.96 \pm 0.05 \\ 7.40 \pm 0.03 \end{array}$	A U	+H +H	Potentiometric	H_2O $t = 24.5 \pm 0.5$	benzhydrylpiµ methanol solu	perazine antihistamin	MW, pK_a determination of tes in aqueous and aqueous r1(12) , 1363–1366 (1982).
651	Hydroxyzine	1.99 ?	A	+H +H	Potentiometric	H ₂ O t = 25 I = 0.00 (NaCl)	psychotropic of meclizine., Fan Tsau J and De 319–341 (1978) NB: Activity effe	tiphenylmethane der m. Aikak. 80 , 161–165 Angelis N, Hydroxyz). ects were estimated w n = 0.160). Also founce	the ionization of some ivatives, hydroxyzine and i (1971); CA 75:41145t. Cited in zine dihydrochloride, <i>APDS</i> , 7 , with the Guggenheim equation d

	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; / or c M	Comments and Reference(s)		
652	Hyoscyamine (C ₁₇ H ₂₃ NO ₃)	9.68	U	+H	Partition	$\begin{array}{l} H_2O\\ t=21\pm2 \end{array}$	Bottomley W, Mortimer PI, Partition separation of tropa Aust. J. Chem., 7, 189–196 (1954). Cited in Perrin Bases		
	C ^{H3} N O O O O O O O O O O O O O O O O O	9.65	U	+H		<i>c</i> = 0.028	NB: Used a glass electrode in an uns junction potentials to measure the the alkaloid is complete with equa chloroform phases. Also reported norhyoscyamine, tigloidine, valero	pH at which 50% extraction o Il volumes of aqueous and studies on hyoscine,	
653	Hypoxanthine (C ₅ H ₄ N ₄ O) O	8.50 ± 0.06	U	-Н	Spectro	H_2O t = 25 I = 0.3	Cohen JL and Connors KA, Stability molecular complexes in aqueous s 1271–1276 (1970).		
	HN						Compound	рK _a	
							Xanthine	9.95 ± 0.05	
	N N						8-nitrotheophylline Benzimidazole-2-acetonitrile	3.55 ± 0.05 $4.20 \pm 0.02; 11.76 \pm 0.02$	
							6-nitrobenzimidazole	4.20 ± 0.02 , 11.78 ± 0.02 2.89 ± 0.03 ; 10.69 ± 0.05	

Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
			See comments	(+H or -H)			Data reliability cut-off pointsR: Reliable = $\pm < 0.02$ A: Approx = ± 0.02 to ± 0.06 U: Uncertain = $\pm > 0.06$
							These overall data reliability cut-offs apply when all other aspect of the pK_a values have been considered. Where key variables (suc as temperature, ionic strength, solvent composition) have not beer reported, or the value was obtained from a computer program, a value is automatically assessed as U: Uncertain. A few results hav been classified as VU: Very Uncertain.
654	Ibuprofen (C ₁₃ H ₁₈ O ₂) CH ₃ HIII COOH CH ₂ CH(CH ₃) ₂	4.45 ± 0.04	Α	-H	Potentiometric	H ₂ O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, <i>Pharm. Res.</i> , 15 (2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also reported log P (octanol-water) and log P (dioleylphosphatidylcholine unilamella vesicles-water). The same result was reported in Sirius Technical Application Notes, vol. 2 , pp. 26–27 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: from extrapolation to 0% MeOH from data in 16–74 wt% MeOH b the Yasuda-Shedlovsky procedure. Concentration of analyte, 1.3–2.5 mM .
655	Ibuprofen	4.43	А	+H	CE/pH (–ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard M and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 4.41.
656	Ibuprofen	$\begin{array}{l} \mathrm{GLp}K_{\mathrm{a}}\!\!:\\ 4.24\pm0.03\\ \mathrm{A\&S}\!\!:\end{array}$	U	-Н	Spectro	H_2O t = 25 I = 0.15 (KCl)	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometri determination of acid dissociation constants, Anal. Chim. Acta, 434 157–167 (2001).
		4.45 ± 0.05	А	-H		Ar atmos- phere	NB: See Clioquinol for details.

No.	Compound Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions	Comments and Ref	erence(s)			
657	Ibuprofen	4.51 ± 0.07	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, determination o methanol/wate NB: By extrapo See Acetaminop	of water-inso r mixtures, lation from	oluble con Int. J. Pha 16–51%w	npounds: m., 151 , 2	validation stud 35–248 (1997).
658	Ibuprofen 4.31 ±		U —H	Spectro	H ₂ O t = 22.0 I = 0.2 (NB: compare with other values taking into account effects of I and t)	Ueda H, Pereira-F pharmaceutical <i>Drug Dev. Ind. 1</i> "An ibuprofen co measurements i unionised spect spectrum in 0.0 and 280 nm. Th component mix varying from 4. measurements species and ther ionic strength o by a) single war component mix and c) by analy derivative techr	application. Pharm., 11 (4) ncentration in phosphat trum was obb trum was obb trum was obb e analysis w trure Ibu 13 to 5.2 (Da were obt n of solution if 0.2. Table ² velength def trure over a sis of a two	s of diode , 833–843 of 8 × 10 e buffers of tained in The spect ras perfor profen ha avis, 1975 ained of t s of accur 1 shows ti terminatic waveleng compone	array spe (1985). - ⁵ M was of ionic st: 0.1 N HC a were ob med as s been rep Whitlam he unionis ately know e appare ns, b) by th range c ht mixture	ectrophotometer used for the rength 0.2. The 1 and the ionized between ssuming a two ported to have <i>et al.</i> , 1979). The sed and ionised wn pH at a com- nt $pK_{a}s$ determ analysis of a two of ten nanometer using the first	
							Table 1: pK _a determ	nination a	t 22 °C an	d ionic stre	ength 0.2
							p <i>K</i> _a	nm	deriv.	n	
							4.25 ± 0.03 4.31 ± 0.05 4.41 ± 0.02	226 224–234 224–234	0 0 0	12 11 12	

The pK_a value of 4.31 \pm 0.05 ... seems to be the most reliable because the data is averaged over the 10 nm wavelength range of maximum difference between the spectra of the ionised and unionised forms. The derivative method gave a slightly higher result, which may be due to the increased signal to noise ratio associated with obtaining the derivative spectra, although the statistics associated with the measurements are excellent."

659	Ibuprofen	4.13 ± 0.05	U	-Н	soly-pH	H ₂ O t undefined I undefined	Whitlam JB, Crooks MJ, Brown KF and Pedersen PV, Binding of nonsteroidal antiinflammatory agents to proteins I. Ibuprofenserum albumin interaction, <i>Biochem. Pharmacol.</i> , 28 , 675–678 (1979). NB: The pK_a was determined by the solubility technique of Albert and Serjeant (1971) to be 4.13 \pm 0.05.
660	Ibuprofen	4.45	U	-H	Potentiometric	H_2O t = 37 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999).
661	Ibuprofen	5.2	U	-H	partition	H_2O $t = 25.0 \pm 0.1$	Persson B-A, Extraction of amines as complexes with inorganic anions. Part 3, Acta Pharm. Suec., 5, 335–342 (1968). NB: See
		5.2	U	-H	not stated	60% EtOH	Chlorpromazine for details. Davis LJ, Ibuprofen, <i>Drug Intell. Clin. Pharm.</i> , 9 , 501–503 (1975).
662	Ibuprofen	5.3	U	-H	Spectro	H ₂ O t undefined I undefined	Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i> , 9 (5), 767–793 (1983).

"Drug solutions were prepared by dissolving an amount of 0.5 to
2.0 mg (of the drug) in 100 mL of both solution A and solution B.
Different amounts dissolved depend on the minimum solubility in
solution A (acidic) and on an optimum UV-absorption within 0.1
and 0.9 absorption units. Both solutions have been mixed to
selected and controlled pH-values according to the mixing
diagram. The solutions were measured spectrophotometrically in a
1-cm cell between 200 and 400 nm.

Buffer solutions

Solution A:		Solution B:					
HCl 1 M	94.0 mL	Na2HPO4·2H2O	20.5 g				
Glycocoll	0.5 g	KH ₂ PO ₄	2.8 g				
NaCl	3.68 g	NaCl	0.15 g				
H ₂ O	to 1000.0 mL	H ₂ O	to 1000.0 mL				

Method A for substances having a change in the wavelength of the absorption maximum with pH. . . . The wavelength of maximum absorption λ has been plotted *vs*. pH as shown in the tables. The dissociation constant has been either extrapolated graphically and calculated by determining the maximum change with pH.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)		
							Method B for substances the same wavelength w with pH (dA/dpH) has tables. The dissociation graphically or calculate height with pH."	ith pH been differ constant ha	The change in absor entially plotted as a as been either extra	rption height shown in the polated
663	Ibuprofen	4.5-4.6	U	-H	Potentiometric		Higgins JD, Gilmor TP, M Ibuprofen, APDS, 27 (2 Avdeef A, Potentiomet compounds: Validation J. Pharm., 151, 235–248	000). Cited: ric p <i>K</i> a dete study in m	Takacs-Novak K, I rmination of water	Box KJ and -insoluble
		4.52	U	-H	Potentiometric	H ₂ O $t = 25 \pm 0.5$ I = 0.00 (KCl)	Rafols C, Roses M and Bos steroidal anti-inflamma mixtures, Anal. Chim. A method using i-PrOH/ v/v. Metrohm autotitra corrections applied and data handling procedu	sch E, Disso (tory drugs <i>cta</i> , 350 , 249 water mixtu (tor; careful l extrapolate	in isopropyl alcoho –255 (1997). NB: Po ures in the range 10 electrode calibratio ed to zero [i-PrOH]	ol /water otentiometric /90 to 90/10 on. Activity
664	Ibuprofen	4.30–5.16	U	-H	Potentiometric	H_2O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Avdeef A, Box KJ, Comer Patterson W and Tam K water-insoluble drugs i <i>Biomed. Anal.</i> , 20 , 631–6 autotitrator. Titrations organic cosolvent mixtu	JEA, Gilges Y, PH-metr n organic so 41 (1999). N were perfor	s M, Hadley M, Hii ic log P 11. pK _a dete olvent-water mixtu IB: Used a Sirius P0 med in a range of a	ermination of res, <i>J. Pharm.</i> CA101
							Cosolvent	pK _a (SD)	Cosolvent	pK _a (SD)
							Acetonitrile Dimethyl formamide Dimethyl sulfoxide 1,4-Dioxane	4.31 (0.04) 4.30 (0.05) 4.35 (0.03) 4.46 (0.10)	Ethylene glycol Methanol	4.33 (0.01) 4.34 (0.06) 4.45 (0.04) 5.16 (0.07)
665 666	Idarubicin (C ₂₆ H ₂₇ NO ₉) Idoxuridine	$\begin{array}{c} 4.73\pm0.21\\ 8.25\end{array}$	U U	+H -H			NB: See Daunorubicin for Prusoff WH, Recent adva			diseases,

Pharmacol. Rev., **19**, 209–250 (1967). NB: No reference given.

667	Imidazole (C ₃ H ₄ N ₂) 6.953		titrator) t		H_2O $t = 25 \pm 0.2$ <i>I</i> undefined	Cho MJ, Kurtz RR, Lewis C, Machkovech SM and Houser DJ, Metronidazole phosphate-a water-soluble prodrug for parenteral solutions of metronidazole, <i>J. Pharm. Sci.</i> , 71 , 410–414 (1982). NB: See Metronidazole for details. The paper gave pK _a values of the following substituted imidazoles:			
	Ň						Compound pKa Compound pKa		
							$\begin{array}{llllllllllllllllllllllllllllllllllll$		
668	Imidazole	7.0	U	+H	Potentiometric	H_2O t = 25 I = 0.0	Bates RG, Amine buffers for pH control, Ann. NY Acad. Sci., 92, 341–356 (1961).		
669	Imidazole, N-acetyl (C ₅ H _e N ₂ O)	3.6	U	+H	kinetic	H_2O t = 25 I = 0.2	 Jencks WP and Carriulo J, Imidazole catalysis. II. Acyl transfer and the reactions of acetyl imidazole with water and oxygen anions, J. <i>Biol. Chem.</i>, 234, 1272–1279 (1959). Cited in: Klixbull U and Bundgaard H, Prodrugs as drug delivery systems XXIX. Imidazole-1-carboxylic acid esters of hydrocortisone and testosterone, <i>Arch. Pharm. Chem., Sci. Edn.</i>, 11, 101–110 (1983). 		
670	Imipenem (C ₁₂ H ₁₇ N ₃ O ₄ S) $H_{3}C$ H H H NH^{+3} NH^{+3} NH^{+3} NH^{+3} NH^{+3}	~3.2 ~9.9	U U	-H +H	Potentiometric	H ₂ O t = 25.0	 Oberholtzer, E.R., Imipenem, <i>APDS</i>, 17, 73–114 (1988). McCauley J, Merck Sharp and Dohme Research Laboratories, Rahway, NJ, internal communication. "The pK_a values for imipenem determined by aqueous acidic/basic potentiometric titration at 25 °C are pK_{a1} ~3.2 and pK_{a2} ~9.9." 		

Appendix A (continued)
--------------	------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
671	Imipramine ($C_{19}H_{24}N_2$)	9.62	U	+H	Spectro	$\begin{array}{l} H_2O\\ t=22.0 \end{array}$	Kender DN and Schiesswohl RE, Imipramine hydrochloride, <i>API</i> 14, 37–72 (1985).
							Temperature (°C) (ref.) Method/Conditions pKa
	(CH ₂) ₃ N(CH ₃) ₂						22 (9) Photometric titration 9.62 24 (9, 15) Solubility 9.5 -(9) Extrapolated from water/ 9.5 methylcellosolve mixture; Potentiometric titration
							 9. Analytical Dept., Ciba-Geigy Ltd., personal communication (N 1979). 15. Green AL, Ionization constants and water solubilities of some aminoalkylphenothiazine tranquillizers and related compound <i>J. Pharm. Pharmacol.</i>, 19, 10–16 (1967).
672	Imipramine	9.5	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.
673	Imipramine	9.66	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 l = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard and Thompson RA, High-throughput screening of pK _a values - pharmaceuticals by pressure-assisted capillary electrophoresis - mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–26 (2003). NB: Reported a predicted value (ACD Labs) of 9.49.
674	Imipramine	9.40	U	+H	Potentiometric	H ₂ O t = 25 I undefined Ar atmos- phere	 Seiler P, Simultaneous determination of partition coefficient and acidity constant of a substance. <i>Eur. J. Med. Chem.</i>, 9, 663–665 (1974). NB: See Amitriptylline for details.

U

soly

-H

HN / O N Cl SO₂NH₂ H_2O t = 25

I undefined

I undefined

Difeo TJ and Shuster JE, Indapamide, *APDS*, **23**, 229–268 (1994). Cited Rosoff M and Serajuddin A, USV Pharmaceutical Corporation, Tuckahoe, NY, USA, personal communication. NB: Soly-pH data in aqueous buffers (Moody JE, O'Hare MJ and Sapio JP, USV Pharmaceutical Corporation, Tuckahoe, NY, USA, personal communication):

рН	soly (25 °C) (mg∕mL)	soly (37 °C) (mg∕mL)	рН	soly (25 °C) (mg∕mL)	soly (37 °C) (mg∕mL)
1.0	0.063	0.095	7.8	0.069	-
2.0	0.061	0.094	8.0	0.076	0.103
3.5	0.061	0.093	8.4	0.088	0.130
4.5	0.059	0.091	8.7	0.111	0.178
5.5	0.061	0.094	9.3	0.231	0.370
6.5	0.059	0.097	9.9	0.573	0.860
7.5	0.063	0.098			

The very small apparent increase in solubility below pH 4.5 suggests that protonation of the indole nitrogen is occurring to a slight extent.

Das Gupta V and Reed JB, Jr., First pK_a values of some acid-base indicators, *J. Pharm. Sci.*, **59**, 1683–1685 (1970).

NB: Used a method described by Reilley CN, Sawyer DT, Experiments for Instrumental Methods, McGraw-Hill, New York, NY, 153–155 (1961).

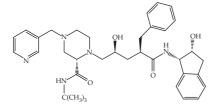
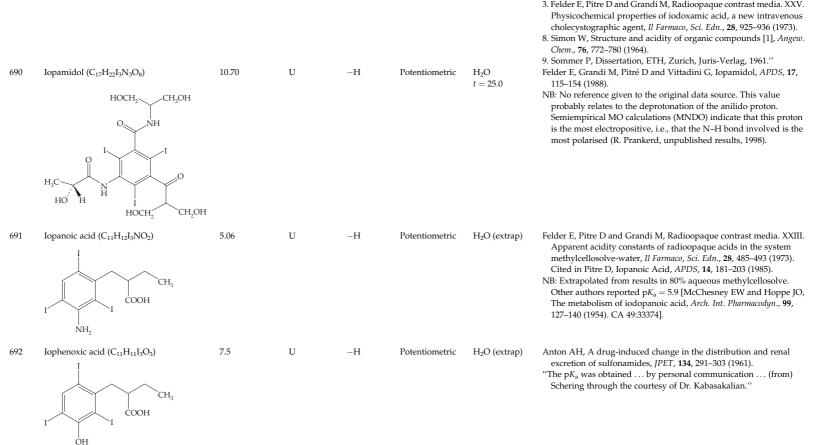

Johnson BD, Howard A, Varsolona R, McCauley J and Ellison DK, Indinavir Sulfate, APDS, 26, 319–357 (1999).

Table: pH Solubility profile

рН	Solubility (mg∕mL)	pН	Solubility (mg/mL)	pН	Solubility (mg∕mL)
3.4	61.2	4.0	5.13	6.9	0.019
3.5	31.7	4.9	0.312	7.0	0.023
3.6	20.3	5.9	0.037	8.0	0.017

NB: The spectroscopic pK_a value was stated to be the result of in-house measurements. A pK_a value of about 6 can also be estimated from the dependence of log P (octanol-aqueous buffer) on pH.

676	Indicators				Spectro	H ₂ O
	Bromocresol green	-0.85	U	+H		t undefined
	Bromocresol purple	-0.75	U	+H		I undefined
	Bromophenol blue	-0.95	U	+H		but >0.1
	Cresol red	1.05	U	+H		
	Phenol red	1.03	U	+H		
677	Indinavir (C ₃₆ H ₄₇ N ₅ O ₄)	3.8	U	+H	soly	H ₂ O
		6.2	U	+H	Spectro	t undefined


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
678	Indomethacin (C ₁₉ H ₁₆ ClNO ₄) O $CH_{3}O$ $CH_{2}OOH$ $CH_{2}OOH$	4.3	U	-H	Potentiometric	H ₂ O t = 20 I undefined but very low	Rainer VG, Krüger U and Klemm K, Syntheses und physicalisch- chemische Eigenschaften von Lonazolac-Ca einem neuen Antiphlogistikum/Antirheumatikum, <i>ArzneimForsch.</i> , 31 (4), 649– 655 (1981). NB: The p K_a values were measured potentiometrically in 10^{-5} – 10^{-4} molar solutions of the agent in dioxan-water mixtures (3–20 vol% dioxan), with 0.1N NaOH delivered from a microburette with "Folgepotentiometer" and a pH meter at 20 °C under nitrogen. The analysis of the measurements used a non- linear regression program on the CDC 6500 computer "Aus den über dem Molenbruch des Wassers aufgetragenen gemessenen p K_a –Werten (NB: 8–16 measurements per compound) wurden die auf reines Wasser bezogenen p K_a –Werte durch graphische Extrapolation ermittelt."
679	Indomethacin	4.55	U	-H	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. NB: See Azapropazone and Ibuprofen for details.
680	Indomethacin	4.5	U	-H	soly	H ₂ O t undefined I undefined	O'Brien M, McCauley J and Cohen E, Indomethacin, <i>APDS</i> , 13 , 211–235 (1984). From: Rodgers DH, Merck Sharp and Dohme Research Laboratories, West Point, PA, personal communication. NB: Also reported $pK_a = 4.5$ (potentiometric data, extrapolated from 50% MeOH–water) (Mulligan RE, Merck Sharp and Dohme Res. Lab., personal communication).
681	Indomethacin	4.15	U	-H	CE/pH (+ve ion mode)	H_2O t = 25	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB, Thompson RA, High-throughput screening of pK _a values of
		4.06	U	-H	CE/pH (-ve ion mode)	<i>I</i> = 0.025	pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 4.18.
682	Indomethacin	4.14	U	-Н	Potentiometric	H_2O t = 25 I unspecified	 Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i>, 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

683	Indomethacin	5.3	U	+H	Potentiometric	50% EtOH t undefined I undefined	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test, <i>ArzneimForsch.</i> , 24 , 494–499 (1974).
		6.4	U	+H		80% Me cellosolve	NB: Literature values obtained from the pH of half-neutralization. Also gave a value of 4.6 in water (Merck and Co.). This last value is in good agreement with other values.
684	Insulin, A21-aspartyl — Asn — Tyr — Cys — Asp-COOH Val — Cys Gly	4.06 (rsd = 1.23%)	U	-H	kinetic	H ₂ O t = 35 I = 0.1 (NaCl)	 Darrington RT and Anderson BD, Role of intramolecular nucleophilic catalysis and the effects of self-association on the deamidation of human insulin at low pH, <i>Pharm. Res.</i>, 11, 784–793 (1994). NB: A21-aspartylinsulin is a hydrolysis product of native insulin.
685	Insulin, A21-aspartyl % adsorbed water 3 % adsorbed water 10 % adsorbed water 14 % adsorbed water 52 Solution	$\begin{array}{l} \mbox{Apparent } pK_a \\ 3.85 \pm 0.16 \\ 4.04 \pm 0.14 \\ 4.07 \pm 0.14 \\ 4.13 \pm 0.10 \\ 3.92 \pm 0.09 \end{array}$	บ บ บ บ	-H -H -H -H	kinetic	Solid state (adsorbed surface water) t = 35 I undefined H_2O t = 35 I = 0.1 (NaCl)	 Strickley RG and Anderson BD, Solid-state stability of human insulin. Part 1. Mechanism and the effect of water on the kinetics of degradation in lyophiles from pH 2–5 solutions, <i>Pharm. Res.</i>, 13, 1142–1153 (1996). "The mechanisms and kinetics of degradation of human insulin lyophilized powders at pH 2–5 were studied as a function of water content The degradation rate increased with decreasing apparent pH ('pH'), yielding, at any given water content, solid state 'pH' rate profiles parallel to the solution pH rate profile. The 'pH' dependence was accounted for in terms of the fraction of insulin A21 carboxyl in its neutral form, with an apparent pK_a of ~4, independent of water content."
686	Iodamide ($C_{12}H_{11}I_3N_2O_4$)	1.88	U	-H	Potentiometric	H_2O t = 25	Pitré D, Iodamide, APDS, 15 , 337–365 (1986). "The apparent ionization constant, determined in methylcellosolve/
	COOH I CH ₃ CONH CH ₂ NHCOCH ₃	3.7	U	-H	Potentiometric	H ₂ O	 water (w/w) was pK_{MCS} (25) = 4.15; extrapolation to aqueous solution gave a pK_{H₂O}(25) = 1.88 (7). Other authors (6) reported a pK_a = 3.7, determined by titration. 6. Engelen AJM, Rodrigues de Miranda JF and Ariens EJ, Pharmacokinetics of renal contrast media. I. Renal excretion processes studied in dogs by the stop-flow technique, <i>Invest. Rad.</i>, 8, 210–218 (1973).
	Ĭ						 Fielder E, Pitre D and Grandi M, Radioopaque contrast media. XXIII. Apparent acidity constants of radioopaque acids in the system methylcellosolve-water. <i>Il Pharmaco, Sci. Edn.</i>, 28, 485–493 (1973)."

SAppendix A (continued)

	odamide	1.34	υ	-H	soly	H_2O t = 25 I undefined	(Felder E Physicoc		l Grandi M, perties of io	. Radiopaque odamide, an	e contrast n intraveno <i>Edn.,</i> 32 , 7	nedia. XLIII. us uro- '55–766 Solubility
688 Io							-	(g⁄100 mL)	$\text{pH}\pm0.05$		$pH \pm 0.05$,
688 Io							1.0	0.00			•	
688 Io							2.0 3.0	0.03 0.14 1.16	3.6 3.8	5.41 11.1	4.5 5.0	52.9 73.2
Ι、	odipamide (C ₂₀ H ₁₄ I ₆ N ₂ O ₆) COOH I V I I I I I I I	3.5	U	-H	Spectro	H ₂ O	disodiu n other trii Cited in I p <i>K</i> a value	7 and Röpke n salt of adip odobenzene Lerner HH, I e may be a s ce both disso n value.	vic acid bis(derivative odipamide statistically	2,4,6-triiodo s, <i>Chem. Ber.</i> e, <i>APDS</i> , 3 , 33 modified co	-3-carboxy , 87 , 659–6 33–363 (197 mposite of	ranilide) and 667 (1954). 74). NB: This f pK _{a1} and
689 Ioo	odoxamic acid ($C_{26}H_{26}I_6N_2O_{10}$) $\downarrow \qquad \qquad$	1.8 2.8	U U	-H -H	Potentiometric	H ₂ O (extrap from 80% MCS-H ₂ O) <i>t</i> = 25	(1991). "The ioniza potentior and ethat were req only one	vies A and C ation constar metric titrationol-water sy uired per mo inflection poole 9: Apparer	nts of iodox on in the m stems (2). I ole of acid oint. Data a	kamic acid w nethylcellosc in both cases and the resu are reported	vere detern Ive (MCS) 2 equivale Ilting curve in Table 9.	nined by water (3) ents of alkali es showed

80% MCS 25 4.06 5.07 -30% EtOH 21 2.96 --50% EtOH 21 3.22 - -70% EtOH 21 3.67 --

of $pK_1 = 1.8$ and $pK_2 = 2.8$ (8,9). 2. Miyake Y and Asahi Y, Physicochemical properties, stabilities, and analysis of iodoxamic acid, J. Takeda Res. Lab., 33, 73-86 (1974).

3. Felder E, Pitre D and Grandi M, Radioopaque contrast media. XXV.

For the 80% MCS system, extrapolation to water solvent yields values

	Ap	pendix	A ((continued)
--	----	--------	------	-----------	---

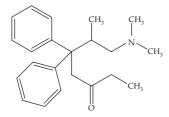
No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
693	Isocarboxazid (C ₁₂ H ₁₃ N ₃ O ₂) H ₃ C CONHNHCH ₂	10.4	U	+H	Spectro		Rudy BC and Senkowski BZ, Isocarboxazid, <i>APDS</i> , 2 , 295–314 (1973) Lau E, Hoffmann-La Roche, unpublished data.
694	Isochlorotetracycline (C ₂₂ H ₂₃ ClN ₂ O ₈) HO \downarrow	3.1 6.7 8.3	U U U	H H +H	Potentiometric	H_2O t = 25 c = 0.005	Stephens C, Murai K, Brunings K and Woodward RB, Acidity constants of the tetracycline antibiotics, <i>JACS</i> , 78 , 4155–4158 (1956) Cited in Perrin Bases 3327, Ref. S73. NB: The data were obtained in the presence of calcium ions, with a glass electrode in an asymmetric cell with liquid junction potentials. Stephens <i>et al.</i> cited Waller CW, Hutchings BL, Wolf CF, Goldman AA, Broschard RW and Williams JH, <i>JACS</i> , 74 , 4981 (1952) as the source of earlier values for comparison. However, this latter reference reported only two values, i.e., $pK_{a2} = 6.8$; $pK_{a3} = 8.1$.
695	Isochlortetracycline	3.96 6.73 7.93	บ บ บ	H H +H	Potentiometric	H_2O $t = 30.0 \pm 0.2$ I = 0.01 (KCl) N_2 atmosphere	Doluisio JT and Martin AN, Metal complexation of the tetracycline hydrochlorides, <i>J. Med. Chem.</i> , 6 , 16–20 (1963). NB: Metal-free solutions of the tetracycline titrated with standard NaOH solution and the pH measured. No details were given of the pH meter calibration. Metal stability constants were determined from identical titrations in the presence of varying concentrations of nickel(II), zinc(II) or copper(II) ions.
696	Isolysergic acid (C ₁₆ H ₁₆ N ₂ O ₂)	3.33 8.46 3.50 8.40	U U U U	-H +H -H +H	Potentiometric	$H_2O t = 24 c = 0.002 H_2O t = 38 c = 0.002$	Craig LC, Shedlovsky T, Gould RG and Jacobs WA, The ergot alkaloids. XIV. The positions of the double bond and the carboxy group in lysergic acid and its isomer, <i>J. Biol. Chem.</i> , 125 , 289–298 (1938). Cited in Perrin Bases 2922 ref. C54. NB: The study used ar asymmetric cell with a glass electrode and liquid junction potential. The pK _a value is the pH reported at half-neutralisation.

DL-Isomethadone (C21H27NO)

8.07

8.21

2.00


3.60

10.8

Spectro

50% EtOH

H₂O

698	DL-Isomethadone
699	Isoniazid (C ₆ H ₇ N ₃ O)

U	+H
U	+H
U	+H

-H

U

11.
n
n
1


Taylor JF, Ph.D. Thesis, Univ London (1968). Brewer, G.A., Isoniazid, APDS, 6, 183-258 (1977). "There is a discrepancy in the literature on the dissociation constants of isoniazid. ... in part due to the different methods of measurement employed. Fallab (34) determined the basic dissociation constant as 3e-11 measured conductometrically. Canic and Djordjevic (35) established that the 1st basic constant should be ascribed to the pyridine nitrogen and the 2nd to the hydrazine group. This is contrary to previous work by Cinglani and Gaudiano (36). Nagano and coworkers (37) determine the dissociation constants potentiometrically as $pK_1 = 2.13$, $pK_2 = 3.81$, $pK_3 = 11.03$. Salvesen and Glendrange (38) determined the dissociation constants in 1.0 M sodium chloride solution as $K_1 = 9.80e-3$ and $K_2 = 1.42e-4$. Zommer and Szuszkiewicz (11) have established $pK_1 = 10.75$ and $pK_2 = 11.15$ and protonation constants of 3.57 for the pyridine N and 1.75 for the hydrazine N. Rekker and Nauta (65) found that solutions of isoniazid became yellow at pH 10 and 2.7. The color is reversible on changing the pH. They explained this behavior on the basis of the existance of two positive ions, a monovalent yellow positive ion, a monovalent yellow positive ion and a divalent colorless positive ion. The pK values are pK' = 2.00, pK'' = 3.6, and pK''' = 10.8." (11) Zommer S and Szuszkiewicz J, Chem. Anal., 14, 1075-1083 (1969); CA 72:89616n (1970). (34) Fallab S, Helv. Chim. Acta, 36, 3-5 (1953).

(35) Canic VD and Djordjevic Rd, *Beograd*, **21**, 193–199 (1956); CA 5:16026f (1958).

(36) Cingolani and Gaudiano, *Rend. ist. super. sanita*, **17**, 601 (1954).
(37) Nagano K, Tsukahara H, Kinoshita H and Tamura Z, *Chem. Pharm. Bull.*, **11**, 797–805 (1963); CA 59:4867h (1963).

No. -

).	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
							 (38) Salvesen B and Glendrange JH, Medd. Norsk. Farm. Selskap., 27, 135–144 (1965); CA 64:9507f (1966). (65) Rekker RF and Nauta WT, Pharm.Weekblad, 99, 1157–1165 (1964); CA 63:435c (1965).
		1.75 3.57 10.75 11.15	บ บ บ	+H +H -H -H	Spectro	H ₂ O	 NB: See following for further details from Refs. 11, 37, and 65. Ref. 11: Zommer S and Szuszkiewicz J. Spectrophotometric investigations of acid-base properties of hydrazides of isonicotinic and cyanoacetic acids. <i>Chemia Analityczna</i> (Warsaw, Poland), 14(5), 1075–1083 (1969); CA 72:89616n. "Isonicotinic acid hydrazide (I) in an acid medium exhibits two absorption max. (molar absorptivity): 265 mµ, 5400 and 212 mµ, 5040; in alk. media the former disappears and a new broad max. at approx. 300 mµ appears. The uv spectrum of CNCH₂CONHNH₂ (II) shows only one max. λ_{max} 200 mµ at pH 1.6; the band is shifted towards longer wavelengths with increasing pH. The values of the dissocn. consts. (pK) are: 10.75 and 11.15 and those of the protonation consts.: pK₂ (pyridine N) 3.57, and pK₁ (hydrazide N) 1.75 and 2.3 for I and II, resp."
		2.13 3.81 11.03	บ บ บ	+H +H -H	Potentiometric		Ref. 37: Nagano K, Tsukahara H, Kinoshita H and Tamura Z. Metal complexes of isonicotinoylhydrazine and related compounds. II. Acid dissociation constants and ultraviolet absorption spectra of isonicotinoylhydrazine and related compounds, <i>Chem. Pharm. Bull.</i> , II (6), 797–805 (1963); CA 59:4867h. "Successive acid dissocn. consts. for a series of related compds. were detd. under N atm. by pH titrn. The solns. were M KNO ₃ , 4×10^{-2} N HNO ₃ , and 2×10^{-2} M in the compd. studied. Values detd. were: isonicotinoylhydrazine, $pK_1 = 2.13$, $pK_2 = 3.81$, $pK_3 = 11.03$; nicotinoylhydrazine, 2.26, 3.63, 11.49; picolinoylhydrazine, 1.26, 3.07, 12.25; benzoylhydrazine, 3.27; 12.53; p-itrobenzoylhydrazine, 2.90, 11.28; isonicotinamide, 3.82; 1-isonicotinoyl-L-methylhydrazine, 1.03, 4.17; 1-isonicotinoyl-2-methylhydrazine, 2.46, 4.04, 10.96."
		2.00 3.60 10.8	U U U	+H +H -H	Spectro		Ref. 65: Rekker RF and Nauta WT. Spectrophotometric investigation of isonicotinoyl hydrazide (INH). A contribution to the knowledge of the yellow isonicotinoyl hydrazide-p-aminosalicylic acid combination (INH-PAS), <i>Pharm. Weekblad</i> , 99 (42), 1157–1165 (1964); CA 63:435c.

235

"The combination p-aminosalicylic acid (I) and isonicotinoyl hydrazide (II) in the proportion 1:1 has been described variously as a salt, an addn. compd., or a mol. complex (Reinstein and Higuchi, CA 53:1639g). I did not show any yellowing regardless of pH, whereas II was colored at pH 10 and 2.70, the yellow color being stronger in alk. soln. but both reversible. The colors can be explained by the existence of 2 pos. II ions, one monovalent yellow pos. ion and a divalent colorless pos. ion. The pK values were pK' = 2.00, pK'' = 3.60, and pK''' = 10.80.''

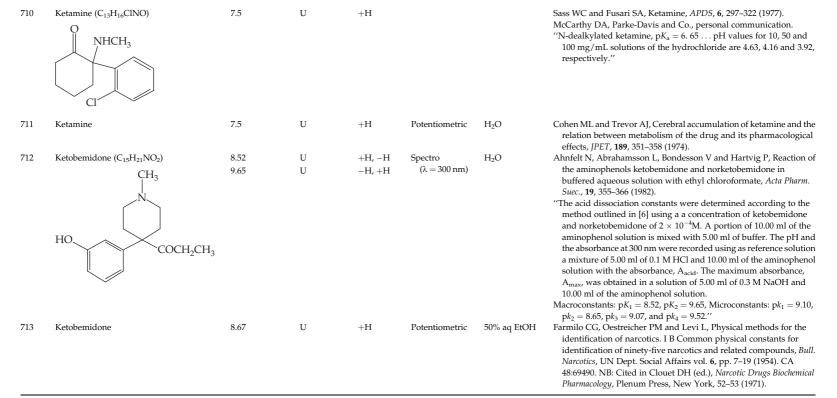
Asuero AG, Navas MJ, Herrador MA and Recamales AF, Spectrophotometric evaluation of acidity constants of isonicotinic acid, *Int. J. Pharm.*, **34**, 81–92 (1986).

"All photometric measurements were made with a Bausch and Lomb Spectronic 2000 instrument. Matched silica cuvettes were used in all measurements and the light path was 10 mm. The pH was measured with a Crison Model 501 pH meter fitted with a combined glass electrode. The pH meter was standardised against 0.05 M potassium hydrogen phthalate (pH = 4.01 at 25 °C)... Solutions for absorbance and pH measurements were prepared by mixing 2 mL of 2×10^{-3} M stock solution of isonicotinic acid in water, 2.5 mL of sodium perchlorate and a few drops of sodium hydroxide or perchloric acid at different concentrations. The solutions were then diluted to 25 mL with distilled water. Absorbance was measured against a solvent blank and the pH checked after the absorbance measurements. The temperature was kept at 20 \pm 1 °C."

- NB: Several computational approaches were used to deconvolute the overlapping pK_a values. Mean ionic activity coefficients were estimated with a Güntelberg correction. Another paper by the same authors reported an almost identical pK_{a2} value of 4.88 for isonicotinic acid (Asuero AG, Herrador MA and Camean AM, Spectrophotometric evaluation of acidity constants of diprotic acids: Errors involved as a consequence of an erroneous choice of the limit absorbances, *Analytical Letters*, **19**, 1867–1880 (1986))
- Muller F, Z. Elektrochem., 30, 587 (1924). Cited in Perrin Bases 2923 ref. M60. NB: The study used potentiometric titration with hydrogen electrodes in an unsymmetric cell with liquid junction potentials.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
702	Isoproterenol (C ₁₁ H ₁₂ NO ₃) HO HO $(CH_2NHCH(CH_3)_2$	8.60 10.1 12.0	U U U	+H, -H -H, +H -H		H ₂ O t = 20.0	Tariq M and Al-Badr AA, Isoproterenol, <i>APDS</i> , 14 , 391–420 (198 <i>BPC</i> , 11th Edn., Pharmaceutical Press, London 472 (1979).
703	Isoproterenol (DL-isoprenaline) $HO \longrightarrow OH \\ HO \longrightarrow CH_2NHCH(CH_3)_2$	$\begin{array}{c} 8.65 \pm 0.02 \\ 10.07 \pm 0.01 \end{array}$	A A	-H, +H +H, -H	Spectro, Potentio- metric	H_2O $t = 25.0 \pm 0.05$ I = 0.10 (KCI) N ₂ atmosphere pH calibration standards: 7.00 ± 0.02, 9.94	Ijzerman AP, BultsmaT, Timmerman H and Zaagsma J, The ionization of β -adrenoceptor agonists: A method for unravell ionization schemes, <i>J. Pharm. Pharmacol.</i> , 36 (1), 11–15 (1984). NB: Experimental data was fitted with the Marquardt algorit "The macroscopic ionisation constants for noradrenaline, adren and isoprenaline are in good agreement with the values obtai by others overlap in macroscopic ionisation constants has a confused the interpretation of results Jameson and Neillie (1965) and Rajan <i>et al.</i> (1972) (NB: See no. 731) related pK ₁ with dissociation of the protonated amino function, whereas Antika and Witkainen (1973) and Granot (1976) assigned the phenoli function as the more acidic group in accordance with some previous interpretations (Lewis, 1954; Kappe and Armstrong, 1965). (The present data) substantiates the latter view; the red in the uv-spectra of all amines, caused by the transition phenolate, yields pK _{1.x} , which value is in all cases very close the pK ₁ Ultraviolet-spectrophotometric measurements: determination of microscopic ionization constant K ₁₂ The compounds were analysed at 25.00 ° ± 0.05 °C catecholamines also with exclusion of light
							Compound $pK_{1z} pK_{2z}$ Compound $pK_{1z} pK_{2z}$
							Noradrenaline 8.68 9.68 Salbutamol 9.22 10.2 Adrenaline 8.69 10.14 Orciprenaline 8.67 9.92

9.23 9.93 Pirbuterol


AH 3021

7.95 10.64

								рK1	pK ₂		рK ₁	pK ₂
							Noradrenaline Adrenaline Isoprenalin Th 1206 AH 3021	8.63 8.73 8.65 8.72 9.01	10.07 10.31	Salbutamol Orciprenaline Terbutaline Cp 22352-1 Pirbuterol	8.70 8.70 8.08	10.37 9.92 10.09 10.25 10.64
704	Isoproterenol	8.57	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $I \le 0.001$	Electrochemical titrat ionization constants, were titrated with micropipetter at 25.00 exclusion of light), us meter. The volume measurements, the io KCl, the activity coeff concentrations we UV-spectrophotomet Leffler EB, Spencer HM adrenergic amines JA Amphetamine for del	K_1 and 0.1 M $0 \pm 0.$ $0 \pm 0.$ 0. was 2 mic str ficient re chosen ric one and B CS, 73	K_2 1 KOH f 05 °C . digital I 25–30 n ength v was tak sen to c s'' furger A , 2611–2	The compounds rom a calibrated (catecholamin Philips PW 9414 11, and for the sp vas assumed to 1 cen as 0.775. The obtain results con A, Dissociation c 2613 (1951). NB:	(0.6 m l Mettl es also ion ac pectros be that low mpara onstar See	M KCl) er DV10 o with tivity scopic t of 0.1 M ble to the ats of
							claimed to be accurat (oxidative) discolorat as rapidly as possible	ion of	solutio	n even when pH	l was r	
705	Isoproterenol	8.7 9.9	U U	+H -H	Potentio- metric, Spectro	H_2O t undefined I = 0.1 (glycine)	Lewis GP, The importan sympathomimetic an NB: Method similar t (no. 729).	ines, l	3r. J. Ph	armacol., 9 , 488–	, 493 (19	
706	Isoproterenol (DL-isoprenaline)	$\begin{array}{c} 8.58 \pm 0.03 \\ 9.93 \pm 0.12 \end{array}$	A U	-H, +H +H, -H	Potentio- metric, Spectro	H_2O t = 37 I = 1.0	Schüsler-van Hees, MT thesis, Ctr for Biopha NB: Microscopic: 8.66 Schüsler-van Hees, MT Driever MFJ, Ionizati <i>Pharm. Weekblad Sci.</i> 1	rm. Sc ± 0.0 IW, Be on con	i., Leide 1; 9.22 : ijersber stants o	en University, 1- \pm 0.08; 9.83 \pm 0. gen van Henego of catechols and o	-93 (19 14; 9.3 ouwen	983). 0 ± 0.05. GMJ,

Appendix A	(continued
------------	------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
707	Isopyridoxal (C ₈ H ₉ NO ₃) O H CH_3 OH H CH_2OH	4.00	U	+H	Spectro	H ₂ O t = 25 l > 0.1	Pocker A and Fischer EH, Synthesis of analogs of pyridoxal-5'- phosphate. <i>Biochem.</i> , 8 , 5181–5188 (1969). Cited in Perrin Bases suppl. no. 7785 ref. P41a. NB: The study used spectrophotome and electrometric measurements (following the procedure of Metzler DE and Snell EE, Spectra and ionization constants of th vitamin B ₆ group and related 3-hydroxypyridine derivatives, <i>JACS</i> , 77, 2431–2437 (1955)) in citrate-phosphate buffers. Althou the work was quite careful, U classification has been applied a presented figures showed some aberrations in the isosbestic poi suggesting that some decomposition had occurred. The paper a reported the corresponding value for isopyridoxal phosphate, $pK_{A1} = 4.25$, $pK_{A2} = 8.80$, and numerous other values.
708	Itanoxone (C ₁₇ H ₁₃ ClO ₃)	5.30 DOH	U	-Н	Potentiometric	H_2O (extrap) t = 25.0 N_2 atmos- phere	Cousse H, Mouzin G, Ribet J and Vezin J, Physicochemical and analytical characteristics of itanoxone, <i>J. Pharm. Sci.</i> , 70 (11), 1245–1248 (1981).
		H ₂					"maintained the temperature of the titrating vessel at 25°. Stir was by introducing a slow nitrogen stream under the surface the solution to be titrated. The titrant of carbonate-free potassi hydroxide (0.100N KOH) was delivered from a micrometer syringe; for each addition of titrant, the pH was measured and pK_a was determined from the half neutralization point The values of g(s) for different percentage volumes of dioxane and pK_a values of salicylic acid (the reference compound) are show Table 1. The difference between the two pK_a values is a linear function of g (s). The determination of the pK_a of I in water by extrapolation of measurements made on water-dioxane mixtur plotted versus g(s) determined for each water-dioxane system. pK_a of salicylic acid determined in water is 3.0. The pK_a of I determined in water-dioxane with extrapolation of the results zero dioxane concentration is $3.0 + 2.3 = 5.30$."
709	Kanamycin A ($C_{18}H_{36}N_4O_{11}$) HOCH ₂ HO HO HO HO HO HO HO HO HO HO HO HO HO	6.40 7.55 8.40 9.40	บ บ บ บ	+H +H +H +H	Potentiometric	H ₂ O	 Claes PJ, Dubost M and Vanderhaeghe H, Kanamycin Sulfate, AI 6, 259–296 (1977). Vanderhaeghe H and Claes PJ, unpublished results. NB: Derived from a pH-titration (0.5N HCl titrant). Avery lists a single value of 7.2, which appears to be a composite. However Amikacin (no. 1557) and Gentamicin (no. 1888).

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
714	Ketoconazole (C ₂₆ H ₂₈ Cl ₂ N ₄ O ₄) N N N N N N N N	3.25 6.22 —CI	U U	+H +H	CE/pH (+ve ion mode)	H ₂ O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 2.92 and 6.54.
715	Ketoprofen (C ₁₆ H ₁₄ O ₃)	5.94 (apparent)	U	-Н		MeOH/H ₂ O	 Liversidge GG, Ketoprofen, <i>APDS</i>, 10, 443–469 (1981). App pK_a = 7.2 (dioxan:water (2:1)) (20) App pK_a = 5.02 (acetonitrile:water (3:1)) (5) App pK_a = 5.937 (methanol:water (3:1)) (14) 5. Blazevic N, Zinic M, Kovac T, Sunjic V and Kajfez F, <i>Acta Pharm. Jugoslav.</i>, 25(3), 155–64 (1975). 14. Unterhalt B, <i>Pharm. Zeitung.</i>, 123(41), 1801–1803 (1978). 20. Brunet JP and Cometti A, <i>Ger. Pat.</i>, 2, 538,985.
716	Ketoprofen	3.7	U	-H	soly	H ₂ O t unspecified <i>I</i> unspecified	Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i> , 9(5), 767–793 (1983). NB: See Azapropazone and Ibuprofen for details.
717	KHL 8430 (C ₂₅ H ₂₉ NO ₂) $(C_{25}H_{29}NO_{2})$ $(C_{13}$ $(C_{13}$ (C_{13}) (C	10.60 ± 0.05	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 See Azapropazone and Duprofen for details. Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 42–60% w/w aqueous MeOH. See Acetaminophen for full details.

718	Labetalol (C ₁₉ H ₂₄ N ₂ O ₃) H ₂ N O O O O O O H O H H O H H O O H H O H H O O H H H O H H H O H	7.44 9.38	U U	+H -H	Potentiometric	H_2O (extrap) $t = 25 \pm 1$ I undefined Ar atmosphere	 Cheymol G, Poirier J-M, Carrupt PA, Testa B, Weissenburger J, Levron J-C and Snoeck E., Pharmacokinetics of β-adrenoceptor blockers in obese and normal volunteers, <i>Br. J. Clin. Pharmacol.</i>, 43, 563–570 (1997). NB: Determined by extrapolation from MeOH-water solutions, using the Yasuda-Shedlovsky procedure.
719	Labetalol	7.4	U	+H		H ₂ O	Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C and Vittoria A. Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta-adrenoceptor blocking agents, <i>Farmaco</i> , 45 , 647–663 (1990). Cited in: Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47 , 1242–1250 (2004) (ref. 275).
720	Labetalol	$\begin{array}{l} GLpK_{a}:\\ 7.41 \pm 0.01\\ 9.36 \pm 0.01\\ A\&S:\\ 7.49 \pm 0.10\\ 9.27 \pm 0.03 \end{array}$	A A U A	+H +H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	 J. Mut. Chim., 17, 124–1250 (2004) (R1 215). Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details. Cited Pagliara A, Carrupt PA, Caron G, Gaillard P and Testa B, Lipophilicity profiles of ampholytes, <i>Chem. Rev.</i>, 97, 3385–3400 (1997), with values of 7.48 and 9.39.
721	Lactic acid, D(–) (C ₃ H ₆ O ₃) COOH H——OH CH ₃	9.27 ± 0.03 3.83	A	+n _H			 Al-Shammary FJ, Mian NAA and Mian MS, Lactic Acid, <i>APDS</i>, 22, 263–316 (1993). NB: Martindale 29th Edn. See also Crutchfeld CA, McNabb WM and Hazel JF, Complexes of uranyl ion with some simple organic acids, <i>J. Inorg. Nucl. Chem.</i>, 24, 291–298 (1962).
722	Lactic acid, L(+) (C ₃ H ₆ O ₃) COOH HO-H-H CH ₃	3.79		-H			Al-Shammary FJ, Mian NAA and Mian MS, Lactic Acid, <i>APDS</i> , 22 , 263–316 (1993). Martindale 29th Edn.

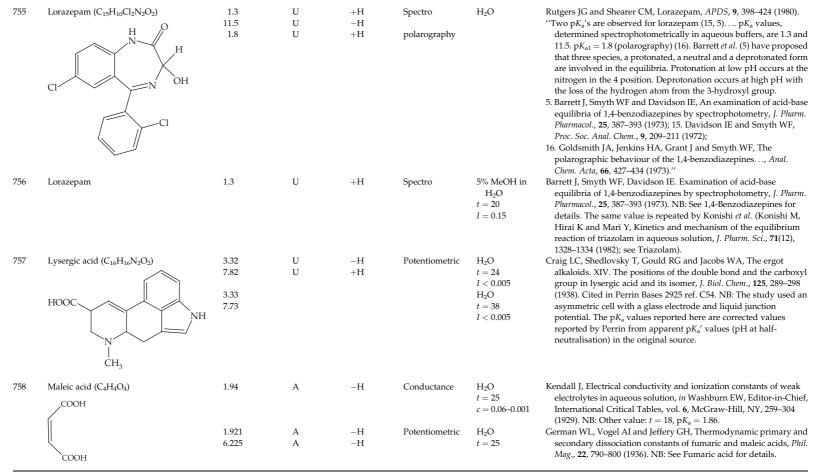
Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
723	Lactic acid, (\pm) (C ₃ H ₆ O ₃)	3.861 ± 0.002	R	-H	Conductance	H_2O $t = 25.0 \pm 0.01$ I = 0.00 (NaCl, KCl)	Partanen JI, Juusola PM and Minkkinen PO, Determination of stoichiometric dissociation constants of lactic acid in aqueous salt solutions at 291.15 and 298.15 K. <i>Fluid Phase Equilibria</i> , 204, 245–266 (2003). NB: Recalculated from the raw conductance data of Martin AW and Tartar HV, <i>JACS</i> , 59, 2672–2675 (1937).
724	Lactic acid (±)	3.863 ± 0.02	Α	H	Potentiometric	H_2O t = 25.0 ± 0.01 I = 0.00 (NaCl, KCl)	 Partanen JI Juusola PM and Minkkinen PO, Determination of stoichiometric dissociation constants of lactic acid in aqueous salt solutions at 291.15 and 298.15 K, <i>Fluid Phase Equilibria</i>, 204, 245–266 (2003). "Potentiometric LacOH titrations were carried out in aqueous NaCl and KCl solutions at 298.15 K. To avoid dimerisation of LacOH by ester formation, lactic acid was prepared in situ in the titration vessel at the beginning of each titration by adding equivalent amounts of sodium lactate (NaLacO) and hydrochloric acid The solutions titrated were prepared by mixing a volume of 10.00 cm³ of the NaLacO solution, 10.00 cm³ of the HCl solutions, 100.0 cm³ of a salt solution (NaCl or KCl) and 25.00 cm³ of water The NaCl solutions were titrated by using the (0.200 M) NaOH reagent and the KCl solutions by using the (0.200 M) KOH reagent. During the titrations the cell potential difference was measured by means of an N62 combination electrode and a CG841 pH-meter The resolution of the meter was 0.1 mV. The titration was added by using increments of 0.050 cm³ by a Dosimat (Metrohm) Standard buffer solutions of pH = 4.005 and 6.865 were used to check the stability of the measuring system between titrations. The pH-meter usually reproduced the same reading within 0.2 mV(+/- 0.003 pH) in these buffer solution tests. To check further the stability of (the) measuring system, a titration of formic acid was carried out " [NB: the formic acid titration gave pK_a = 3.740; this is acceptably close to the literature value,
725	Lauric acid (C ₁₂ H ₂₄ O ₂) CH ₃ (CH ₂) ₁₀ COOH	4.92	U	-H	Potentiometric	H ₂ O RT	pK _a = 3.752 (Robinson and Stokes; Eberson)] Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine II. Mechanism of interaction with bile salts and fatty acid salt anions, J. Pharm. Sci., 59, 329–333 (1970).
		5.3	U	-Н	Potentiometric	$\begin{array}{l} H_2O\\ t=20 \end{array}$	Nyren V and Back E, The ionization constant, solubility product, and solubility of lauric and myristic acids, <i>Acta Chem. Scand.</i> , 12 , 1305–1311 (1958). Also reported pK _a = 6.3 for myristic acid.

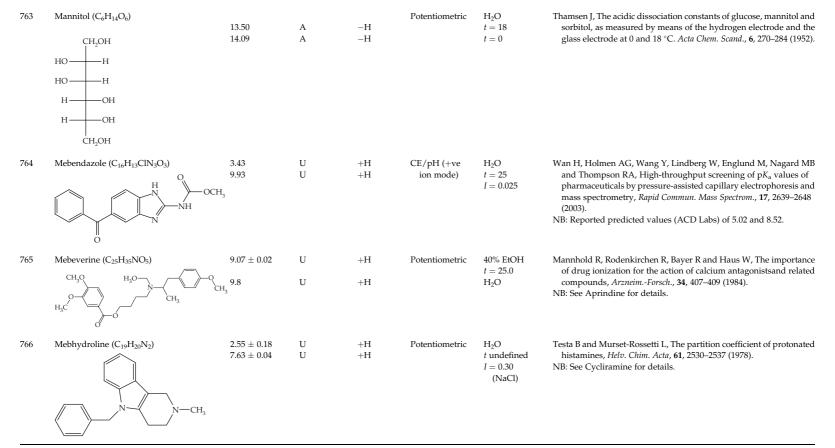
726	Levallorphan tartrate (C ₁₉ H ₂₅ NO. C ₄ H ₆ O ₆) HO H H H H / N [*] -CH ₂ -CH=CH ₂ COO ⁻ H HO HO HO HO HO HO HO HO HO	4.5 6.9	U U	-H +H	Potentiometric	H2O RT	 Rudy BC and Senkowski BZ, Levallorphan tartrate, <i>APDS</i>, 2, 339–361 (1973). Cited Lau E and Yao C, Hoffmann-La Roche, unpublished data. NB: The pK_{a1} value (4.5) refers to the hydrogen tartrate counterion.
727	Levallorphan (C ₁₉ H ₂₅ NO)	8.73	U	+H	Potentiometric	H_2O t = 20 I < 0.01	Kaufman JJ, Semo NM and Koski WS, Microelectrometric titration measurement of the pK_a 's and partition and drug distribution coefficients of narcotics and narcotic antagonists and their pH and
		8.43	U	+H		H_2O t = 37 I < 0.01	temperature dependence, J. Med. Chem., 18 , 647–655 (1975). NB: See Codeine for further details.
728	Levallorphan (C ₁₉ H ₂₅ NO)	8.30	U	+H	Potentiometric	50% EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. I B Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954). CA 48:69490. NB: Cited in Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53, 1971.
729	Levarterenol (L-noradrenaline; L-norepinephrine) ($C_8H_{11}NO_3$)	8.72	U	-H,+H	Spectro	pK _{a1} : H ₂ O t = 25 I undefined	Kappe T and Armstrong MD, Ultraviolet absorption spectra and apparent acidic dissociation constants of some phenolic amines. J. Med. Chem., 8, 368–374 (1965). Cited in Schwender CF,
	HO CH ₂ NH ₂ OH OH	9.72	U	+H,-H	Potentiometric	pK_{a2} : H_2O t = 35 I undefined	 Levarterenol bitartrate, <i>APDS</i>, 1, 339–361 (1972). " spectrophotometric methods were used for determining the phenolic pK_{a1} values. These values were then used to correct potentiometric titration curves to determine the amine pK_{a2} value, as the two steps were overlapping. pH measurements were made with a titrator that had been standardised with commercial pH standards. Potentiometric titrations were performed in an argon atmosphere using standard methods, including correction for sodium ion errors (<0.02 pH at worst). No corrections were made for activity coefficients and ionic strengths were not reported."

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)		
							NB: These studies do not address the separation of Also, the use of different temperatures for the tw measurements is a deficiency, as amine pK_a valu temperature-dependent. However, the paper is a point, as all results are reported in a Table for Hence, values are apparent and approximate. Apparent dissociation constants at 25 °C	vo series c ies are imbiguou:	of s on this
							Compound	р <i>К</i> а1 (ОН)	р <i>К</i> _{а2} (NH)
							phenethylamine	-	9.88
							2-MeO-phenethylamine	-	10.20
							3-MeO-phenethylamine	-	9.89
							3-HO-phenethylamine	9.58	10.50
							N-methyl-4-HO-phenethylamine	9.76	10.71
							N,N-dimethyl-4-HO-phenethylamine	9.78	10.02
							2,4-di-HO-phenethylamine	8.91	10.8
								(11.7))
							β-(2-hydroxyphenyl)ethanolamine	9.42	9.90
							β-(4-hydroxyphenyl)ethanolamine	9.57	9.66
							N-methyl-β-(4-hydroxyphenyl)ethanolamine	9.57	9.66
							N,N-dimethyl-β-(4-hydroxyphenyl) ethanolamine	9.58	9.50
							β-(4-hydroxy-3-methoxyphenyl)ethanolamine	9.54	9.56
							N-methyl-β-(4-hydroxy-3-methoxyphenyl) ethanolamine	9.54	9.56
							<i>N</i> , <i>N</i> -dimethyl-β-(4-hydroxy-3-methoxyphenyl) ethanolamine	9.54	9.52
730	Levarterenol (L-noradrenaline; L-norepinephrine)	$\begin{array}{c} 8.90 \pm 0.06 \\ 9.78 \pm 0.09 \end{array}$	U U	+H,-H -H,+H	Potentiometric, Spectro	H_2O t unspecified I = 0.1 (glycine)	Lewis GP, The importance of ionization in the active sympathomimetic amines, <i>Br. J. Pharmacol.</i> , 9 , 488 in Schwender CF, Levarterenol bitartrate, <i>APDS</i> , NB: Method similar to Kappe and Armstrong, see (no. 729).	-493 (195 1, 339–36	1 (1972).

731	Levarterenol (L-noradrenaline;	8.57	U	+Н,-Н			Wilson	TD, Le	varterer	nol bitartrate, APDS, 11, 555–586 (1982).
	L-norepinephrine)	9.73 11.13	U U	-H,+H -H			Table: Di	issociat	ion cons	tants
							р <i>К</i> 1	pK ₂	pK ₃	References
							8.72 9.3 8.57	10.3		Jarke FH, J. Neurochem., 19, 1099–1116
732	Levodopa (C9H11NO4)	2.31	U	-H			short the pr micro	summ roporti oconsta 966 (196	ary of th ons of n nt data 62).	(1972). J. Med. Chem., 20 , 579–581 (1977), who gave a ne catecholamine pK_a literature and calculated eutral and zwitterionic species from the of Sinistri C, Villa L, Farmaco, Sci. Edn., 17 ,
	HO OH COOH	8.71 9.74 13.40	บ บ บ	+H -H -H			NB: Ap	pears t	o be the	Gorton data (no. 733).
733	Levodopa	2.3 8.7 9.7	U U U	-H +H -H	Potentiometric	H_2O $t = 25 \pm 0.02$ I = 1 (KNO ₃)	Proto	n and o	copper(l	n RF, Complexes of doubly chelating ligands. I. I) complexes of ι-β-(3,4-dihydroxyphenyl) <i>Chem. Soc. (A)</i> , 2615–2618 (1968).
734	Levorphanol (C ₁₇ H ₂₃ NO)	13.4 9.79	U U	-H +H	Potentiometric	H_2O t = 20 I < 0.01	meas	uremer	nt of the	I and Koski WS, Microelectrometric titration pK_a 's and partition and drug distribution tics and narcotic antagonists and their pH and
	H NCH ₃	9.37	U	+H		H ₂ O t = 37 I < 0.01	temp	erature	depend	lence, J. Med. Chem., 18 , 647–655 (1975). In ther details.


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
735	Levorphanol	9.2	U	+H	partition	H_2O t undefined I = 0.1	Shore PA, Brodie BB and Hogben CAM, The gastric secretion of drugs, <i>JPET</i> , 119 , 361–369 (1957). NB: Levorphan; L-3-hydroxy-N- methylmorphinan; the method followed the partition-pH method of Butler TC, Quantitative studies of the demethylation of N-methylbarbital, <i>JPET</i> , 108 , 474–480 (1953).
736	Levorphan(ol)	8.18	U	+H	Potentiometric	50% aq EtOH	Farmilo CG, Oestreicher PM, Levi L, Physical methods for the identification of narcotics. I B Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull</i> <i>Narcotics</i> , UN Dept. Social Affairs vol. 6, pp. 7–19 (1954). CA 48:69490. NB: Cited in Beckett AH, Analgesics and their antagonists. I., <i>J. Pharm. Pharmacol.</i> , 8, 848–859 (1956). NB: See Alphaprodine for details.
737	Levulinic acid ($C_5H_8O_3$) O CH_3 O O O O O O O O	4.65	U	-H	Conductance	H ₂ O t = 25 c = 0.03-0.001	 Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, International Critical Tables, vol. 6, McGraw-Hill, NY, 259–304 (1929). NB: Other values: t = 0, 4.66; t = 35.5, 4.65.
738	Lidocaine (lignocaine) (C ₁₄ H ₂₂ N ₂ O) CH_3 NH $N(Et)_2$ CH_3	7.96 ± 0.02	Α	+H	Potentiometric	H_2O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, <i>Pharm. Res.</i> , 15 (2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol- water) and log P (dioleylphosphatidyl-choline unilamellar vesicles). ACD calculated value = 8.53 ± 0.25 .
739	Lidocaine (lignocaine)	7.84	U	+H	Potentiometric	H_2O t = 25.0 ± 0.2 I = 0.01 (NaCl)	Johansson P-A, Liquid-liquid distribution of lidocaine and some structurally related anti-arrythmic drugs and local anaesthetics, <i>Acta Pharm. Suec.</i> , 19 , 137–142 (1982). NB: See also Lofgren, Dissertation, Univ. Stockholm, 1948, potentiometric, 7.855.

							() = 131 Reported a p			(continued)
742	Lidocaine	7.96	А	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang and Thompson RA, Higl pharmaceuticals by prese mass spectrometry, <i>Rapia</i> (2003). NB: Reported a p	h-throughpu sure-assisted d Commun. N	t screening of capillary elect Mass Spectrom.,	pK _a values of trophoresis and 17, 2639–2648
							Dibucaine Mepivacaine Chloroprocaine	8.662 9.046 8.021 9.372 9.380	8.463 8.729 7.768 8.974 9.052	8.267 8.412 7.556 8.774 8.662
								р <i>К</i> _а (10 °С)	р <i>К</i> а (25 °С)	р <i>К</i> а (38 °С)
741	Lidocaine (lignocaine)	8.24 7.92 7.57	A A A	+H	Potentiometric	H_2O I = 0.05 (KCl) N_2 atmosphere t = 10.0 t = 25.0 t = 38.0	 Powell MF, Lidocaine and 761–779 (1986). "The pK_a of Lidocaine has l at ionic strength 0.05 M (Dissociation constants of dependence, <i>Anesth. Ana</i> NB: Very careful work with calomel electrodes. Activ pK_a-temperature dependanesthetics (the last signing) 	been measur (KCl) (Kama f local anesth <i>ilg.</i> , 62 , 1025- h calibrated : vity coefficien lence for the	ed by potention ya H, Hayes JJ hetics and thein -1030 (1983)) . microsyringes nt corrections. following add	ometric titration I and Ueda I, r temperature " and glass- Also reported litional local
740	Lidocaine (lignocaine)	7.86	U	+H			"All constants were determ according to [19]1 salts were titrated. The ic sodium chloride. Groningsson K, Lindgren J Lidocaine base and hydr Narahashi TI, Frazier DT ar form of local anesthetics, experimental details give analogues: N-methyl-N-f analogue with -(CH ₂) ₃ - b pK _a = 9.8.	L×10 ⁻³ or 2× onic strength rochloride, <i>A</i> and Yamada M , <i>JPET</i> , 171 , 3 en. Values al β-methoxyeth	10^{-3} M solution was adjusted g E, Sandberg <i>PDS</i> , 14 , 207–2 <i>I</i> , The site of a 32–44 (1970). N so given for tw hyl analogue, j	ns of the amine to 0.01 with R, Wahlen A, 235 (1985)." ction and active IB: No vo lidocaine $pK_a = 6.3;$


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
743	Lidocaine (lignocaine)	7.86 (0.03)	А	+H Potent		$t = 24.0 \pm 0.1$	Powell MF, Lidocaine and lidocaine hydrochloride, APDS, 15, 761–779 (1986).
						I = 0.0050- 0.0775 (KCl)	I pK _a Stats
744	Lidocaine (lignocaine)	7.94 ± 0.01	А	+H	Potentiometric	H_2O t = 25.0 I = 0.15 (KCl)	Sirius Technical Application Notes, 1994, vol. 1, pp. 122–123. Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DV UK. [Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral ar basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref. 282]
745	Lidocaine (lignocaine)	7.18	U	+H	Conductance	$\begin{array}{l} H_2O\\ t=25.0\pm 0.02\\ c=0.0003-\\ 0.00657 \end{array}$	 j. <i>Metr. Chem.</i>, 47, 1242–1250 (2004); Fer. 2621 Sjoberg H, Karami K, Beronius P and Sundelof L-O, Ionization constants A revised pK_a of lidocaine hydrochloride, <i>Int.</i> <i>J. Pharm.</i>, 141, 63–70 (1996). NB: Corrected to infinite frequency. Limiting conductance 17.70–17.87. NB: The large difference between this value and several very similar values in the literature (7.84, 7.855, 7.92, 7.96; all at 25.0 °C) demands some explanation. The conductance method assumes that no ionpairing occurs. It seems likely that the deviation of the conductance result from the others is due to ion-pairing. EJ King, Acid-Base Equilibria (p. 36, 1965) stated that the conductance method is not suitable for determination of pK_a values for weak acids >5.
746	Lidocaine homologues -NH-CO-R CH_2 -NH-CH ₃ CH_2 -NH-CH ₂ -N(C_2H_5) ₂ CH_2 -NH-CH ₂ CH ₃ CH_2 -NH-CJ ₄ D ₄ CH_2 -NH-C ₃ H ₇ CH_2 -NH-C ₄ H ₉ CH_2 -NH-C ₄ H ₉ CH_2 -NH- i -C ₄ H ₉ $CH(CH_3)$ -N(C_2H_5) ₂ CH_2 -N(C_3H_7) ₂	7.99 8.96 8.08 7.36 8.01 8.07 7.83 8.11 7.88 7.68	Α	+H	Potentiometric	H ₂ O	 Buchi J and Perlia X, Beziehungen zwischen de physikalisch- chemische Eigenschaften und der Wirkung von Lokalanasthetica ArzneimForsch., 10, 745–754 (1960). NB: These values were cited from Lofgren N, Studies on local anesthetics, Xylocaine, a new synthetic drug, J. Hoeggstrom, Stockholm, 1948.

747	Lincomycin (C ₁₈ H ₃₄ N ₂ O ₆ S) $(CH_3CH_2CH_2 \longrightarrow HO \longrightarrow OH \oplus HO \oplus) HO \oplus HO \oplus$	7.5 CH ₃	U	+H		H ₂ O	 Hoeksma H, Bannister B, Birkenmeyer RD, Kagan F, Magerlein BJ, MacKellar FA, Schroeder W, Slomp G and Herr RR, Chemical studies on lincomycin, <i>JACS</i>, 86, 4223–4224 (1964). No experimental details given. Morozowich W, Lamb DJ, Karnes HA, Mackellar FA, Stern KF and Rowe EL, Synthesis and bioactivity of lincomycin-2-phosphate, <i>J. Pharm. Sci.</i>, 58, 1485–1489 (1969). NB: No experimental details given. Assumed that the amine function of lincomycin-2-phosphate had the same pK_a value as lincomycin, which was reported as 7.5, without supporting experimental details or references.
748	Lincomycin	7.6	U	+H			 Muti HY and Al-Hajjar FH, Lincomycin Hydrochloride, APDS, 23, 269–319 (1994). Eble TE, Lincomycin related antibiotics, J. Chromatogr. Libr., 15, 231–271 (1978).
749	Linoleic acid (C ₁₈ H ₃₂ O ₂) CH ₃ (CH ₂	5.10) ₆ СООН	U	+H	Potentiometric	H ₂ O RT	Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine II. Mechanism of interaction with bile salts and fatty acid salt anions, J. Pharm. Sci., 59 , 329–333 (1970).
750	Lisinopril (C ₂₁ H ₃₁ N ₃ O ₅) H COOH H COH $H CH_2$ H COOH $H CH_2$ $H CH_2$ $H CH_2$ H COOH $H CH_2$ H COOH $H CH_2$ H COOH $H CH_2$ $H CH_2$ H	2.5 4.0 6.7 10.1	บ บ บ บ	-H -H +H +H	Potentiometric	H ₂ O t = 25	Ip DP, DeMarco JD and Brooks MA, Lisinopril, <i>APDS</i> , 21 , 233–276, 1992. Cited McCauley JA, Merck Sharp and Dohme Research Laboratories, Rahway, NJ. NB: Foye 1 gave values: 1.7, 3.3, 7.0 and 11.1.
751	Lisinopril	3.13 7.2 3.07 7.25	บ บ บ บ	$^{+H}_{+H}$ $^{+H}_{+H}$	CE/pH (+ve ion mode) CE/pH (-ve ion mode)	H_2O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 3.18 and 7.53.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
752	Lisuride (C ₂₀ H ₂₆ N ₄ O) (C ₂ H ₅) ₂ NCONH (C ₂ H ₅) ₂ NCONH (C ₂ H ₃) ₂ NCONH (C ₂ H ₃) ₂ NCONH	7.29	U	+H	soly	H ₂ O t = 37 I = 0.15	Zimmerman I, Determination of pK _a values from solubility data, <i>Int. J. Pharm.</i> , 13 (1), 57–65 (1983). NB: See Pyrazolic acid for details.
753	Lonazolac (C ₁₇ H ₁₃ ClN ₂ O ₂) Cl	4.3	U	-H	Potentiometric	H_2O t = 20 I undefined	 Rainer VG, Krüger U and Klemm K Syntheses und physicalisch- chemische Eigenschaften von Lonazolac-Ca einem neuen Antiphlogistikum/Antirheumatikum, <i>ArzneimForsch.</i>, 31(4), 649–655 (1981). NB: See Indomethacin for details.
754	Loperamide (C ₂₉ H ₃₃ ClN ₂ O ₂) $C_{6}H_{5}$ CON(CH ₃) ₂ C ₀ H ₅ CON(CH ₃) ₂ OH	8.66	U	+H	Potentiometric	H ₂ O	van Rompay J and Carter JE, Loperamide hydrochloride, <i>APDS</i> , 19 , 341–365 (1990). NB: Cited R. Caruwels, Janssen Research Foundation, personal communication, as the source of the pK_a value, which had been obtained using a procedure reported by Peeters (Peeters J, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i> , 67 , 127–129 (1978)). This involved extrapolation of the pK_a values in methanol-water mixtures to zero methanol content.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
759	Malic acid (C ₄ H ₆ O ₅)	3.459	А	-H		H ₂ O	Brittain HG, Malic Acid, APDS, 28, 158 (2001).
	о он 	5.097	А	-H		t = 25 I = 0.00	NB: All of these data are also cited in Martell AE and Smith RM, Critical Stability Constants, vol. 3, Plenum Press, NY (1977). Kortum
		3.24 ± 0.03	А	-H		I = 0.1	also cited a value at 25 °C for $pK_{a2} = 5.14$ (U).
	но	4.71 ± 0.01	A	-H			
		3.11	A	-H		I = 1.0	
	 OH	4.45 ± 0.01	А	-H			
760	Malonic acid (C ₃ H ₄ O ₄)	2.80	U	-H	Conductance	H ₂ O	Kendall J, Electrical conductivity and ionization constants of weak
	СООН					t = 25 c = 0.06 - 0.001	electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, International Critical Tables, vol. 6, McGraw-Hill, NY, 259–304 (1929). NB: Other value: <i>t</i> = 0, 2.84.
	H ₂ C	2.85	А	-H	Potentiometric	H ₂ O	German WL and Vogel AI, The primary and secondary dissociation
		5.66	А	-H		$t=25.0\pm0.01$	constants of malonic, succinic and glutaric acids by potentiometric
	СООН					N2 atmos-	titration, JACS, 58, 1546-1549 (1936). NB: Used quinhydrone
						phere	electrode in cells with liquid junction potential.
761	Mandelic acid ($C_8H_8O_3$)	3.40 ± 0.01	U	-H		H_2O t = 25	Brittain HG, Mandelic Acid, APDS, 29 , 185–186 (2002).
						t = 25 I = 0.0	NB: These data are cited from Martell AE and Smith RM, <i>Critical Stability Constants</i> , vol. 3 , Plenum Press, NY (1977). Computed
		3.19 ± 0.01	U	-H		I = 0.0 I = 0.1	value from ACD PhysChem is 3.41 ± 0.2 . The hydroxyl group was
		3.17 ± 0.04	U	-H		I = 1.0	predicted to have a pK _a value of 15.7 \pm 0.25.
	ОН						1 ······
762	D-(–)-Mandelic acid and analogues	3.35	U	-Н	Potentiometric	H ₂ O t = 25.0 I undefined	Randinitis EJ, Barr M, Wormser HC and Nagwekar JB, Kinetics of urinary excretion of D-(-)-mandelic acid and its homologs. I. Mutual inhibitory effect of D-(-)-mandelic acid and its certain homologs on their renal tubular secretion in rats, J. Pharm. Sci., 59, 2006 (2012) (2012).
							806–812 (1970). NB: The acid (20 mg) was dissolved in water (10 ml and titrated with NaOH (0.01 N) solution. The pH of half- neutralization was recorded as the pK_a value. No details were giver of conditions or pH meter calibration. Also reported the following pK_a values for mandelic acid analogues: D-(-)-benzyllactic acid, 3.85; D-(-)-4-hydroxy-4-phenylbutanoic acid, 4.70.

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
767	Mecamylamine (C ₁₁ H ₂₁ N) $(CH_3 + CH_3 +$	11.2	U	+H	partition	H_2O <i>t</i> undefined I = 0.1	 Schanker LS, Shore PA, Brodie BB and Hogben CAM, Absorption of drugs from the stomach. I. The rat, <i>JPET</i>, 120, 528–539 (1957). NB: The pK_a value was determined by the partitioning method of Butler TC, Quantitative studies of the demethylation of <i>N</i>-methyl barbital (metharbital, gemonil), <i>JPET</i>, 108, 474–480 (1953).
768	Meclizine (C ₂₅ H ₂₇ ClN ₂)	3.1 6.2	U U	+H +H	partition	H ₂ O	 Persson BA and Schill G, Extraction of amines as complexes with inorganic anions, <i>Acta Pharm. Suec.</i>, 3, 291–302 (1966). NB: No details were given for the measurement of what are described as "approximate acid dissociation constants." Newton DW, Murray WJ and Lovell MW, pK_a determination of benzhydrylpiperazine antihistamines in aqueous and aqueous methanol solutions, <i>J. Pharm. Sci.</i>, 71(12), 1363–1366 (1982). NB: Attempted to measure pK_a for meclizine by extrapolation of apparent pK_a values in cosolvent, water mixtures to 0% cosolvent, but found that meclizine could only be titrated in >47.8% methanol solutions, which was too high.
769	Meclizine	2.05	U	+H	Potentiometric	H_2O t = 25 I = 0.0051 (NaCl)	Lukkari S, Potentiometric studies on the ionization of some psychotropic diphenylmethane derivatives, hydroxyzine and meclizine., <i>Farm. Aikak.</i> , 80 , 161–165 (1971); CA 75:41145t. NB: Activity effects estimated with the Guggenheim equation (constant term = 0.160). Also found pK ₃ = 2.0 (spectro).
770	Medazepam (C ₁₆ H ₁₅ ClN ₂)	6.2	U	+H	Spectro soly	H ₂ O	 Le Petit GF, Medazepam pK_a determined by spectrophotometric and solubility methods, <i>J. Pharm. Sci.</i>, 65, 1094–1095 (1976). "The pK_a of medazepam was determined by a UV spectrophotometric method and compared with data obtained from the solubility method. Good correlation was found between the results of the 2 methods."

771	Medazepam	4.4	U	+H	Spectro	5% MeOH in H ₂ O t = 20 I = 0.15	Barrett J, Smyth WF and Davidson IE. Examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry, <i>J. Pharm.</i> <i>Pharmacol.</i> , 25 , 387–393 (1973). NB: Significant discrepancy with the other two values, but this one looks more likely, compared to other benzodiazepines. See 1,4-Benzodiazepines for details.
772	Mefenamic acid (C ₁₅ H ₁₅ NO ₂)	4.55 ± 0.06	U	-H	Spectro	H ₂ O t = 20 I extr. to 0.00 (NaClO ₄)	Zommer-Urbanska S, Bojarowicz H, Spectrophotometric investigations of protolytic equilibria of mefenamic acid and determination by means of Fe(III) in methanol-aqueous media, <i>J. Pharm. Biomed. Anal.</i> , 4(4), 475–481 (1986). " studies were carried out on the effect of pH on solutions of mefenamic acid (10^{-4} M) at various ionic equilibria ($\mu = 0.100$, 0.075, 0.040 and 0.025 M) in methanol-water ($50:50$, v/v). Constant ionic strength was maintained by sodium perchlorate. Changes in pH were achieved by adding perchloric acid and sodium hydroxide after pH measurements had been made the spectra were recorded To determine the thermodynamic constant, measurements were carried out at various ionic strengths; the values for the pK _a were extrapolated to ionic strength of zero the value of pK _a = 5.54 ± 0.06 was obtained at 20 °C. After correction for the methanol, the pK _a for aqueous solutions was 4.55 ± 0.06 ."
773	Mefenamic acid	7.0	U	+H	Potentiometric	50% EtOH t unspecified I unspecified	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test, <i>ArzneimForsch.</i> , 24 , 494–499 (1974).
		6.2	U	+H		80% Me cellosolve	NB: Literature pK _a values identified with the pH of half- neutralization.
774	Mefenamic acid	4.33	U	-H	comp	H_2O $t = 25 \pm 0.1$ I = 0.11	Terada H, Muraoka S and Fujita T, Structure-activity relationships of fenamic acids, J. Med. Chem. 17, 330–334 (1974). NB: This result was computed from a structure-reactivity relationship.
775	Melphalan (C ₁₃ H ₁₈ Cl ₂ N ₂ O ₂)	1.42	U	+H	kinetic	H ₂ O	Stout SA and Riley CM, The hydrolysis of L-phenylalanine mustard
		2.75	U	-H		t = 37.0	(melphalan), Int. J. Pharm., 24, 193-208 (1985). NB: Estimated from
	HOOC H ₂ N	9.17	U	+H		<i>I</i> = 0.5	hydrolytic rate constants in the pH range 1–13. Taken from: Stout SA, <i>Chemical stability and in vitro cytotoxicity of melphalan</i> , Ph.D. Thesis, University of Florida, 1987, 36–42.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
776	Mepazine (pecazine) (C ₁₉ H ₂₂ N ₂ S)	9.25	U	+H	Potentiometric	H ₂ O (extrap) t = 20 I undefined N ₂ atmos- phere	 Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazine derivatives by solid adsorbents, <i>J. Pharm. Sci.</i>, 55, 785–794 (1966). NB: There should be a weaker value as well for the thiazine ring nitrogen. See Chlorpromazine for details.
777	Meperidine (pethidine) (C ₁₅ H ₂₁ NO ₂) CH ₂	8.68	U	+H	Potentiometric	H_2O t = 20 I < 0.01	Kaufman JJ, Semo NM and Koski WS. Microelectrometric titration measurement of the pK _a 's and partition and drug distribution coefficients of narcotics and narcotic antagonists and their pH and
	C ₆ H ₅ COOC ₂ H ₅	8.50	U	+H		$H_{2}O$ t = 37 I < 0.01	temperature dependence, <i>J. Med. Chem.</i> , 18 , 647–655 (1975). NB: See Codeine for further details. Cited in: Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004) (ref. 285).
778	Mephentermine ($C_{11}H_{17}N$)	10.37	Α	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i>, 54, 1179–1191 (1971). NB: See Amphetamine for further details.
779	Mephentermine	10.38	U	+H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between pK _b (H ₂ O) of organic compounds and E _{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). NB: See Chlorpromazine for details.

780	Mepivacaine (C ₁₅ H ₂₂ N ₂ O) CH_3 O H_3C O	7.78	U	+H	soly	H_2O $t = 23 \pm 1$ l > 0.1	Friberger P and Aberg G, Some physicochemical properties of the racemates and the optically active isomers of two local anaesthetic compounds, <i>Acta Pharm. Suec.</i> , 8 , 361–364 (1971).
781	Mepivacaine	7.73	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ I = 0.01 (NaCl)	Johansson P-A, Liquid-liquid distribution of lidocaine and some structurally related anti-arrythmic drugs and local anaesthetics, <i>Acta Pharm. Suec.</i> , 19 , 137–142 (1982). NB: See Lidocaine for details.
782	6-Mercaptopurine (C ₅ H ₄ N ₄ S) SH H N N N	$\begin{array}{c} 7.77 \pm 0.02 \\ 10.88 \end{array}$	A U	H H	Potentiometric	H_2O t = 20	Albert A and Brown DJ, Purine studies. I. Stability to acid and alkali. Solubility. Ionization, <i>J. Chem. Soc.</i> , 2060–2071 (1954). Cited in Newton DW, Ratanamaueichatara S and Murray WJ, Dissociation, solubility and lipophilicity of azathioprine, <i>Int. J. Pharm.</i> , 11 , 209–213 (1982). NB: See also Brown DJ and Mason SF, Purine Studies. Part III. The structure of the monohydroxymonomercaptopurines: Some thiazolo[5:4-D] pyrimidines, <i>J. Chem. Soc.</i> , 682–689 (1957).
783	6-Mercaptopurine	$\begin{array}{c} 7.7 \pm 0.1 \\ 11.17 \pm 0.06 \end{array}$	U U	-H -H	Spectro, Potentiometric	H_2O t = 23 c = 0.01 N ₂ atmosphere	Fox JJ, Wempen I, Hampton A and Doerr I, <i>JACS</i> , 80 , 1669–1675 (1958). Cited in Benezra SA and Foss PRB, 6-Mercaptopurine, <i>APDS</i> , 7 , 343–357 (1978). NB: This paper also reported the pK_a values several other purines and purine nucleosides. The pK_{a2} value was determined potentiometrically by titration of carbonate-free NaOH into a nitrogen stirred solution of the purine made in pre-boiled water. Spectrophotometric studies followed previously described procedures: Fox JJ, Cavalieri LF and Chang N, <i>JACS</i> , 75 , 4315–4317 (1953); Fox JJ, Chang N, Davoll J and Brown GB, <i>ib</i> . 78 , 2117–2122 (1956); Shugar D and Fox JJ, <i>Bull. Soc. Chim. Belges</i> , 61 , 293–309 (1952); Fox JJ and Shugar D, <i>Biochim. Biophys. Acta</i> , 9 , 369–384 (1952).

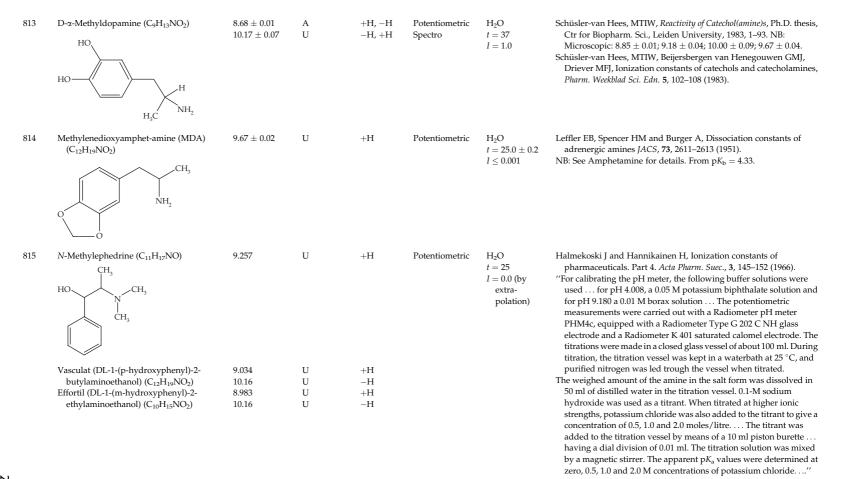
No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
784	Metaclazepam (C ₁₈ H ₁₈ BrClN ₂ O) H_3^{C} OCH ₃ Br Cl	5.50	U	+H	Spectro	H ₂ O	 Fernandez-Arciniega MA and Hernandez L, Analytical properties of metaclazepam a new 1,4-benzodiazepine, <i>Farmaco Edn. Prat.</i>, 40, 81–86 (1985). CA 102:191007. "The physicochemical properties of metaclazepam hydrochloride (Talis) were studied using UV, IR, and NMR spectrometry and TLC. The pK_a value was 5.50."
785	Metaproterenol (orciprenaline) $(C_{11}H_{17}NO_3)$ HO $CH_2NHCH(CH_3)_2$ HO OH	8.84 10.28	U U	-H, +H +H, -H	Spectro	H ₂ O <i>I</i> = 0.02	Quintero B, López J and Thomas J, Determination of dissociation constants of 5-[1-hydroxy-2-[(1-methyl-ethyl)amino]ethyl]-1-3- benzenediol, <i>J. Pharm. Sci.</i> , 74 (1), 72–75 (1985). NB: Microconstants: $pK_a = 8.90$; $pK_b = 10.0$; $pK_c = 10.25$; $pK_d = 9.15$; $K_z = 12.5$ ($K_z =$ equilibrium constant between the zwitterion and the neutral form).
786	Metaproterenolol (orciprenaline)	8.70 9.92	U U	+H, -H -H, +H	Spectro, Potentiometric	H_2O $t = 25.0 \pm 0.05$ I = 0.10 (KCl) N_2 atmosphere	Ijzerman AP, BultsmaT, Timmerman H and Zaagsma J, The ionization of β -adrenoceptor agonists: a method for unravelling ionization schemes, <i>J. Pharm. Pharmacol.</i> , 36 (1), 11–15 (1984). NB: pH calibration standards: 7.00 \pm 0.02, 9.94. Microscopic: 8.67 and 9.92; macroscopic: 8.70 and 9.92. See Isoprenalin.
787	Metformin (C ₄ H ₁₁ N ₅) H_3C NH NH_2 H_3C NH NH	2.8 11.5	U U	+H +H		H ₂ O t = 32	Moffat AC, Clarke's Isolation and Identification of Drugs, 2nd ed., Pharmaceutical Press, London 740–741 (1986). Cited in Bretnall AE and Clarke GS, Metformin Hydrochloride, APDS, 25 , 243–293 (1997).

| CH₃

788	Methadone analogues		U	+H	Potentiometric	H_2O t = 20.0 I = 0.013	Beckett AH, Analgesics and their antagonists. I., J. Pharm. Pharmacol., 8, 848–859 (1956). NB: Further analogues were also reported:
							H ₃ C R' R PKa R' CH ₃ PKa
789	$R = piperidino$ $R' = H$ $R' = COCH_2CH_3$ $R' = CN$ $R = morpholino$ $R' = H$ $R' = COCH_2CH_3$ $R' = CN$ $R = dimethylamino$ $R' = H$ $R' = COCH_2CH_3$ $R' = CN$	8.96 8.86 8.07 7.25 7.00 6.09 9.23 9.40 8.31 9.87 ± 0.02	U	+H	Potentiometric	Н ₂ О	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
	(methylamphetamine) (C ₁₀ H ₁₅ N)		C			$t = 25.0 \pm 0.2$ $I \le 0.001$	adrenergic amines <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details. From $pK_b = 4.13$. Cited as $pK_a = 10.11$ in Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969). The source of this value is not known.
790	Methamphetamine	9.99	А	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i> , 54 , 1179–1191 (1971). NB: See Amphetamine for further details.

Appendix	Α ((continued)
----------	-----	-------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
791	Methamphetamine, 4-hydroxy (C ₁₀ H ₁₅ NO) CH ₃ HO CH ₃	9.62 10.75	A U	+H -H	Potentiometric Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.01	Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off. Anal. Chem.</i> , 54 , 1179–1191 (1971). NB: See Amphetamine and Amphetamine, 4-hydroxy, for further details. Alternative calculation method gave $pK_{a1} = 9.49$ and $pK_{a2} = 10.78$.
792	Methaphenilene (C ₁₅ H ₂₀ N ₂ S)	$\begin{array}{c} 3.02 \pm 0.05 \\ 8.24 \pm 0.11 \end{array}$	U U	+H +H	Potentiometric	H ₂ O t unspecified I = 0.30 (NaCl)	 Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines. <i>Helv. Chim. Acta</i>, 61, 2530–2537 (1978). NB: See Cycliramine for details.
793	Methaqualone ($C_{16}H_{14}N_2O$)	2.54	U	+H	Spectro	H_2O t unspecified I = 0.1	Zalipsky JJ, Patel DM, Darnowski RJ and Reavey-Cantwell NH, pK _a Determination of methaqualone, J. Pharm. Sci., 65, 460–461 (1976). Cited in Patel DP, Visalli AJ, Zalipsky JJ and Reavey-Cantwell NH,
	O H ₃ C	3.56	U	+H	Potentiometric	acetone- water	 Methaqualone, <i>APDS</i>, <i>4</i>, 245–267 (1975). "The pK_a value for methaqualone (I) was determined using a UV method at 2 analytical wavelengths, 286 and 315 nm. A pK_a value of 2.54 at 316 nm was found. This value differs from those determined using potentiometric titration of the drug in varying compositions of an acetone-water solvent system." Chatten LG, Moskalyk RE, Locock RA and Schaefer FJ, Non-aqueous titration of methaqualone and its dosage forms, <i>J. Pharm. Sci.</i>, 63, 1294–1296 (1974). NB: From the pH of half-neutralization.


794	Methicillin ($C_{17}H_{20}N_2O_6S$)	2.77 ± 0.04	U	-H	Potentiometric	H_2O t = 25 c = 0.0097	Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, J. Pharm. Pharmacol., Suppl. 15, 222–231T (1963).
	H H H OCH ₃ O N COOH	2.77 ± 0.03	U	-H	Potentiometric	H_2O t = 37 I = 0.15	Tsuji A, Kubo O, Miyamoto E and Yamana T, Physicochemical properties of β-lactam antibiotics: oil-water distribution, <i>J. Pharm. Sci.</i> , 66 , 1675–1679 (1977).
795	Methotrexate ($C_{20}H_{22}N_8O_5$)	3.04	U	-H	CE/pH (+ve	H ₂ O	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB
	H N N N	4.99	U	+H	ion mode)	t = 25	and Thompson RA, High-throughput screening of pK_a values of
	H ₂ N CH ₃	3.12	Ū	-H		I = 0.025	pharmaceuticals by pressure-assisted capillary electrophoresis and
	NH2 H CH2CH	5.03	U	+H			mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 3.54 and 5.09.
796	Methotrexate	5.71	U	+H	Spectro	H ₂ O	Poe M, Acidic dissociation constants of folic acid, dihydrofolic acid
7.70	Weitouexate	5.71	0	+11	Specifo	t = 25	and methotrexate, J. Biol. Chem., 252(11), 3724–3728 (1977).
						I = 2.5 I = 0.10 (NaCl)	NB: Spectrophotometric measurements were made (under nitrogen) as a function of either pH or the acidity function H_o . Measured
		3.36	U	-H	Potentiometric	N2 atmos-	values correspond to the structure as follows: <-1.5 (N5); 0.5
		4.70	U	-H		phere	(N10); 3.36 (α-carboxyl); 4.70 (γ-carboxyl); 5.71 (N1).
		0.50 ± 0.05	U	+H	Spectro	I = 0.1 to 4	
		<-1.5	U	+H	•		
797	Methotrexate	3.31	U	-H	Potentiometric	H_2O	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and
		4.00	U	-H		t = 25	Artursson P, Absorption classification of oral drugs based on
		5.39	U	+H			molecular surface properties, J. Med. Chem., 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
798	Methotrexate alkyl esters	5.71	U	+H	Spectro	H ₂ O	Fort JJ and Mitra AK, Solubility and stability characteristics of a series
	-				-	t = 25	of methotrexate dialkyl esters, Int. J. Pharm., 59, 271-279 (1990); Fort
						I = 0.10	JJ, Mitra AK, Physicochemical properties and chromatographic
						(NaCl)	behavior of a homologous series of methotrexate- α , γ -dialkyl esters,
						N2 atmos-	Int. J. Pharm., 36, 7-16 (1987). NB: Made the reasonable assumption
						phere	that the esters would have the same pK_a value for the pteridine ring
							as in unchanged methotrexate. Cited the value from Poe (no. 796).
							(continued)

261

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
799	Methotrimeprazine (Levomepromazine) (C ₁₉ H ₂₄ N ₂ OS) $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$	9.19	U	+H		H ₂ O	 Mannhold R, Dross KP and Reffer RF, Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches. <i>Quant. Struct. Act. Relat.</i>, 9, 21–28 (1990). NB: Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004); ref. 277.
800	Methotrimeprazine (levomepromazine)	9.15	U	+H	Potentiometric	$\begin{array}{l} H_2O \; (extrap) \\ t = 24 \pm 1 \\ I \sim 0.002 \end{array}$	Chatten LG and Harris LE, Relationship between pK _b (H ₂ O) of organic compounds and E _{1/2} values in several nonaqueous solvents, Anal. Chem., 34, 1495–1501 (1962). NB: See Chlorpromazine for details.
801	Methoxamine (C ₁₁ H ₁₇ NO ₃) HO	9.32	Α	+H	Potentiometric	H_2O t = 25.0 ± 0.5 I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i>, 54, 1179–1191 (1971). NB: See Amphetamine for further details.
802	Methoxamine	9.18	U	+H	Potentiometric	$H_2O \text{ (extrap)}$ $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents. <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). NB: See Chlorpromazine for details.
803	4-Methoxyamphetamine (C ₁₀ H ₁₅ NO)	9.53 ± 0.05	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leftfler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details. From $pK_b = 4.47$.

804	Methoxyphenamine (C ₁₁ H ₁₇ NO)	10.45	Α	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, J. Assoc. Off. Anal. Chem., 54, 1179–1191 (1971). NB: See Amphetamine for further details.
805	Methyclomethiazide (C ₉ H ₁₁ Cl ₂ N ₃ O ₄ S ₂) H_2NSO_2 Cl H_2NSO_2 Cl H_2Cl	9.5	U	-Н	Potentiometric	acetone/H ₂ O	 Henning VG, Moskalyk R.E, Chatten LG and Chan SF, Semiaqueous potentiometric determination of apparent pK_{a1} values for benzothiadiazines and detection of decomposition during solubility variation with pH studies, <i>J. Pharm. Sci.</i>, 70(3), 317–319 (1981). NB: See Flumethiazide for details.
806	Methyclothiazide	9.4	U	-H	Potentiometric	H ₂ O (extrap)	Raihle JA, Methyclothiazide, APDS, 5, 307–326 (1976). NB: Extrapolated from acetone-water mixtures. No range of values given for the compositions. No reference, so presumably work done by this author.
807	DL-N-Methyladrenaline (C ₁₀ H ₁₅ NO ₃) HO HO HO CH ₂ N(CH ₃) ₂	$\begin{array}{c} 8.48 \pm 0.01 \\ 9.89 \pm 0.06 \end{array}$	A U	+H, -H -H, +H	Potentiometric Spectro	H ₂ O t = 37 I = 1.0	 Schüsler-van Hees, MTIW, <i>Reactivity of Catechol(amine)s</i>, Ph.D. thesis, Ctr for Biopharm. Sci., Leiden University, 1983, 1–93. NB: Microscopic: 8.60 ± 0.01; 9.09 ± 0.04; 9.77 ± 0.08; 9.28 ± 0.03. Schüsler-van Hees, MTIW, Beijersbergen van Henegouwen GMJ and Driever MFJ, Ionization constants of catechols and catecholamines, <i>Pharm. Weekblad</i>, Sci. Edn. 5, 102–108 (1983).
808	2-Methylamino-5-chlorobenzophenone ($C_{14}H_{12}CINO$)	1.45 ± 0.04	U	+H	Spectro $(\lambda = 415 \text{ nm})$	7% EtOH in H ₂ O t = 25 0.02 to 0.40 M in HCl	Newton DW, pK_a of 2-methylamino-5-chlorobenzophenone, a diazepam hydrolysis product, <i>J. Pharm. Sci.</i> , 68 , 937–938 (1979). "Estimation of the dissociation constant (pK_a) of 2-methylamino-5-chlorobenzophenone, using spectrophotometric methods, is presented. The pK_a was calculated as 1.45 ± 0.04 . Comparison of this value with other aniline derivatives is also presented." NB: No activity corrections were performed.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
809	α-Methyl benzyl penilloate (C ₁₆ H ₂₂ N ₂ O ₃ S) H ₃ C $(H_3 + H_3)$	3.65	U	+H		H ₂ O t = 23	Woodward RB, Neuberger A, Trenner NR, <i>in</i> Clarke H, Johnson JR and Robinson Sir R. (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422, 1949.
810	L-α-Methyldopa (C ₁₀ H ₁₃ NO ₄) HO HO HO HO HO HO HO HO HO HO HO HO HO	2.218 9.157 10.629 12.00	A U U U	-H -H, +H +H, -H -H	Potentiometric Spectro	H_2O t = 25 I = 0.00 (KCl)	Halmekoski J and Lukkari S, Ionization constants of pharmaceuticals II. α -Methyl-3,4-dihydroxyphenylalanine (Aldomet), <i>Farm. Aikak.</i> , 74, 173–180 (1965). NB: The effect of ionic strength was corrected with the Debye-Huckel limiting law. The p K_a value for the more acidic phenolic group was also determined spectrophotometrically.
811	L-α-Methyldopa	$\begin{array}{l} GLpK_a:\\ 2.31\pm 0.02\\ 8.89\pm 0.02\\ 10.06\pm 0.06\\ 13.77\pm 0.15\\ A\&S:\\ \end{array}$	A A U U	-H -H, +H +H, -H -H	Spectro	$\begin{array}{l} H_2O\\ t=25\\ I=0.15 \ (KCl)\\ Ar \ atmosphere \end{array}$	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434 157–167 (2001). NB: See Clioquinol for details.
812	L-α-Methyldopa	$\begin{array}{c} 2.29 \pm 0.02 \\ ? \\ 8.87 \pm 0.02 \\ 9.92 \pm 0.07 \\ ? \end{array}$	A A U	-H -H +H, -H -H, +H -H	Potentiometric Spectro	H_2O t = 37 I = 1.0	 Schüsler-van Hees, MTIW, <i>Reactivity of Catechol(amine)s</i>, Ph.D. thesis, Ctr for Biopharm. Sci., Leiden University, 1983, 1–93. NB: Microscopic: 9.03 ± 0.01; 9.38 ± 0.07; 9.75 ± 0.10; 9.40 ± 0.02. Schüsler-van Hees, MTIW, Beijersbergen van Henegouwen GMJ and Driever MFJ, Ionization constants of catechols and catecholamines Pharm. Weekblad, Sci. Edn., 5, 102–108 (1983).

26 Appendix A	(continued)
------------------	-------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
816	Methylergonovine $(C_{20}H_{25}N_3O_2)$ HOCH ₂ H	6.65 ± 0.03	Α	+H	Potentiometric	H ₂ O t = 24 I < 0.01	 Maulding HV, Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, <i>J. Pharm. Sci.</i>, 59, 700–701 (1970). Cited in Perrin Bases suppl. No. 7482. NB: See Methysergide for details.
817	N-Methylglucamine (C7H17NO5) CH_2NHCH_3 $HC - OH$ $HO - CH$ $HC - OH$	9.39	Α	+H	Potentiometric	H_2O t = 30.0 I = 0.05 N ₂ atmosphere	Juvet RS, The N-methylglucamine complexes. I. The lead N-methylglucamine system, <i>JACS</i> , 81 , 1796–1801 (1959). Cited in Perrin Bases 3409 ref. J23. NB: The p K_a value is calculated from p K_b = 4.35; p K_w at 30 °C = 13.833.
818	Methylhexaneamine (C ₇ H ₁₇ N) CH_3 NH ₂ H_3C CH ₃	10.54	U	+H	Potentiometric	$H_2O \text{ (extrap)}$ $t = 24 \pm 1$ $I \sim 0.002$	 Chatten LG, Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962). NB: See Chlorpromazine for details.
819	1-Methyl-1H-imidazole (C ₄ H ₆ N ₂) \downarrow^{CH_3} \downarrow^{N}_N	7.24	U	+H	Potentiometric	H ₂ O t = 25	Peeters J, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i> , 67 , 127–129 (1978). NB: See Cinnarizine for details. For 1-methyl-1H-imidazole, multiple titrations, each at a different percentage of methanol, gave $pK_a = 7.16$ on extrapolation to 0% MeOH.

820	Methylparaben (C ₈ H ₈ O ₃) COOCH ₃ \downarrow OH	8.15 (0.05)	U	-H	Spectro (λ = 297 nm)	H ₂ O t = 20.0	 Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i>, 92(1), 15–22 (1993). NB: See Acetaminophen for further details. An alternative graphical method gave pK_a = 8.15.
821	<i>N</i> -Methylphenethylamine (C ₉ H ₁₃ N)	10.31	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81, 92–94 (1959). NB: Method as described by Parke and Davis, 1945.
822	Methylphenidate (C ₁₄ H ₁₉ NO ₂)	8.9	U	+H	Potentiometric	H_2O t = 25 I = 0.05 (KCl) N_2 atmosphere	 Smith J, Piskorik H, Ciba-Geigy, personal communication, using the method of Benet LZ, Goyan JE, J. Pharm. Sci., 54, 1179–1182 (1965). NB: Calibration pH values, 4.010, 9.180. Titration with carbonate-free KOH used a 1 ml microburette.
	H N COOCH ₃	9.0	U	+H	Potentiometric	H ₂ O	Padmanabham, GR., Methylphenidate hydrochloride, <i>APDS</i> , 10 , 473–497 (1981).
823	Methylphenidate	8.8	U	+H			Siegel S, Lachman L and Malspeis L, A kinetic study of the hydrolysis of methyl-DL-α-phenyl-2-piperidyl acetate, J. Am. Pharm. Assoc., Sci. Edn., 48, 431–439 (1959).
824	Methylprednisolone-21-phosphate (C ₂₂ H ₃₁ O ₈ P) HO HO CH ₃ HO HO CH ₃ HO HO CH ₃ HO HO HO CH ₃ HO HO HO CH ₃ HO HO HO HO CH ₃ HO HO HO CH ₃ HO HO CH ₃ HO CH ₃ HO CH ₃ HO CH ₃ HO CH ₃ HO CH ₃ HO CH ₃ CO CH ₃ CO CO CO CO CO CO CO CO CO CO CO CO CO	2.55 6.04 ОН Р=О ОН	U U	-H -H	Potentiometric	H_2O t = 70 I = 0.15 (NaCl) c = 1.33 mg/mL	 Flynn GL and Lamb DJ, Factors influencing solvolysis of corticosteroid 21-phosphate esters, <i>J. Pharm. Sci.</i>, 59, 1433–1438 (1970). NB: Apparent pK_a values reported from the pH of half-neutralization.

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
825	Methysergide (C ₂₁ H ₂₇ N ₃ O ₂) $HOCH_2$ H	6.62 ± 0.02	A	+H	Potentiometric	H ₂ O t = 24 I < 0.01	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, <i>J. Pharm. Sci.</i> , 59 , 700–701 (1970). NB: Aqueous solubility was increased by complexation with 7-β- hydroxypropyltheophylline (7HPT) and the apparent pK_a values extrapolated to [7HPT] = 0. Solutions were titrated with carbonate- free KOH solution. This is the value found in the absence of 7HPT, compared to 6.50 when extrapolated to 0% 7HPT (from 2–30% 7HPT). Measurements under these two conditions on methylergonovine gave a similar discrepancy for the pK_a value. Extrapolated values for all other ergot alkaloids were corrected for this discrepancy.
826	Methysergide	6.62	А	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=24 \end{array}$	Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci., 59, 700–701 (1970). Cited in Perrin Bases suppl. no. 7483. NB: Used a glass electrode in a cell with liquid junction potentials.
827	Metoclopramide (C ₁₄ H ₂₂ ClN ₃ O ₂) CONHCH ₂ CH ₂ N(C ₂ H ₅) ₂ OCH ₃ Cl NH ₂	$\begin{array}{c} 0.42 \pm 0.03 \\ 9.71 \pm 0.02 \end{array}$	A A	+H +H	Spectro	H ₂ O	 Hanocq M, Topart J, van Damme M and Molle L, Determination of ionization constants for some substituted <i>N</i>-(2-diethylaminoethyl) benzamides, <i>J. Pharm. Belge</i>, 28, 649–662 (1975). Cited in Pitre D, Stradi R, Metoclopramide hydrochloride, <i>APDS</i>, 16, 327–360 (1987). "Metoclopramide shows two ionisation constants: pK₁ = 9.71 and pK₂ = 0.42. The determination was carried out spectrophotometrically in aqueous solution values are a mean of 16 determinations with a standard deviation of 0.03 and 0.02." NB: Spectrophotometric pK_a values were similar to potentiometric values.
828	Metoclopramide	9.51	U	H	Potentiometric		Mannhold R, Dross KP and Reffer RF, Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches. <i>Quant. Struct. Act. Relat.</i> , 9, 21–28 (1990). Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of

Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, *J. Med. Chem.*, **47**, 1242–1250 (2004); ref. 277.

829	Metoprolol (C ₁₅ H ₂₅ NO ₃) OH CH ₃ OCH ₂ CH ₂ OH CH ₂ NHCH(CH ₃)	8.9 ± 0.2 9.68 ± 0.02 9.5 ± 0.2	บ บ บ	+H	Potentiometric	H_2O t = 25.0 l = 0.1	 Luch JR, Metoprolol Tartrate, APDS, 1 (Stahl PH, Ciba-Geigy, Ltd., persona 9.68 ± 0.02 (Research Laboratories AB communication). 9.5 ± 0.2 (Jäkel K, Moser P, Ciba-Geig, communication). NB: It is not clear from the APDS sour conditions is applicable in each case 	al commun Hässle, pe y Ltd., pers rce which o	ication). rsonal sonal f the given
830	Metoprolol	9.55 ± 0.00	А	+H	partition	H_2O t = 25.0 I = 0.15 (KCl)	discrepancies between them. See no Krämer SD, Gautier J-C, Saudemon P, potentiometric log P determination, (1998). NB: See Amiodarone for det.	Considera Pharm. Res	
		9.56 ± 0.01	А	+H	Potentiometric	H = 0.15 (KCl) H_2O t = 25.0 I = 0.15 (KCl)	Sirius Technical Application Notes, 19 Analytical Instruments, Ltd., Forest UK. NB: Concentration of analyte, 0	95, vol. 2 , ₁ Row, East	Sussex, RH18 5DW,
831	Metronidazole (C ₆ H ₉ N ₃ O ₃) CH_2CH_2OH O_2N N CH_3 CH_3	2.62	U	+H	soly (auto- titrator)	H_2O $t = 25 \pm 0.2$ <i>I</i> undefined	Cho MJ, Kurtz RR, Lewis C, Machkov Metronidazole phosphate - A water- solutions of metronidazole, J. Pharm " The aqueous dissociation constra phosphate) is given. In acidic mediu zwitterion, with minimum solubility solubility was ~50 times that of mel pKa values of substituted imidazoles (soluble pro . Sci., 71(4) at for (metr m, the com y at pH 2. A tronidazole	odrug for parenteral , 410–414 (1982). onidazole pound behaved as a At pH 7, the
	1						Compound	p <i>K</i> _a	Reliability
							Imidazole Imidazole, 1-C ₂ H ₅ - Imidazole, 1-CH ₃ -5-NO ₂ - Imidazole, 1-CH ₃ -4-NO ₂ - Imidazole, 2-CH ₃ - Metronidazole	6.953 7.300 2.130 -0.530 7.851 2.62 (b)	R U A U R U
832	Metronidazole	2.55	U	+H	Spectro	H2O t undefined I undefined	 (a) Perrin DD, <i>Dissociation constants of a</i> Butterworth, Washington, DC, nos. (b) reported work. Gallo GG, Pasqualucci CR, Radaeill P, constants of some imidazoles, <i>JOC</i>, Schwartz DE, Jeunet F, Comparativo ornidazole and metronidazole in ma (1976). NB: The pK_a values for imid substituted imidazoles were also rep 	1393, 1405, Lancini G 29, 862–865 e pharmaco an, <i>Chemoth</i> azole and <i>a</i>	1411, 1413, 1414. C, The ionization G (1964). Cited by okinetic studies of <i>herapy</i> , 22 , 19–29

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
833	Mexiletine (C ₁₁ H ₁₇ NO)	9.00	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ I = 0.01 (NaCl)	 Johansson P-A, Liquid-liquid distribution of lidocaine and some structurally related anti-arrythmic drugs and local anaesthetics, <i>Acta Pharm. Suec.</i>, 19, 137–142 (1982). NB: See Lidocaine for details.
834	Mexiletine	9.14 ± 0.01	А	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: $pK_a = 9.07 \pm 0.03$ by extrapolation from 16.2–63.9% w/w aqueous MeOH. See Acetaminophen for full details.
835	Mezlocillin (C ₂₁ H ₂₅ N ₅ O ₈ S ₂) $(H_{3}SO_{2} - V)$ H H H H H H G	2.7 H ₃ H ₃	U	-H			Foye 3rd; see Azatadine from McEvoy.
836	Mianserin (C ₁₈ H ₂₀ N ₂) CH_3	7.5	U	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=20 \end{array}$	Walther G, Daniel H, Bechtel WD and Brandt K, New tetracyclic guanidine derivatives with H ₁ -antihistaminic properties: chemistry of epinastine, <i>ArzneimForsch.</i> , 40 , 440–446 (1990).
		7.4	U	+H	Potentiometric	47% MeOH in H ₂ O t = 25 I = 0.15 (KCl)	 Kelder J, Funcke C, Delbressine L, Leysen D and Nickolson V, A comparison of the physicochemical and biological properties of mirtazapine and mianserin, J. Pharm. Pharmacol., 49, 403–411 (1997). NB: Used a Sirius PCA101 autotitrator.

837	Miconazole (C ₁₈ H ₁₄ Cl ₄ N ₂ O)	6.91	U	+H	Potentiometric	H_2O t = 25	Peeters JJ, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i> , 67 , 127–129 (1978). NB: See Cinnarizine for details. Reported literature value $pK_a = 6.65$ after extrapolation of potentiometric data to 100% water.
		6.12	U	+H	Potentiometric	H_2O t = 37 l = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999).
838	$ \begin{array}{c} \text{Midazolam} (C_{18}\text{H}_{13}\text{CIFN}_{3}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 1.7 \pm 0.1 \\ 6.15 \pm 0.1 \end{array}$	U	+H			 Walser A, Benjamin LE, Flynn T, Mason C, Schwartz R and Fryer RI, Quinazolines and 1,4-benzodiazepines. Synthesis and reactions of imidazo [1,5-a][1,4]benzodiazepines, J. Org. Chem., 43, 936–944 (1978). NB: No experimental details reported. Acknowledgement to "Dr V Toome for pK determinations" Cited by Loftsson T, Gudmundsdottir H, Sigurjonsdottir JF, Sigurdsson JH, Sigfusson SD, Masson M and Steffanson E, Cyclodextrin solubilization of benzodiazepines: Formulation of midazolam nasal spray, Int. J. Pharm., 212, 29–40 (2001).
839	$(C_9H_{15}N_5O)$	4.61	U	+H	Spectro Potentiometric	H_2O <i>t</i> undefined I = 0.01	 Cowden WB and Jacobsen NW, <i>Aust. J. Chem.</i>, 37, 1195 (1984). Cited in: Gorecki DKJ, Minoxidil, <i>APDS</i>, 17, 185–219 (1988). Brown MA, The Upjohn Company of Canada, personal communication. Confirmed the result of Cowden and Jacobsen.
840	Mirtazepine (C ₁₇ H ₁₉ N ₃)	7.1	U	+H	Potentiometric	47% MeOH in H ₂ O <i>t</i> = 25 <i>I</i> = 0.15 (KCl)	 Kelder J, Funcke C, De Boer T, Delbressine L, Leysen D and Nickolson V, A comparison of the physicochemical and biological properties of mirtazapine and mianserin, <i>J. Pharm. Pharmacol.</i>, 49, 403–411 (1997). NB: Used Sirius autotitrator. Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. 292 = Dallet P, Labat L, Richard M, Langlois MH and Dubost JP, A reversed phase HPLC method development for the separation of new antidepressants, <i>J. Liq. Chrom. Rel. Technol.</i>, 25, 101–111 (2002).

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
841	Mitomycin C (C ₁₅ H ₁₈ N ₄ O ₅) H_2N O $OCONH_2$ H_2N OCH_3 H_3C OCH_3 NH	2.8 12.44	U U	+H -H	kinetic Spectro	H2O RT	Beijnen JH, Bult A, Underberg WJM and Mitomycin C, <i>APDS</i> , 16 , 361–401 (1987). "Mitomycin C contains several prototropic functions. Basic groups are the 7-amino group, the N-4 nitrogen and the aziridine nitrogen. Due to rapid degradation, the pK_a values of the conjugated acid concerning the 7-amino group and the N-4 nitrogen can not be deduced from titration experiments with intact mitomycin C. Therefore the acid dissociation constants for these functions were derived from titrations with stable analogs (37). Results are listed in Table VIII. The pK_a of the aziridine nitrogen has been determined titrimetically (11) and kinetically from the pH-rate relationships in degradation studies (49–51) although the titrimetric determination also has been influenced by degradation.

TABLE VIII Prototropic functions of mitomycin C

Function	Method	p <i>K</i> a	Ref.	Function	Method	p <i>K</i> a	Ref.
N-4	spectro	-1.2	37	aziridine	kinetic	2	50
7-amino	spectro	-1.3	37	aziridine	kinetic	2.74	51
aziridine	potentio	3.2	11	aziridine	kinetic	2.50	49
						(49.5 °C)	
aziridine	kinetic	2.8	49	7-amino	spectro	12.44	37

11. Stevens CL, Taylor KG, Munk ME, Marshall WS, Noll K, Shah GD, Shah LG and Uzu K, J. Med. Chem., 8, 1–10 (1965) (See no. 843).

37. Underberg WJM and Lingeman H, J. Pharm. Sci., **72**, 553–556 (1983) (See no. 842).

49. McClelland RA and Lam K, JACS, 107, 5182-5186 (1985).

- 50. Den Hartigh J, Analysis, electrochemistry and pharmacokinetics of mitomycin C, Thesis, Utrecht, The Netherlands (1986).
- 51. Beijnen JH, van der Houwen OAGJ, Rosing H and Underberg WJM, A systematic study on the chemical stability of mitomycin A and mitomycin B, *Chem. Pharm. Bull.*, **34**, 2900–2913 (1986)."

842	Mitomycin	-1.3	U	+H	Potentiometric	H ₂ O	Underberg WJM and Lingeman H, Determination of pK_a values of
		-1.2	U	+H	Spectro	t = RT	some prototropic functions in mitomycin and porfiromycin,
		~ 1.5	U	+H	$(\lambda = 363 \text{ nm})$		J. Pharm. Sci., 72 , 553–556 (1983).
		12.44	U	-H			NB: Rates of ionization for pK_{a4} were measured by stopped-flow spectrophotometry, with half-lives found to range from 7 to 25 seconds.
843	Mitomycin	3.20	U	+H	Potentiometric	50% MeOH t undefined I undefined	Stevens CL, Taylor KG, Munk ME, Marshall WS, Noll K, Shah GD, Shah LG and Uzu K, Chemistry and structure of Mitomycin C, J. Med. Chem., 8, 1–10 (1965). NB: No further experimental details on Mitomycin C pK _a measurements. Other titration measurements were made on various degradation products.
844	Mitomycin	2.8	U	+H	kinetic	H_2O t = 25 I = 0.1	McClelland RA and Lam K, Kinetics and mechanism of the acid hydrolysis of mitomycins, <i>JACS</i> , 107 , 5182–5186 (1985). NB: First order behaviour observed. Other observed kinetic pK _a values: mitomycin C, 38 °C, 2.7; mitomycin C, 49.5 °C, 2.50; mitomycin C, 25 °C in D ₂ O, 3.3; porfiromycin, 25 °C, 2.4; mitomycin A, 25 °C, 2.7.
845	Molindone (C ₁₆ H ₂₄ N ₂ O ₂) H C_2H_5	6.9	U	+H	Potentiometric	H_2O t = 25 I = 0.2	Dudzinski J, Lachman L, Shami E and Tingstad J, Preformulation studies. I. Molindone hydrochloride, <i>J. Pharm. Sci.</i> , 62 , 622–624 (1973). NB: Reported the pH of half-neutralization in carbonate- free solutions as the apparent pK _a value.
846	Monoethylglycine xylidide (C ₁₂ H ₁₈ N ₂ O) CH_3 H N CH_3 H H CH_3 H	8.04	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ I = 0.01 (NaCl)	 Johansson P-A, Liquid-liquid distribution of lidocaine and some structurally related anti-arrythmic drugs and local anaesthetics, <i>Acta Pharm. Suec.</i>, 19, 137–142 (1982). NB: See Lidocaine for details.

A	(1)
Appendix A	(continuea)

No.	Compound Name	p <i>K</i> a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
847	Morizicine (C ₂₂ H ₂₄ N ₃ O ₄ S) $O \rightarrow N \rightarrow O \rightarrow CH_3$ $O \rightarrow N \rightarrow O \rightarrow CH_3$	6.13	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 6.77.
848	Morphine (C ₁₇ H ₁₉ NO ₃)	8.21	А	+H	Conductance	$\begin{array}{l} H_2O\\ t=25\\ \kappa<1.5 \end{array}$	Oberst FW and Andrews HL, The electrolytic dissociation of morphine derivatives and certain synthetic analgetic compounds, <i>JPET</i> , 71 , 38–41 (1941). Cited in Perrin Bases 2929 ref. O1. NB: Results reported as K_b values. For morphine, $K_b = 1.64 \times 10^{-6}$ giving p $K_b = 5.79$.
	NCH ₃	8.03	U	+H	Potentiometric	H ₂ O t = 20	Perel ^T man Y, Sb. Nauchn. Tr. Leningr. Khim-Farmatsevt. Inst. 2, 38 (1957); CA 54: 11382b. Cited in Perrin Bases 2929 ref. P16. NB: Unsymmetrical cell with diffusion potentials.
849	Morphine	8.07 9.85	U U	+H -H	Spectro	H ₂ O t = 15	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). NB: See Aconitine for details. Muhtadi, <i>APDS</i> , 17 , 259–366 (1988): Has other values (8.0, 9.9 at 20°), but these are citations from Merck 10 ,

values (8.0, 9.9 at 20°), but these are citations from Merck Dictionary of Organic Compounds or BPC 11.

850	Morphine	8.31 9.51	U U	+H -H	Spectro $(\lambda = 300 \text{ nm})$	H_2O t = 20.0 I undefined	Schill G and Gustavii K, Acid dissociation constants of morphine, Acta Pharm. Suec., 1, 24–35 (1964). Cited in Perrin Bases Suppl no. 7484. NB: Glass electrode was only calibrated at pH = 9.20 at 20 °C.
		8.29 9.49	U U	+H -H	Potentiometric	H_2O t = 20.0 I undefined N_2 atmos- phere	The values were validated by comparisons with pK_a values for monofunctional morphine derivatives and checked by potentiometric and partitioning (against dichloromethane) experiments. Reported also codeine (8.26); ethylmorphine (8.33); morphine <i>N</i> -methyl bromide (8.83).
							Microconstants were determined spectrophotometrically and with reference to data for corresponding monofunctional compounds, using calculations described by Edsall JT, Martin RB and Hollingworth BR, <i>Proc. Natl. Acad. Sci. USA</i> , 44 , 505–518 (1958): pK ₁ , 8.87; pK ₂ , 8.45; pK ₁₂ , 8.95; pK ₂₁ , 9.37.
851	Morphine	8.02	U	+H	Potentiometric	H_2O t = 20 I < 0.01	Kaufman JJ, Semo NM and Koski WS, Microelectrometric titration measurement of the pK _a s and partition and drug distribution coefficients of narcotics and narcotic antagonists and their pH and
		7.93	U	+H		H_2O t = 37 I < 0.01	temperature dependence, J. Med. Chem., 18, 647–655 (1975). NB: See Codeine for further details.
852	Morphine	8.18 9.26	A U	+H -H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) Ar atmosphere	 Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates. <i>J. Med. Chem.</i>, 39, 4377–4381 (1996). NB: Used a Sirius autotitrator. Also <i>I</i> =gûN±5 M (NaCI): pK_a (amine), 8.17; pK_a (phenolic), 9.26; <i>I</i> = 0.001 M (NaCI): pK_a (amine), 8.13; pK_a (phenolic), 9.46.
853	Morphine	$\begin{array}{c} 8.18 \pm 0.01 \\ 9.34 \pm 0.01 \end{array}$	A A	+H -H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: pK_{a1} = 8.24 ± 0.02, pK_{a2} = 9.46 ± 0.03 by extrapolation from 15.6–59.7% w/w aqueous MeOH. See Acetaminophen for full details.
854	Morphine	$\begin{array}{c} 8.81 \pm 0.01 ^{*} \\ 9.34 \pm 0.01 \end{array}$	A A	+H -H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A and Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_{a1} = 8.18 \pm 0.01$, $pK_{a2} = 9.26 \pm 0.01$ at $I = 0.15$ (KCl). *The reported value 8.81 seems to be a typo for 8.18.

ÓН

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)			
855	Morphine	$\begin{array}{c} 8.13 \pm 0.01 \\ 9.46 \pm 0.01 \end{array}$	A A	+H -H	Potentiometric	H_2O t = 25.0 I = 0.001 (NaCl)	Sirius Technical Application Notes, 1994, vol. 1 , pp. 84–86. Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Also reported 8.17 \pm 0.01(A) and 9.26 \pm 0.01 (A), both at t = 25.0, $I = 0.15$ (NaCl).			
856	Morphine	8.08	U	+H	soly	H_2O t = 35.0 I undefined	Roy SD and Flynn GL, Solubility behavior of narcotic analgesics in aqueous media: Solubilities and dissociation constants of morphine, fentanyl, and sufentanil, <i>Pharm. Res.</i> , 6(2), 147–151 (1989). NB: See Fentanyl for details.			
857	Morphine	7.6 9.6	U U	+H -H		H ₂ O t = 37	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962). NB: $pK_a = 7.6$ from $pK_b = 6.0$ where $pK_w = 13.621$ at 37 °C; secondary source W&G assumed the result was at 25 °C and used $pK_w = 14.00$.			
858	Morphine-3-glucuronide (C ₂₃ H ₂₂ NO ₉)	2.83 ± 0.05	А	-H	Potentiometric	H_2O t undefined I = 0.1	Carrupt PA, Testa B, Bechalany A, El Tayar N, Descas P and Perrissoud D, Morphine-6-glucuronide and morphine-3- glucuronide as molecular chameleons with unexpected			
		$\begin{array}{c} 2.88 \pm 0.01 \\ 8.21 \pm 0.01 \end{array}$	A A	-H +H	Potentiometric	H_2O t = 25.0 I = 0.154 (KCl)	 lipophilicity, J. Med. Chem., 34, 1272–1275 (1991). NB: See Walther B, Carrupt PA, El Tayar N and Testa B, 8-Substituted xanthines as phosphodiesterase inhibitors: Conformation-dependent lipophilicity and structure-activity relationships, <i>Helv. Chim. Acta</i>, 72, 507–517 (1989). Sirius Technical Application Notes, 1994, vol. 1, pp. 91–93. Sirius Analytical Instruments, Ltd. Forest Row, East Sussex, RH18 5DW, UK. 			

276

859	Morphine-3-glucuronide	2.86 8.21	A U	-H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) Ar atmosphere	Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med.</i> <i>Chem.</i> , 39 , 4377–4381 (1996). NB: See Morphine for further details.
860	Morphine-6-glucuronide ($C_{23}H_{27}NO_9$) CH ₃	3.23 ± 0.05	U	-H	Potentiometric	H_2O t undefined I = 0.1	Carrupt PA, Testa B, Bechalany A, El Tayar N, Descas P and Perrissoud D, Morphine-6-glucuronide and morphine-3- glucuronide as molecular chameleons with unexpected
	OH COOH	$\begin{array}{l} 2.89 \pm 0.01 \\ 8.14 \pm 0.01 \\ 9.36 \pm 0.01 \end{array}$	A A A	-H -H +H	Potentiometric	H_2O t = 25.0 I = 0.156 (KCl)	 Bipophilicity, J. Med. Chem., 34, 1272–1275 (1991). NB: See Walther B, Carrupt PA, El Tayar N and Testa B, 8-Substituted xanthines as phosphodiesterase inhibitors: Conformation-dependent lipophilicity and structure-activity relationships, <i>Helv. Chim. Acta</i>, 72, 507–517 (1989). Sirius Technical Application Notes, 1994, vol. 1, pp. 87–89. Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK
861	Morphine-6-glucuronide	2.77 8.22 9.42	U U U	-H +H -H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) Ar atmosphere	Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med.</i> <i>Chem.</i> , 39 , 4377–4381 (1996). NB: See Morphine for further details.
862	Muroctasin (Romurtide) ($C_{43}H_{78}N_6O_{13}$) $\downarrow O H I H I H I H I H I H I H I H I H I H$	5.70 ± 0.05	U	-Н	Potentiometric	90% MeOH t = 35	Moroi R, Yamazaki K, Hirota T, Watanabe S, Kataoka K and Ichinose M, Physico-chemical properties of muroctasin, <i>Arzneim</i> <i>Forsch.</i> , 38 , 953–959 (1988). "The dissociation constant of MDP-Lys(L18) (muroctasin; I) was measured by the titration method. MDP-Lys(L18) was dissolved in mixed solvents of MeOH-H ₂ O (9:1)." NB: Solubility of this compound is poor in most solvents (e.g., H ₂ O, <1 g/10,000 mL).

Appendix A (continued)

No.	Compound Name	рK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
863	5-O-Mycaminosyltylo-nolide (OMT) (C ₃₁ H ₅₁ NO ₁₀) $(C_{13}H_{51}NO_{10})$	8.40	U	+H	Potentiometric	H_2O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative Structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a value.
864	Nafcillin (C ₂₁ H ₂₂ N ₂ O ₅ S) $\downarrow \qquad \downarrow \qquad$	2.65	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ c = 0.006	 Hou JP and Poole JW, The aminoacid nature of ampicillin and related penicillins, <i>J. Pharm. Sci.</i>, 58, 1510–1515 (1969). NB: Apparent pK_a values extrapolated to zero percent alcohol. Cited in Foye 1 (2 refs.); See Idoxuridine.
865	Nalidixic acid $(C_{12}H_{12}N_2O_3)$ H_3C N N N N C_2H_5 H_3C N N N N O $COOH$	$\begin{array}{c} -0.94 \\ 6.02 \\ 5.99 \pm 0.03 \end{array}$	U U A	+H -H -H	Spectro Potentiometric	H ₂ O	Staroscik R and Sulkowska J, Acid-base equilibria of nalidixic acid, <i>Acta Pol. Pharm.</i> , 28 (6), 601–606 (1971); CA 76:158322k. Cited in Grubb PE, Nalidixic Acid, <i>APDS</i> , 8 , 371–397 (1979). "The pK_a of the protonation of the nitrogen in position 8 has been reported as 6.02 and the pK_a for the carboxylate anion formulation has been reported as -0.94 . These were determined by a spectrophotometric method. Further study by the same workers on the partition equilibria of nalidixic acid between water and various organic solvents led to pK_a values of 5.99 ± 0.03 for <i>N</i> - protonation and for carboxylate formation. Takasugi and coworkers reported the apparent pK_a of nalidixic acid to be 5.9 at 28° by a spectrophotometric method."

866	Nalidixic acid	6.11 ± 0.02	А	-H	Spectro	H ₂ O	 NB: See also Sulkowska J and Staroscik R, <i>Pharmazie</i>, 30, 405–406 (1975). Vincent WR, Schulman SG, Midgely JM, van Oort WJ and Sorel RHA, Prototropic and metal complexation equilibria of nalidixic acid in the physiological pH region, <i>Int. J. Pharm.</i>, 9, 191–198 (1981). "The change in the absorption of the nalidixic acid as a function of pH corresponds to a calculated pK_a of 6.11 ± 0.02. As shown, this dissociation may be assigned to the carboxylic acid group (K (CZ) or K(NA)), the nitrogen in position 8 (K(CN) or K(NA)) or both in combination considering the possibility of two closely overlapping equilibria."
867	Nalorphine (C ₁₉ H ₂₁ NO ₃)	7.73	U	+H	Potentiometric	H_2O t = 20 I < 0.01	Kaufman JJ, Semo NM and Koski WS. Microelectrometric titration measurement of the pK _a s and partition and drug distribution
	CH ₂ =CHCH ₂ N HO O OH	7.59	U	+H		H ₂ O t = 37 I < 0.01	coefficients of narcotics and narcotic antagonists and their pH and temperature dependence, <i>J. Med. Chem.</i> , 18 , 647–655 (1975). NB: See Codeine for further details.
868	Naloxone (C ₁₉ H ₂₁ NO ₄)	7.94	U	+H	Potentiometric	H_2O t = 20 I < 0.01	Kaufman JJ, Semo NM and Koski WS. Microelectrometric titration measurement of the pK_as and partition and drug distribution
	CH ₂ =CHCH ₂ N HO O	7.82	U	+H		H_2O t = 37 I < 0.01	coefficients of nac praso and parcotic antagonists and their pH and temperature dependence, <i>J. Med. Chem.</i> , 18 , 647–655 (1975). NB: See Codeine for further details. Cited in: Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004) (ref. 285).

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
869	Naltrexone (C ₂₀ H ₂₃ NO ₄)	8.38 8.13	U U	+H +H	Potentiometric	H_2O t = 20 I < 0.01 H_2O t = 37	Kaufman JJ, Semo NM and Koski WS, Microelectrometric titration measurement of the pK _a s and partition and drug distribution coefficients of narcotics and narcotic antagonists and their pH and temperature dependence, J. Med. Chem., 18, 647–655 (1975).
	HOHO					<i>I</i> = 55 <i>I</i> < 0.01	NB: See Codeine for further details.
870	Naphazoline (C ₁₄ H ₁₄ N ₂)	10.35 ± 0.02	U	+H	kinetic	H ₂ O t = 25 I undefined	 Wall GM, Naphazoline Hydrochloride, <i>APDS</i>, 21, 307–344, (1992). NB: pK_a = 10.9 at 20 °C (4); 10.13 ± 0.02 at 35 °C and 9.92 ± 0.03 at 45 °C (16). 4. Reynolds JEF (ed.), <i>Martindale's Extra Pharmacopoeia</i>, 29th Edn., Pharmaceutical Press, London 1470 (1989). 16. Stern MJ, King LD and Marcus AD, Kinetics of the specific base-catalyzed hydrolysis of naphazoline, <i>J. Am. Pharm. Assn.</i>, 48, 641–647 (1959).
871	Naphazoline	10.14	U	+H	Potentiometric	$\begin{array}{l} H_2O \; (extrap) \\ t = 24 \pm 1 \\ I \sim 0.002 \end{array}$	Chatten LG and Harris LE, Relationship between pK _b (H ₂ O) of organic compounds and E _{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). NB: See Chlorpromazine for details.
872	Naproxen (C ₁₄ H ₁₄ O ₃)	4.15	U	-Н	soly	H ₂ O t = 25 I undefined	 Chowhan ZT, pH solubility profiles of organic carboxylic acids and their salts, <i>J. Pharm. Sci.</i>, <i>67</i>, 1257–1260 (1978). "The solubilities of naproxen (I), 7-methylthio-2-xanthonecarboxylic acid (tixanox), 7-methylsulfinyl-2-xanthonecarboxylic acid were determined as a function of pH. The results on the solubility of I and its salts were in excellent agreement with the theoretical profiles describing the relationship between pH values of the solutions and the dissociation constant of the acid,"

8	873	Naproxen	4.1	U	-H	Spectro	H ₂ O t unspecified <i>I</i> unspecified	Herzfeldt CD and Kümmel R, Disso dissolution rates of some selected Drug Dev. Ind. Pharm., 9(5), 767–7 and Ibuprofen for details. Al-Sha MS, Naproxen, APDS, 21, 345–37 Moffat AC, Clarke's Isolation and I (1986).
8	374	Naproxen	4.28 ± 0.02	U	-H	HPLC/pH	H_2O t = 25 I = 0.01	Unger SH, Cook JR and Hollenberg determining octanol-aqueous par ionization coefficients by reverse
		Benzoic acid	4.21 ± 0.02	U			I = 0.1	chromatography, J. Pharm. Sci., 6
			4.33 ± 0.02	U			H_2O $t = 25$ $I = 0.01$	"A liquid chromatographic methoc partition, distribution and ioniza compounds in octanol-aqueous s
			4.38 ± 0.02	U			<i>I</i> = 0.1	baseline is obtained rapidly, and highly correlated with unit slope coefficients obtained from the clc addition, if the apparent dissociatic compound lies within the pH op support, the apparent dissociatic determined simultaneously with by measuring the log distribution NB: The poor agreement between t here for benzoic acid and the bes acid, nos. 206–208) suggest that t paper must be classified as Unce
٤	375	Nebivolol ($C_{22}H_{25}F_2NO_4$) OH H OH F F F	8.22	U	+H	Potentiometric	H_2O (extrap) $t = 25 \pm 1$ I undefined Ar atmos- phere	Cheymol G, Poirier J-M, Carrupt P. Levron J-C and Snoeck E., Pharm blockers in obese and normal vol 563–570 (1997). NB: Determined water solutions, using the Yasud Lombardo F, Obach RS, Shalaeva human volume of distribution va 2. Extended data set and leave-cla 1242–1250 (2004); ref. 14.
8	376	Neurophysin I (histidine residue)	6.87	U	+H	NMR/pH	$\begin{array}{l} D_2 O \\ t = 22 \pm 1 \end{array}$	Griffin JH, Cohen JS, Cohen P and interactions: Proton magnetic res
281		Neurophysin I in a 1:1 complex with oxytocin	6.67	U	+H		I = 0.1 (NaCl)	formation between bovine neurop level, J. Pharm. Sci., 64, 507–511 ("Proton magnetic resonance spectr individual amino acid residues i nonapeptide hormone oxytocin, between them. For neurophysin

Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and
dissolution rates of some selected nonsteroidal antiinflammatories,
Drug Dev. Ind. Pharm., 9(5), 767–793 (1983). NB: See Azapropazone
and Ibuprofen for details. Al-Shammary FJ, Mian NAA and Mian
MS, Naproxen, APDS, 21, 345–373 (1992) gave pK _a = 4.2, citing
Moffat AC, Clarke's Isolation and Identification of Drugs, 2nd Edn.
(1986).

erg JS, Simple procedure for partition, distribution, and sed phase high pressure liquid , 67, 1364-1367 (1978).

- nod for the determination of zation coefficients of various solutions is described. . . . A stable nd the log relative retention times are ppe to log distribution or partition classical shake-flask procedures. In ciation constant of an ionizable operating range of the column tion constant usually can be ith the log of the partition coefficient on coefficient at several pH values."
- en the experimental values reported est literature values (see Benzoic t the remainder of the values in this certain.
- PA, Testa B, Weissenburger J, rmacokinetics of β-adrenoceptor volunteers, Br. J. Clin. Pharmacol., 43, ed by extrapolation from MeOHuda-Shedlovsky procedure. Cited in: eva MY and Gao F, Prediction of values for neutral and basic drugs. class-out statistics, J. Med. Chem., 47,

nd Camier M, Drug-biomolecule resonance studies of complex rophysins and oxytocin at molecular (1975).

ctroscopy was used to monitor in bovine neurophysin, in the n, and in the complex formed in I alone, a normal titration curve

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
							for the C-2 proton resonance of the lone histidine residue was obtained with an apparent ionization constant of 6.97. Addition o oxytocin to a solution of neurophysin I at pH 6.5 resulted in severa changes in the spectrum. The effect on the histidine C-2 proton resonance signal indicated a slow exchange process between 2 states, probably representing a conformational change in the protein. The apparent pK of the histidine residue in the hormonal complex was shifted to 6.67, indicating a slightly more positive (less electron dense) environment for the histidine residue"
377	Nicotinamide (niacinamide) ($C_6H_6N_2O$)	3.328 ± 0.010	R	+H	Spectro	H_2O $t = 20.0 \pm 0.5$ I < 0.01 to 0.1 (KCl)	Willi AV, Die Ionizationskonstante von Nicotinsaureamid in wasseriger Losung, <i>Helv. Chim. Acta</i> , 37, 602–606 (1954). NB: Carefu spectrophotometric work performed with CO ₂ -free solutions. Jellinek HHG and Wayne MG, Nicotinamide: Ultraviolet spectra and
	CONH ₂	3.35	А	+H	Spectro $(\lambda = 261.5 \text{ nm})$	H_2O $t = 20 \pm 2$ I = 0.01	dissociation constants, J. Phys. Chem., 55, 173–179 (1951). NB: Used glass electrode to measure pH values. No reference cited by Perrin. Used glass electrode in an
		3.20 also:	А	+H	Potentiometric	H_2O t = 20	unsymmetrical cell with liquid junction potentials. NB: All values cited in Perrin Bases no. 1073.
		0.50	U	+H	Spectro	c = 0.01	Vickery HB and Pucher GW, The determination of "free nicotine" in
78	Nicotine ($C_{10}H_{14}N_2$)	3.22	А	+H	Potentiometric	H ₂ O	tobacco: The apparent dissociation constants of nicotine, J. Biol.
	CH ₃	8.11	А	+H		t = 20 I < 0.05	 Chem., 84, 233–241 (1929). Fowler RT, Redetermination of ionization constants of nicotine, J. Appl. Chem. (Lond.), 4, 449–452 (1954). NB: Results were reported
		3.55	U	+H		H ₂ O	as K_b values. Gave also $pK_{a1} = 3.42$ and $pK_{a2} = 8.02$ at 25 °C.
	N	8.13	А	+H		t = 0 I < 0.2	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925).
		3.22	U	+H		H ₂ O	NB: All values cited in Perrin Bases no. 2933. The Vickery and Puche
		7.65	U	+H		t = 40 I undefined	data at 20 °C were corrected to values at 25 °C (3.12, 8.02) by Perrin
79	Nicotine	3.13	А	+H	CE/pH (+ve	H ₂ O	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard M
		8.24	U	+H	ion mode)	t = 25 I = 0.025	and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis an mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 3.21 and 8.

880	Nicotine analogues 5-H 5-fluoro 5-chloro 5-bromo 5-iodo	3.41 8.21 1.07 7.72 1.15 7.68 1.42 7.77 1.70 7.67 2.20	U U U U U U U U U U U U	+H +H +H +H +H +H +H +H +H +H +H +H +H	Potentiometric	$t = 25.0 \pm 0.05$ dissociation constants of some nicotine an $I = 0.5$ (KCI)Suec., 16(1), 56–63 (1979).corrections"The experimental set-up used for determine constants has been described elsewhere [for [H ⁺]Johansson S and Karlsson R, Titration of nand [OH ⁻]equal strengths, Anal. Chim. Acta, 64, 113-from K_w amount of thy drochloric acid had been ad M ionic medium (KCI) with sodium hydri same ionic strength The dissociation				
	5-hydroxy γ-nicotine	3.30 8.20 3.62	U U U	$^{+H}_{+H}$ $^{+H}$			from the titration data by the ET minimising program LETAGRO Whiteker R, Ark. Kemi., 31 , 365–3	P [Brauner		
	Theothe	7.87	U	+H			Other compounds:			
							Substituted pyridines	pK _a (pyr N)	p <i>K</i> _a (alicyclic or aliphatic N)	
							N-Me 3-(2-aminoethyl)	4.69	8.83	
							N-Me 3-(3-aminopropyl)	5.30	9.66	
							N,N-diMe 3-(aminomethyl)	3.40	8.04	
							N,N-diMe 3-(2-aminoethyl)	4.36	8.90	
							N,N-diMe 3-(3-aminopropyl)	5.31	9.70	
							N,N-diMe 3-(4-aminobutyl)	5.57	10.00	
							3-(pyrrolidinomethyl)	3.44	8.82	
							3-(pyrrolidino-2-ethyl)	4.34	9.32	
							3-(pyrrolidino-3-propyl)	5.16	10.08	
							3-(pyrrolidino-4-butyl)	5.34	10.26	
							Substituted tetrahydroquinoli	nes:		
							5-amino	4.65	8.72	
							5-dimethylamino	4.25	8.20	
881	Nicotinic acid	2.03	А	+H,-H	Potentiometric	H ₂ O	Jaffe HH and Doak GO, The basici	ties of sub-	tituted pyridines and	
001	COOH	4.83	A	-H,+H	rotentiometric	$t = 24 \pm 1$ c = 0.04	their 1-oxides, JACS, 77, 4441–444 unsymmetrical cell with junctior	4 (1955). U	lsed a glass electrode in	
		2.00	А	+H,-H	Spectro	H_2O	Evans RF, Herington EFG and Kyr			
200	N N	4.82	A	-H,+H	-pecilo	t = 25 $I = 0.03$	dissociation constants of the pyr ultraviolet photoelectric spectrop 1284–1292 (1953).	idine-mono	ocarboxylic acids by	

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
		2.07 4.81	A A	+H,–H –H,+H	Potentiometric	H_2O t = 22 c = 0.05 to 0.1 $N_2 \text{ atmosphere}$	Green RW and Tong HK, The constitution of the pyridine monocarboxylic acids in their isoelectric forms, <i>JACS</i> , 78 , 4896–4900 (1956). Used a glass electrode standardized with phthalate solution (pH = 4.00) and the Guntelberg equation to correct for <i>I</i> . Estimated the microconstants from spectrophotometric data on the acid and its methyl ester: pK_A , 2.11; pK_B , 3.13; pK_C , 4.77; pK_D , 3.75; where the subscripts represent the following equilibria: A, diprotonated to zwitterion; B, diprotonated to neutral; C, zwitterion to fully deprotonated; D, neutral to fully deprotonated. Also reported the corresponding data for picolinic and isonicotinic acids.
		4.76	A	-H,+H	Spectro	H_2O t = 25.0 I = 0.005- 0.025	 Fischer A, Galloway WJ and Vaughan J, Structure and reactivity in the pyridine series. I. Acid dissociation constants of pyridinium ions, <i>J. Chem. Soc. B</i>, 3591–3596 (1964). All the above data were cited in Perrin Bases no. 1076; Perrin Bases suppl. no. 5080.
882	Nicotinic acid	4.75	А	-H,+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 4.8.
		4.92	А	-H,+H	Conductance	H_2O $t = 25.00 \pm 0.01$ I = 0.00	Orekhova Z, Ben-Hamo M, Manzurola E and Apelblat A, Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid, <i>J. Sol. Chem.</i> , 34 , 687–700 (2005). NB: Obtained from measurements on dilute solutions of the sodium salt of nicotinic acid, extrapolated to zero ionic strength and calculated from the reported K_1 value. Also reported the following values: $t = 15.00$, 4.99 ; 20.00 , 4.95 ; 30.00 , 4.89 ; $t = 35.00$, 4.85 ; $t = 40.00$, 4.82 ; $t = 45.00$, 4.79 ; $t = 50.00$, 4.76 .
883	Nicotinic acid	$GLpK_a$: 2.10 \pm 0.01 4.63 \pm 0.01 A&S:	A U	+H,-H -H,+H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmos-	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details. Cited Tam KY and Takacs-Novac K,
		$\begin{array}{l} 2.14 \pm 0.02 \\ 4.82 \pm 0.05 \end{array}$	A A	+H,–H –H,+H		phere	Multiwavelength spectrophotometric determination of acid dissociation constants. Part II. First derivative versus target function analysis, <i>Pharm. Res.</i> , 16 , 374–381 (1999); values of 2.00 ± 0.01 and 4.63 ± 0.01 .

884	iso-Nicotinic acid (C ₆ H ₅ NO ₂)	1.74	А	+Н,-Н	Potentiometric	H ₂ O	Jaffe HH and Doak GO, The basicities of substituted pyridines and
	N	4.96	А	-H,+H		$t = 24 \pm 1$ c = 0.04	their 1-oxides, <i>JACS</i> , 77 , 4441–4444 (1955). NB: Used a glass electrode in an unsymmetrical cell with junction potentials.
		1.77	А	+H,-H	Spectro	H ₂ O	Evans RF, Herington EFG and Kynaston W, Determination of
		4.84	А	-Н,+Н	1	t = 25 $I = 0.03$	dissociation constants of the pyridine-monocarboxylic acids by ultraviolet photoelectric spectrophotometry, <i>Trans. Farad. Soc.</i> , 49 , 1284–1292 (1953).
	СООН	1.84	А	+H,-H	Potentiometric	H ₂ O	Green RW and Tong HK, The constitution of the pyridine
		4.86	Α	-H,+H		t = 22 c = 0.05-0.1 N ₂ atmosphere	monocarboxylic acids in their isoelectric forms, <i>JACS</i> , 78 , 4896–4900 (1956). NB: Used a glass electrode standardized with phthalate solution (pH = 4.00) and the Guntelberg equation to correct for I. Estimated the microconstants from spectrophotometric data on the acid and its methyl ester: pK_A , 2.11; pK_B , 3.13; pK_C , 4.77; pK_D , 3.75; where the subscripts represent the following equilibria: A, diprotonated to zwitterion; B, diprotonated to neutral; C, zwitterion to fully deprotonated. Also reported the corresponding data for picolinic and isonicotinic acids.
		1.70 4.95	A A	+H,-H -H,+H	Spectro	$\begin{array}{l} H_2O \\ t = 20 \pm 2 \\ I = 0.01; \\ c < 5 \times 10^{-4} \end{array}$	Jellinek HHG and Urwin JR, Ultraviolet absorption spectra and dissociation constants of picolinic, isonicotinic acids and their amides, <i>J. Phys. Chem.</i> , 58 , 548–550 (1954). NB: Used glass electrode to measure pH values and recorded spectra with a Hilger Uvispek spectrophotometer. Ionic strength was extrapolated to zero with the Debye-Huckel equation.
		4.90	А	-H,+H	Spectro	H_2O t = 25.0 I = 0.005- 0.025	Fischer A, Galloway WJ and Vaughan J, Structure and reactivity in the pyridine series. I. Acid dissociation constants of pyridinium ions, J. Chem. Soc. B, 3591–3596 (1964).
							All data were cited in Perrin Bases no. 1076–77; suppl. no. 5081.
885	Nifedipine ($C_{17}H_{18}N_2O_6$) H ₃ C H ₃ C CH ₃ CH ₃ OOC COOCH ₃ H NO ₂	-0.9 >13	U U	+H -H	Potentiometric	DMF t undefined	 Mannhold R, Rodenkirchen R and Bayer R, Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i>, 34, 407–409 (1984). NB: Tetrabutylammonium hydroxide used as base. Cited in Nifedipine, Ali SL, <i>APDS</i>, 18, 231–288 (1989). NB: The information given does not correspond exactly to the cited paper (below).
	\sim						

Appendix A	(continued)
Арреник А	(communa)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
886	Nifedipine	-	U	+H	Potentiometric	40% EtOH	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i> , 34 , 407–409 (1984). NB: Ionization constants stated to be too extreme to measure. See Aprindine for details.
887	Niflumic acid (C ₁₃ H ₉ F ₃ N ₂ O ₂)	$\begin{array}{c} 2.13 \pm 0.04 \\ 5.07 \pm 0.04 \end{array}$	U/A U/A	+H -H	soly	H ₂ O t = 20.0	Asuero AG, Evaluation of acidity constants of two-step overlapping equilibria of amphoteric substances from solubility measurements, <i>J. Pharmaceut. Biomed. Anal.</i> , 6 (3), 313–316 (1988). Intrinsic solubility (So) = $22.57 \pm 1.65 \text{ mg/L}$. Previously reported values: $pK_1 = 2.15$; $pK_2 = 5.05$ (Bres et al., <i>Trav. Soc. Pharm.</i> Montpellier, 36 , 331–364 (1976)). See also Asuero AG, <i>Int. J. Pharm.</i> , 89 , 103–110 (1993); Asuero AG, <i>Int.</i>
888	Niflumic acid	$\begin{array}{c} 2.26 \pm 0.08 \\ 4.44 \pm 0.03 \end{array}$	U A	+H -H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 J. Pharm., 88, 15–22 (1992); Asuero AG, Int. J. Pharm., 52, 129–137 (1989). Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: validation study in methanol/water mixtures, Int. J. Pharm., 151, 235–248 (1997). NB: By extrapolation from 30–55% w/w aqueous MeOH. See Acetaminophen for full details.
889	Niflumic acid	4.5	U	-Н	Spectro	H ₂ O t unspecified I unspecified	Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i> , 9(5), 767–793 (1983). NB: Used d\./dpH method. See Azapropazone and Ibuprofen for details.
890	Nikethamide (C ₁₀ H ₁₄ N ₂ O)	3.46 (0.72)	U	+H	Spectro $(\lambda = 261 \text{ nm})$	H ₂ O t = 20.0	Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i> , 92 (1), 15–22 (1993). NB: See Acetaminophen for further details. An alternative graphical method gave $pK_a = 3.4$.

891	Nimesulide (C ₁₃ H ₁₂ N ₂ O ₅ S) H N SO ₂ CH ₃ O NO ₂	6.46	Α	-H	Potentiometric	H ₂ O <i>t</i> = 25.0 <i>I</i> < 0.01 activity corrections	 Fallavena PRB and Schapoval EES, pK_a determination of nimesulide in methanol-water mixtures by potentiometric titrations, <i>Int. J. Pharm.</i>, 158(1), 109–112 (1997). NB: The reported pK_a value has been obtained by extrapolation of apparent values in water-methanol mixtures (34.47–60.00 wt%) to 0% methanol, using Yasuda-Shedlovsky plots.
892	Nimesulide	6.56 ± 0.03	A	-H	Spectro	H ₂ O t = 25 I = 0.02	Singh S, Sharda N and Mahajan L, Spectrophotometric determination of pK_a of nimesulide, <i>Int. J. Pharm.</i> , 176 , 261–264 (1999). "The pH were determined on a pH meter equipped with a combined glass electrode that was standardised at 25° using standard buffers (Bates, 1962). The absorbance readings and spectra were recorded on two spectrophotometers, model DU640i and diode array model 700 (both Beckman, USA). A thermostatic bath equipped with a precision controller was used for control of temperature The procedure for determination and calculation of pK_a was essentially the same as described by Albert and Serjeant (1962). The buffers were prepared by mixing predetermined volumes of stock 0.2M NaH ₂ PO ₄ , 0.1M K ₂ HPO ₄ , 0.2M NaCl solutions and water to give final buffer molarity 0.01M and ionic strength 0.02. Aliquots of 5 ml of each buffer were distributed into five tubes each. Each tube 50 µl drug stock solution in methanol (2 mg ml ⁻¹) added to give a final drug strength of 20 µg ml ⁻¹ . For a validation study in which the effect of drug concentration was looked for, the drug strength was doubled to 40 µg ml ⁻¹ . The solutions were mixed and the tubes were placed in the thermostatic bath set at 25 °C. The absorbance was determined for each solution at 393 nm. Full scans were also taken for selected samples The absorbance of neutral and ionic species of the drug were determined in a similar manner employing 0.01N HCl and 0.01N NaOH, respectively. The ionic strength of these solutions was also preadjusted to 0.02 by addition of suitable quantity of sodium chloride."

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
893	Nimesulide	6.51 ± 0.05	A	-Н			 NB: Four replicate values were reported (no correction for activity effects): 6.5579 ± 0.0139 (Instr. 1; person 1, day 1, [drug] = 20 μg ml⁻¹) 6.5593 ± 0.0102 (Instr. 1; person 1, day 2, [drug] = 20 μg ml⁻¹) 6.5584 ± 0.0317 (Instr. 1; person 1, day 3, [drug] = 40 μg ml⁻¹) 6.5451 ± 0.0251 (Instr. 2; person 2, day 4, [drug] = 20 μg ml⁻¹) 6.5451 ± 0.0251 (Instr. 2; person 2, day 4, [drug] = 20 μg ml⁻¹) 6.5451 ± 0.0251 (Instr. 2; person 2, day 4, [drug] = 20 μg ml⁻¹) 6.5451 ± 0.0251 (Instr. 2; person 2, day 4, [drug] = 20 μg ml⁻¹) 6.5451 ± 0.0251 (Instr. 2; person 2, day 4, [drug] = 20 μg ml⁻¹) 8.564 (39); 6.50 [4 6.56 [41]. [38] Hansch C, Sammes PG and Taylor JB, <i>Compr. Med. Chem.</i>, 6, Pergamon, Oxford, p. 711 (1990). [39] Fallavena PRB and Schapoval EES, pK_a determination of nimesulide in methanol-water mixtures by potentiometric titrations, <i>Int. J.Pharm.</i>, 158(1), 109–112 (1997). NB: See separate entry. [40] Magni E, <i>Drug Invest</i> (Suppl.) 3, 1 (1991).
894	Nimetazepam (C ₁₆ H ₁₃ N ₃ O ₃) H_3C O_2N N O_2N N N N N N N N	2.53	U	+H	Spectro $(\lambda = 280 \text{ nm})$	EtOH/H ₂ O t = 37 <i>I</i> undefined	[41] Singh S, Sharda N and Mahajan L, Int. J. Pharm., 176, 261–264 (1999)." NB: See separate entry. Inotsume N and Nakano M, Reversible ring opening reactions of nimetazepam and nitrazepam in acidic media at body temperature, J. Pharm. Sci., 69, 1331–1334 (1980). NB: The percentage of ethanol in the experimental systems (from dilution ethanolic stock solutions with aqueous buffers) was not stated, b was presumably small. Used the spectrophotometric procedure Albert and Serjeant (1971).
895	Nitrazepam (C ₁₅ H ₁₁ N ₃ O ₃) H O_2N N N N N N N N	$\begin{array}{c} 2.84 \pm 0.2 \\ 10.51 \pm 0.05 \end{array}$	U U	+H -H	Potentiometric	H ₂ O t = 25.0 ± 0.1 I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 10–64%w/w aqueous MeOH. See Acetaminophen for full details.

896	Nitrazepam	$\begin{array}{l} GLpK_a:\\ 2.90 \pm 0.05\\ 10.39 \pm 0.04\\ A\&S:\\ 2.94 \pm 0.05\\ 10.66 \pm 0.04 \end{array}$	A A A	+H +H +H +H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details.
897	Nitrazepam	3.2 10.8	U U U	+H -H	Spectro	5% MeOH in H ₂ O t = 20 I = 0.15	Barrett J, Smyth WF and Davidson IE. Examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry, J. Pharm. Pharmacol., 25, 387–393 (1973). NB: See 1,4-Benzodiazepines for details.
898	Nitrazepam	2.77	U	+H	Spectro $(\lambda = 280 \text{ nm})$	$EtOH/H_2O$ t = 37 I undefined	Inotsume N and Nakano M, Reversible ring opening reactions of nimetazepam and nitrazepam in acidic media at body temperature, J. Pharm. Sci., 69, 1331–1334 (1980). NB: See Nimetazepam for details.
899	Nitrazepam	3.2	U	+H		H ₂ O	Konishi M, Hirai K and Mari Y, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, J. Pharm. Sci., 71(12), 1328–1334 (1982). NB: See Triazolam.
900	Nitrofurazone (C ₆ H ₆ N ₄ O ₄) $O_2N \longrightarrow NH_2$	9.28 ± 0.03	U	-Н	Potentiometric	EtOH $t = 35.0 \pm 0.1$ I = 0.00	 Agrawal YK and Patel DR, Thermodynamic proton-ligand and metal-ligand stability constants of some drugs, <i>J. Pharm. Sci.</i>, 75(2), 190–192 (1986). NB: See Clioquinol for details.
901	8-Nitrotheophylline (C ₇ H ₇ N ₅ O ₄) H ₃ C H_3 NO_2 O N NO_2 CH ₃	3.55 ± 0.05	U	-H	Spectro	H_2O t = 25 I = 0.3	 Cohen JL and Connors KA, Stability and structure of some organic molecular complexes in aqueous solution, <i>J. Pharm. Sci.</i>, 59, 1271–1276 (1970). NB: See Hypoxanthine.

No.	Compound Name	р <i>К</i> а value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
902	8-Nitrotheophylline	2.07	U	-H			Eichman ML, Guttman DE, van Winkle Q and Guth EP, Interactions of xanthine molecules with bovine serum albumin. I, J. Pharm. Sci. 51, 66–71 (1962).
		3.6	U	-H			 Guttman DE and Gadzala AE, Interactions of xanthine molecules with bovine serum albumin. II, J. Pharm. Sci., 54, 742–746 (1965). NB: In both cases, the pK_a value was quoted without experimental details. The lower value appears to be incorrect. Cited in Mayer MC and Guttman DE, Interactions of xanthine derivatives with bovine serum albumin III. Inhibition of binding, J. Pharm. Sci., 57, 245–249 (1968).
903	Norcodeine (C ₁₇ H ₁₉ NO ₃) CH ₃ O O O NH	9.23 ± 0.01	A	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) under Ar	 Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med. Chem.</i>, 39, 4377–4381 (1996). NB: See Morphine for further details. The same result was reported in Sirius Technical Application Notes, vol. 2, p. 151, 1995. Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 0.7–0.8 mM.
904	Norcodeine	9.10	U	+H	Potentiometric	H ₂ O t undefined I undefined	Rapaport H and Masamune S, The stereochemistry of 10-hydroxycodeine derivatives, <i>JACS</i> , 77 , 4330–4335 (1955). Cited in Perrin Bases Supplement 7485 ref. R3. NB: The study used measurements of pH with a glass electrode and liquid junction potentials.
905	Norcodeine, N-(2-cyano)ethyl (C ₂₀ H ₂₂ N ₂ O ₃) CH ₃ O	5.68	Α	+H	Potentiometric	H_2O t = 25 ± 0.1 l < 0.02	Stephenson GW, Williamson D, Base strengths of cyanoamines, <i>JACS</i> , 80 , 5943–5947 (1958). Cited in Perrin Bases. No. 2937 ref. S75. NB: Study used a glass electrode with liquid junction potential. Careful calibration of the pH meter was reported and activity effects taken into account. Also reported a p K_a value for methamphetamine, <i>N</i> -(2-cyano)ethyl = 6.95. The mean difference in p K_a caused by the presence of the 2-cyanoethyl group was about -3.28 log unit.

290

906	Nordefrin (cobefrin) (C ₉ H ₁₃ NO ₃) HO \downarrow CH ₃ CH ₃ OH	8.5	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $I \le 0.001$	 Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines <i>JACS</i>, 73, 2611–2613 (1951). NB: See Amphetamine for details.
907	Norephedrine (C ₉ H ₁₃ NO)	9.05	Α	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, J. Assoc. Off. Anal. Chem., 54, 1179–1191 (1971). NB: See Amphetamine for further details.
908	Norepinephrine (DL-noradrenaline) (C ₈ H ₁₁ NO ₃) HO \rightarrow CH ₂ NH ₂ \downarrow OH OH	$\begin{array}{c} 8.55 \pm 0.02 \\ 9.82 \pm 0.10 \end{array}$	A U	+Н, –Н –Н, +Н	Potentio- metric, Spectro	H ₂ O t = 37 I = 1.0	 van Hees, MTIW, Reactivity of Catechol(amine)s, Ph.D. thesis, Ctr for <i>Biopharm</i>. Sci., Leiden University, 1983, 1–93. NB: Microscopic: 8.72 ± 0.01; 9.03 ± 0.05; 9.65 ± 0.09; 9.34 ± 0.03. Schüsler-van Hees, MTIW, Beijersbergen van Henegouwen GMJ and Driever MFJ, Ionization constants of catechols and catecholamines, <i>Pharm. Weekblad Sci. Edn.</i> 5, 102–108 (1983).
909	Norepinephrine (noradrenaline)	8.63 9.73	A U	+H, -H -H, +H	Spectro	H_2O $t = 25.0 \pm 0.05$ I = 0.10	Ijzerman AP, BultsmaT, Timmerman H and Zaagsma J, The ionization of β-adrenoceptor agonists: A method for unravelling ionization schemes, <i>J. Pharm. Pharmacol.</i> , 36 (1), 11–15 (1984). NB: Microscopic: 8.68 and 9.68; macroscopic: 8.63 and 9.73. See Isoprenalin.
910	Norepinephrine	8.58	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK_a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis, 1945.

291

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
911	Norfenefrine (C ₈ H ₁₁ NO ₂) HO CH_2NH_2 CH_2NH_2 OH	8.67	U	+H, -H	Potentiometric	H2O t undefined I undefined	 Wagner J, Grill H and Henschler D, Prodrugs of etilefrine: Synthesis and evaluation of 3'-(O-Acyl) derivatives, <i>J. Pharm. Sci.</i>, 69(12), 1423–1427 (1980). "Phenolethanolamines in solution represent a mixture of the uncharged form and ionic species (cation, anion, and zwitterion). At half-neutralization, these compounds are in apparent average pKa value. The pKa value increased from 8.67 (norfenefrine) to 8.9 (phenylephrine) or 9.0 (etilefrine) for the 3'-hydroxyphenylethanolamines when introducing a methyl or ethyl into the amino group. The same value also was obtained for etilefrine in 1.5 × 10⁻³ M aqueous solution."
912	Norhyoscyamine (C ₁₆ H ₂₁ NO ₃)	10.28	U	+H	Potentiometric	H_2O $t = 21 \pm 2$ I undefined	Bottomley W and Mortimer PI, Partition separation of tropane alkaloids. <i>Aust. J. Chem.</i> , 7 , 189–196 (1954). Cited in Perrin Bases 2939 ref. B86. NB: Used a glass electrode in an unsymmetrical cell with liquid junction potentials. See Hyoscyamine for details.
913	Norketobemidone (C ₁₄ H ₁₉ NO ₂) HO	9.00 9.84	U U	+H, -H -H, +H	Spectro $(\lambda = 300 \text{ nm})$	H ₂ O	Ahnfelt N, Abrahamsson L, Bondesson V and Hartvig P, Reaction of the aminophenols ketobemidone and norketobemidone in buffered aqueous solution with ethyl chloroformate, <i>Acta Pharm.</i> <i>Suec.</i> , 19 , 355–366 (1982). Macroconstants: $pK_1 = 9.00$, $pK_2 = 9.84$. Microconstants: $pk_1 = 9.20$, $pk_2 = 9.44$, $pk_3 = 9.64$, and $pk_4 = 9.40$.

914	Normorphine (C ₁₆ H ₁₇ NO ₃)	$\begin{array}{l} 8.66 \pm 0.01 \\ 9.80 \pm 0.01 \end{array}$	A A	+H -H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (KCl) Ar atmosphere	 Avdeef A, Barrett DA, Shaw PN, Knaggs RD and Davis SS, Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates, <i>J. Med. Chem.</i>, 39, 4377–4381 (1996). NB: See Morphine for further details. The same result was reported in Sirius Technical Application Notes, vol. 2, p. 151, (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 1.1–1.3 mM.
915	Normorphine	9.76	U	-Н	Potentiometric	H ₂ O t undefined I undefined	Rapaport H and Masamune S, The stereochemistry of 10-hydroxycodeine derivatives, <i>JACS</i> , 77 , 4330–4335 (1955). Cited in Perrin Bases Supplement 7486 ref. R3. NB: The study used measurements of pH with a glass electrode and liquid junction potentials.
916	Norparamethadione (C ₆ H ₉ NO ₃) H_3C O O O H_3C O NH O	6.1	U	-H	Spectro	H ₂ O RT <i>I</i> undefined	Butter TC, The effects of <i>N</i> -methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin and 2,4-oxazolidinedione, <i>J. Am. Ph. Assoc.</i> , 44 , 367–370 (1955). NB: Other reported values: barbital (7.8); metharbital (8.2); phenobarbital (7.3); mephobarbital (7.7); <i>N</i> -norhexobarbital (7.9); hexobarbital (8.3). As the values for barbital and phenobarbital are about 0.2 units less than the best values in the literature, the remaining values should be regarded as low by the same amount.
917	Norpseudoephedrine (C ₉ H ₁₃ NO)	9.19	Α	+H	Potentiometric	H_2O t = 25.0 ± 0.5 I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, J. Assoc. Off. Anal. Chem., 54, 1179–1191 (1971). NB: See Amphetamine for further details.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
918	Nortrimethadione ($C_5H_7NO_3$) H_3C H_3C H_3C NH	6.2	U	-H	Spectro	H ₂ O RT I undefined	Butler TC, The effects of <i>N</i> -methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin and 2,4-oxazolidinedione, <i>J. Am. Ph. Assoc.</i> , 44 , 367–370 (1955). NB: See Norparamethadione for additional details.
919	Nortriptyline (C ₁₉ H ₂₁ N)	9.7	U	+H			Craig; N&K Avery.
920	Noscapine (narcotine) ($C_{22}H_{23}NO_7$)	6.37	U	+H	Spectro	H_2O t = 15 c = 0.0005 to 0.002	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases no. 2932 ref. K47. NB: See Aconitine for details.
921	Noscapine (narcotine)	5.86	U	+H	Potentiometric	H_2O t = 24	Muller F, Z. Elektrochem., 30, 587 (1924). Cited in Perrin Bases 2932 ref. M60. NB: Study used measurements of pH using hydrogen electrodes in an asymmetric cell with liquid junction potentials.
922	Noscapine (narcotine)	4.38	VU	+H	kinetic	$\begin{array}{l} H_2O\\ t=55 \end{array}$	Arnall F, The determination of the relative strengths of some nitrogen bases and alkaloids, J. Chem. Soc., 117, 835–839 (1920). Cited in Perrin Bases no. 2932 ref. A73.

923	Octodrine (C ₈ H ₁₉ N) CH ₃ NH ₂ H ₃ C CH ₃	10.28 ± 0.1	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details.
924	Oleandomycin (C ₃₅ H ₆₁ NO ₁₂) H_3C O H_3C	8.5 3	U	+H		50% aq EtOH t unspecified <i>I</i> unspecified	 Els H, Celmer WD and Murai K, Oleandomycin (PA-105). II. Chemical characterization (I), <i>JACS</i>, 80, 3777–3782 (1958). Cited in: Celmer WO, Els H and Murai K, <i>Antibiotics Ann.</i>, 476–483, 1957–58; NB: See also Winningham DG, Nemoy NJ, Stamey TA. Diffusion of antibiotics from plasma into prostatic fluid, <i>Nature</i> 219, 139–143 (1968). Method not given but probably potentiometric.
925	Oleandomycin	8.84	U	+H	Potentiometric	H_2O t = 25 l = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative Structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a .
926	Oleic acid (C ₁₈ H ₃₄ O ₂) CH ₃ (CH ₂) ₆ COOH	5.35	U	-H	Potentiometric	H ₂ O RT	Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine II. Mechanism of interaction with bile salts and fatty acid salt anions, J. Pharm. Sci., 59 , 329–333 (1970).
927	Omeprazole (C ₁₇ H ₁₉ N ₃ O ₃ S) H ₃ C \rightarrow	4.14 8.9	U U	+H -H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	 Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 4.5 and 7.34.

No.	(continued)	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
928	Opipramol (C ₂₃ H ₂₉ N ₃ O)	8	U	+H	Potentiometric	H_2O t = 25 I = 0.01 (NaCl)	Lukkari S, Ionization of some dibenzazepine derivatives, dibenzepine and opipramol, in aqueous solutions, <i>Farm. Aikak.</i> , 80 (4–5), 210–215 (1971). NB: See Dibenzepine for details.
929	Orciprenaline (metaproterenol) $(C_{11}H_{17}NO_3)$ HO $(CH_2NHCH(CH_3)_2$ HO	8.70 9.92	U U	-H, +H +H, -H	Spectro	H_2O $t = 25.0 \pm 0.05$ I = 0.10	 Ijzerman AP, BultsmaT, Timmerman H and Zaagsma J, The ionization of β-adrenoceptor agonists: a method for unravelling ionization schemes, <i>J. Pharm. Pharmacol.</i>, 36(1), 11–15 (1984). NB: Microscopic: 8.67 and 9.92. Negligible formation of the neutral form. See Isoprenalin.
930	Oxamniquine (C ₁₄ H ₂₁ N ₃ O ₃) O ₂ N CH ₂ NHCH(CH ₃) ₂ HOCH ₂	3.28 ± 0.07 9.53	U U	+H +H	log P/pH soly	H ₂ O t = 25.0	Kofitsekpo WM, An experimental evaluation of the log P of oxamniquine—a new schistosomicide, <i>Drugs Exptl. Clin. Res.</i> , 6(421–426 (1980). NB: Reported intrinsic solubility $S_0 = 7.8853 \times 10^{-5}$ M.
931	Oxazepam (C ₁₅ H ₁₁ ClN ₂ O ₂) H O Cl OH	1.6 11.6	U U	+H -H	Spectro	5% MeOH in H ₂ O t = 20 I = 0.15	 Barrett J, Smyth WF and Davidson IE. Examination of acid-base equilibria of 1,4-benzodiazepines by spectrophotometry, <i>J. Pharn Pharmacol.</i>, 25, 387–393 (1973). NB: See 1,4-Benzodiazepines for details.

932	Oxazepam	1.8 11.1	U U	+H -H	Spectro	H ₂ O	Shearer CM and Pilla CR, Oxazepam, <i>APDS</i> , 3 , 441–464 (1974). NB: No reference given.
933	Oxazepam	11.1 1.7	U	-н +Н		H ₂ O	Konishi M, Hirai K and Mari Y, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, <i>J. Pharm. Sci.</i> , 71 , 1328–1334 (1982). NB: See Triazolam.
934	Oxycodone	8.53	U	+H	soly	H ₂ O t = 37	 Kuo PC, Liu JC, Chang SF and Chien YW, <i>In vitro</i> transdermal permeation of oxycodone. I. Effect of pH, delipidation and skin stripping, <i>Drug Dev. Ind. Pharm.</i>, 15, 1199–1215 (1989). NB: No further details given. Value was repeated in Tien J-H., Transdermal-controlled administration of oxycodone, <i>J. Pharm. Sci.</i>, 80, 741–743 (1991); Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004).
935	Oxyphenbutazone $(C_{19}H_{20}N_2O_3)$ OH OH OH OH OH OH OH OH OH OH OH OH OH	4.60	U	-Н	Potentiometric	80% Me cellosolve	 Girod E, Delley R and Hafliger F, Uber derivate des Phenylbutazons III. Die Struktur der Reduktionsprodukte des γ-keto- phenylbutazons, <i>Helv. Chim. Acta</i>, 40, 408–428 (1957). NB: Values obtained by titration in 80% methylcellosolve with tetramethylammonium hydroxide. Apparent pK_{aMCS} values for 29 other analogues also reported.
936	Oxyphenbutazone	4.5	U	-H	Spectro	H ₂ O t undefined I undefined	Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i> , 9 (5), 767–793 (1983). NB: Used dλ/dpH method. See Azapropazone and Ibuprofen for details.
937	Oxyphenbutazone	5.85	U	+H	Potentiometric	80% Me cellosolve	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test. <i>ArzneimForsch.</i> , 24 , 494–9 (1974). NB: Literature values obtained from the pH of half-neutralization. Also gave a value of 4.7 in water. This last value is in good agreement with other values.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
938	Oxyphenbutazone	4.7 10.0 ± 0.2	U U	H H	Spectro	H_2O t = RT I undefined	Perel JM, Snell MM, Chen W and Dayton PG, <i>Biochem. Pharmacol.</i> , 13 , 1305–1317 (1964). NB: performed in "dilute buffer solutions." Quoted in W&G incorrectly as $pK_{a1} = 4.5$. See: Phenylbutazone analogs.
939	Oxytetracycline (C ₂₂ H ₂₄ N ₂ O ₉) HO CH_3^{+} H $(CH_3)_2$ HO CH_3^{+} H $(CH_3)_2$ OH O OH O O	3.27 7.32 9.11	A A A	-H -H +H	Potentiometric	H ₂ O t = 25 l < 0.01	 Stephens C, Murai K, Brunings K and Woodward RB, Acidity constants of the tetracycline antibiotics, <i>JACS</i>, 78, 4155–4158 (1956). Cited in Perrin Bases 3329 ref. S73. NB: Used a glass electrode with liquid junction potentials.
940	Oxytetracycline	3.47 7.57 9.27	A A A	H H +H	Potentiometric	H ₂ O t = 28 I < 0.005	Regna PP, Solomons IA, Murai K, Timreck AE, Brunings KJ and Lazier WA, <i>JACS</i> , 73 , 4211–4215 (1951). Cited in Perrin Bases 3329 ref. R9. NB: The study used pH measurements with a glass electrode and junction potentials. Minor corrections were made, based on ionic strengths.
941	Oxytetracycline	3.09 7.28 9.14	U A A	-H -H +H	Potentiometric	H_2O t = 20 I < 0.002	Albert A, Avidity of terramycin and aureomycin for metallic cations. <i>Nature</i> , 172 , 201 (1953). Cited in Perrin Bases 3329 ref. A17. NB: The study used pH measurements with a glass electrode and liquid junction potentials.
942	Oxytetracycline	3.04 8	U U	+H -H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 4.72 and 8.53. The assignment of the first pK_a value to a basic group disagrees with the consensus of literature, which assigns this value to the tricarbonyl carbon acid system.
943	Oxytetracycline	$\begin{array}{l} GLpK_{a}:\\ 3.23 \pm 0.01\\ 7.22 \pm 0.02\\ 8.82 \pm 0.02\\ A\&S:\\ 3.25 \pm 0.05 \end{array}$	A A A U	H H +H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details.

944	Oxytetracycline	3.60 7.42 9.11	U U U	-H -H +H	Potentiometric	H_2O $t = 30.0 \pm 0.2$ I = 0.01 (KCl) N_2 atmosphere	Doluisio JT and Martin AN, Metal complexation of the tetracycline hydrochlorides, <i>J. Med. Chem.</i> , 6 , 16–20 (1963). NB: Metal-free solutions of the tetracycline were titrated with standard NaOH solution and the pH measured. No details given of the pH meter calibration. Metal stability constants determined from identical titrations in the presence of varying concentrations of nickel(II), zinc(II) or copper(II) ions.
945	Oxytetracycline	3.3	U	-H			Fove 1
/10	oxytenacyemie	7.3	U	-H			loye I
		9.1	U	-11 +H			N&K Avery; W&G
946	Papaverine ($C_{20}H_{21}NO_4$)	6.40	A	+11 +H	Spectro	H_2O $t = 25 \pm 1$ $c = 1.5 \times 10^{-5}$	Biggs AI, Trans. Farad. Soc., 50, 800–802 (1954). Cited in Perrin Bases no. 2942, ref. B64. NB: Used measurements of absorption combined
	CH ₃ O CH ₃ O CH ₃ O	6.13	U	+H	Spectro	$c = 1.5 \times 10^{-4}$ H ₂ O t = 15 c = 0.0006- 0.003	with pH measurements and reported as the pK _b . Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases no. 2942, ref. K47. See Aconitine for details.
	CH ₃ O OCH ₃						
947	Papaverine	6.4 7.60 (p <i>K</i> _b)	U U	+H +H	Spectro	<i>t</i> = 25	 Hifnawy, MS and Muhtadi, FJ, Papaverine hydrochloride, APDS, 17, 367–447 (1988). Ref.: Briggs AI, Trans Farad. Soc., 50, 800, 1954. NB. Error for Biggs AI (no. 946). NB: The pK_a and pK_b values could easily become confused for
948	Papaverine	6.25	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	papaverine. Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 6.32.
949	Papaverine	6.18 ± 0.03	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ, Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: $pK_a = 6.18 \pm 0.03$ by extrapolation from 16.4–64.7% w/w aqueous MeOH. See Acetaminophen for full details.

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
950	Papaverine	6.38 ± 0.03	А	+H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, J. Pharm. Biomed. Anal., 14, 1405–1413 (1996). NB: See Acetaminophen
		6.39 ± 0.01	A	+H		I = 0.15 (KCl)	for more details. Also reported $pK_a = 6.39 \pm 0.01$ ($I = 0.15$; KCI). The same result was reported in Sirius Technical Application Notes, 1995, vol. 2 , p. 151. Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 1.1–1.3 mM.
951	Papaverine	GLpK _a :			Spectro	H ₂ O	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric
		6.47 ± 0.01 A&S:	А	+H		t = 25 I = 0.15 (KCl)	determination of acid dissociation constants, <i>Anal. Chim. Acta</i> , 434 , 157–167 (2001).
		6.51 ± 0.04	А	+H		Ar atmos- phere	NB: See Clioquinol for details.
952	Pecazine(mepazine) (C ₁₉ H ₂₂ N ₂ S)	9.48 ± 0.03	U	+H	partition/pH	H_2O $t = 20 \pm 0.5$	 Vezin WR and Florence AT, The determination of dissociation constants and partition coefficients of phenothiazine derivatives, <i>Int. J. Pharm.</i>, 3, 231–237 (1979). NB: I not reported but pK_a was stated to be independent of I. See Chlorpromazine and Promethazine for additional details.
	s s						
953	Pecazine(mepazine)	9.7	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.
954	Pelargonic acid (C ₉ H ₁₈ O ₂) CH ₃ (CH ₂)7COOH	4.96	U	-H			Ritschel: Johns and Bates (1970).

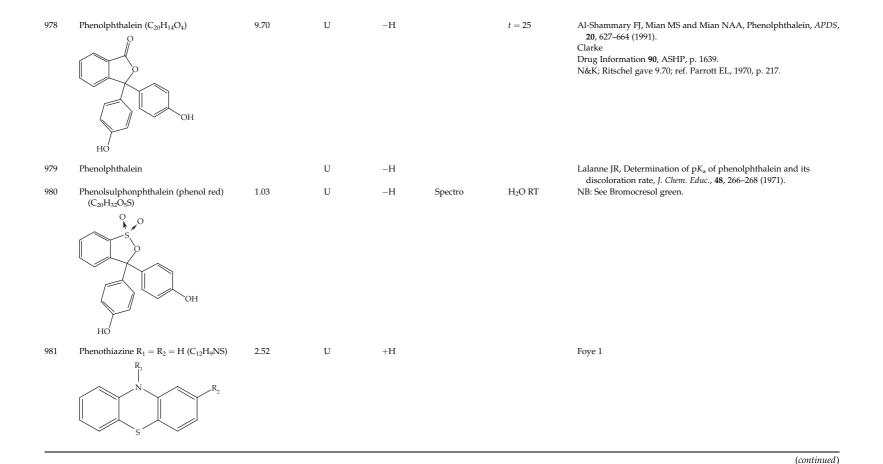
955	Penicillamine (C ₅ H ₁₁ NO ₂ S) HS NH ₂ (CH ₃) ₂ C — CHCOOH	1.8 7.9 10.5 7.88 10.43 >2	U U U A U U	-H +H -H +H -H	Potentiometric (Lenz & Martell) Potentiometric	H_2O t = 25.0 I undefined H_2O $t = 25.05 \pm 0.05$ I = 0.10 (KNO ₃)	 Chiu CC and Grady LT, Penicillamine, APDS, 10, 601–637 (1981). "Recently, the ionization constants for acid functions of D-penicillamine were verified by pH titration at 37 °C and 0.15 M ionic strength (17,18). These results correspond to that previously obtained by other workers (19–23). 17. Laurie SH, Prime DH and Sarkar B, Analytical potentiometric and constructions in the acucum sickel(U).
		>2 8.01	U	-п +Н	(Doornbos	$N_2 \text{ atmos}$ -	spectroscopic study of the equilibriums in the aqueous nickel(II)- triethylenetetramine and nickel(II)-D-penicillamine systems, <i>Can.</i>
		10.67	U	-H	& Faber)	phere	 J. Chem., 57, 1411–1417 (1979). Zucconi TD, Janauer GE, Donahe S and Lewkowicz C, J. Pharm. Sci., 68, 426–432 (1979) (see no. 956). Doornbos DA and Faber J, Metal complexes of drugs. D- penicillamine and N-acetyl-D-penicillamine, Pharm. Weekbl., 99, 289–309 (1964). Kuchinskas E and Rosen Y, Metal chelates of DL-penicillamine, Arch. Biochem. Biophys., 97, 370–372 (1962). Lenz GR and Martell AE, Metal chelates of some sulphur- containing amino acids, Biochem., 3, 745–750 (1964). NB: Report also the pK_a values for DL-methionine (9.04); S-methyl-L-cysteine (8.73); DL-ethionine (9.02) and L-cysteine (8.13, 10.11) under the same conditions. Perrin DD and Sayce IG, Complex formation by nickel and zinc with penicillamine and cysteine, J. Chem. Soc, A, 53–57 (1968). Ritsma JH and Jellinek F, Stereoselectivity in the complex formation of penicillamine with nickel(II), Recueil. Trav. Chim. 91, 923–928 (1972).''
956	Penicillamine	7.83 ± 0.01	А	+H	Potentiometric	H_2O $t=37.0 \pm 0.05$ I = 0.15	 Zucosi (I), Janauer GE, Donahe S and Lewkowicz C, Acid dissociation and metal complex formation constants of penicillamine, cysteine, and antiarthritic gold complexes at simulated biological conditions, <i>J. Pharm. Sci.</i>, 68(4), 426–432 (1979). NB: See Cysteine for details.
957	Penicilloic acid, benzyl (C ₁₆ H ₂₀ N ₂ O ₅ S) $\downarrow \qquad \qquad$	5.31 ± 0.05	U	+H	Potentiometric	H_2O t = 25 c = 0.01	Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, <i>J.</i> <i>Pharm. Pharmacol.</i> , Suppl. 15 , 222–231T (1963).

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
958	Penicillin G (benzylpenicillin) $(C_{16}H_{18}N_2O_4S)$					$\begin{array}{l} H_2O\\ t=25 \end{array}$	Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, J.
		2.73 ± 0.03	Α	-H	Potentiometric	I = 0.0099	Pharm. Pharmacol., Suppl. 15, 222-231T (1963). Cited in Kirschbaum
	H N S	$\begin{array}{c} 2.71 \pm 0.05 \\ 2.75 \pm 0.03 \end{array}$	A A	-H -H	Potentiometric	I = 0.0093 H ₂ O	J, Penicillin G, Potassium, <i>APDS</i> , 15 , 427–507 (1986). NB: For $t = 20$ °C and $I = 0.15$ M, pK _a = 3.82 (20% aq. MeOH) and 4.10 (30%
	O N COOH				t = 37 I = 0.15 (KCl)	 aq. MeOH) (Salto F, Prieto JG and Alemany MT, Interactions of cephalosporins and penicillins with non-polar octadecylsilyl stationary phase, <i>J. Pharm. Sci.</i>, 69, 501–6 (1980)). Tsuji A, Kubo O, Miyamoto E and Yamana T, Physicochemical properties of β-lactam antibiotics: Oil-water distribution, <i>J. Pharm. Sci.</i>, 66, 1675–1679 (1977). 	
959	Penicillin G (benzylpenicillin)	2.76	U	-H		H_2O t = 25	 Woodward, RB, Neuberger A and Trenner NR, Other Physical Methods <i>in</i> Clarke HT, Johnson JR and Robinson Sir R (eds.), <i>The</i> <i>Chemistry of Penicillin</i>, Princeton University Press, Princeton NJ, p. 419 (1949). NB: pK_a = 2.70 in water at 23 °C; pK_a = 2.74 in water at 5 °C. Also reported a pK_a value of 4.84 in 80% EtOH. Other values in water at 23 °C in this reference: <i>p</i>-Hydroxybenzylpenicillin, 2.62; <i>n</i>-Heptylpenicillin, 2.66. Benzyldesthiopenicillin, pK_a = 3.48 in 8% aqueous EtOH at 23 °C.
960	Penicillin V (phenoxymethylpenicillin) ($C_{16}H_{18}N_2O_5S$)	>	Α	-H	Potentiometric	H ₂ O t = 25 c < 0.01	Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, <i>J. Pharm. Pharmacol.</i> , Suppl. 15 , 222–231T (1963). Cited in Dunham JM, Potassium Phenoxymethyl Penicillin, <i>APDS</i> , 1 , 260 (1972).
961	Penicillin V (phenoxymethylpenicillin)	2.79 ± 0.03	Α	-H	Potentiometric	$H_2Ot = 37$ I = 0.15 (KCl) c = 0.01	Tsuji A, Kubo O, Miyamoto E and Yamana T, Physicochemical properties of β-lactam antibiotics: Oil-water distribution, <i>J. Pharm.</i> <i>Sci.</i> , 66 , 1675–9 (1977). Cited in Sieh DH, Potassium penicillin V, <i>APDS</i> , 17 Supplement, 677–748 (1988). NB: Also reported the following values: propicillin, 2.76; phenethicillin, 2.80; benzylpenicillin, 2.75; methicillin, 2.77.

_

962	Penicillin V (phenoxymethylpenicillin)	2.78	A	-H	Potentiometric	H ₂ O t = 37 I = 0.15 (KCl) c = 0.01	Tsuji A, Kubo O, Miyamoto E and Yamana T, Physicochemical properties of β-lactam antibiotics: oil-water distribution, <i>J. Pharm.</i> <i>Sci.</i> , 66 , 1675–1679 (1977). Cited in Sieh DH, Potassium penicillin V, <i>APDS</i> , 17 Supplement, 677–748 (1988). NB: This result was obtained by extrapolation to zero % ethanol from the following apparent pK_a' values: 16.0, 3.15; 32.8, 3.61; 41.9, 3.85; 51.4, 4.06. The close agreement in this case (and also for oxacillin) between the extrapolated value and the value measured directly in water was used as validation for extrapolation to zero % ethanol for the following compounds: indanylcarbenicillin, 2.94; phenylcarbenicillin, 2.91; dicloxacillin, 2.76; floxacillin, 2.76; cloxacillin, 2.78.
963	Pentazocine (C ₁₉ H ₂₇ NO) H HO HO H ₃ C	$\begin{array}{l} 9.68 \pm 0.05 \\ 11.23 \pm 0.05 \end{array}$	U U	+H,-H -H,+H	Spectro	H ₂ O t = 20 I = 0.1	 Borg K and Mikaelsson A, Fluorometric determination of pentazocine in biological samples by partition chromatography as ion-pair in micro-columns. <i>Acta Pharm. Suecica</i>, <i>7</i>, 673–680 (1970). Cited in Wilson TD, Pentazocine, <i>APDS</i>, 13, 361–411 (1984). "The four microscopic acid dissociation constants of pentazocine were determined according to [4,5] at 20 °C using sodium carbonate-bicarbonate buffer solutions of ionic strength 0.1. Apparent microconstants: pK₁ = 9.74, pK₂ = 10.56, pK₁₂ = 11.17 and pK₂₁ = 10.35. Macroscopic dissociation constants were determined from the relations: K₁ = (a_{H+})([II] + [III])/[I]; K₂= (a_{H+})[IV]/([II] + [III]). where [I] is the concentration of the cation, [II] is the concentration of the autitation of the neutral molecule and [IV] is the concentration of the anion."
964	Pentostatin (C ₁₁ H ₁₆ N ₄ O ₄) OH	$\begin{array}{c} 2.03 \pm 0.03 \\ 5.57 \pm 0.02 \end{array}$	A A	+H +H	Spectro	H_2O $t = 25.0 \pm 0.1$ I = 0.15 (NaCl)	 Al-Razzak LA, Benedetti AE, Waugh WN and Stella VJ, Chemical stability of pentostatin (NSC-218321), a cytotoxic and immunosuppressive agent, <i>Pharm. Res.</i>, 7, 452–460 (1990). "The pK_a values of pentostatin were determined using uv spectroscopy
	HN N HO O H	$\begin{array}{c} 5.50 \pm 0.02 \\ 1.67 \pm 0.03 \end{array}$	A A	+H +H	Potentiometric Spectro	H_2O t = 25.0 ± 0.1 I = 0.00	and by potentiometric titration. For the spectroscopic method a 100 μ L aliquot of a 1.5 × 10 ⁻³ M solution of pentostatin in water was diluted with 1.0 ml of 0.05 M buffer solution at various pH values (pH range, 1.0–8.0). Samples of the resulting solutions were placed in a cuvette thermostated at 25 °C. The changes in the absorbance were monitored at 279 and 300 nm for the determination of pK _{a1} and pK _{a2} , respectively At low pH (pH < 3.0) it was necessary to extrapolate the absorbance measurement to zero time since pentostatin readily undergoes degradation under acidic conditions. The lower pK _a was also deterimined at zero buffer concentration with no ionic strength adjustment by measuring the pK _a at three different buffer concentrations (0.01, 0.1 and 0.5 M) For potentiometric titration a pentostatin solution (0.1 M, initial pH ~8) containing 0.15 M NaCl was prepared using glass-distiled water and thermostated at 25 °C. The resulting solution was titrated with standardized 0.1 N HCl solution. After each addition, 1 min was

allowed prior to pH reading."


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
965	Perhexilene (C ₁₉ H ₃₅ N)	10.36 ± 0.06	U	+H	Potentiometric	40% EtOH $t = 25.0$	Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, ArzneimForsch., 34, 407–409 (1984).
	H N	11.0	U	+H		H ₂ O	NB: See Aprindine for details.
966	Perphenazine ($C_{21}H_{26}CIN_3OS$)	7.8	U	+H	soly	H_2O $t = 24 \pm 1$	 Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i>, 19, 10–16 (1967). NB: See Amitriptylline for details.
967	Perphenazine	8.11	U	+H	CZE/pH		 Mannhold R, Dross KP and Reffer RF, Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches, <i>Quant-StructAct. Relat.</i>, 9, 21–28 (1990). NB: Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. 277.
968	Pethidine	8.7	U	+H			NB: See Meperidine.
969	Pharmorubicin	4.81 ± 0.13	U	+H			NB: See Daunorubicin for experimental details.
970	Phenazocine (C ₂₂ H ₂₇ NO) H HO HO HO	8.50	U	+H	Potentiometric	50% aq EtOH	 Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971); cited from Farmilo CG, Oestreiche PM and Levi L, Physical methods for the identification of narcotics IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i>, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954). NB: See Alphaprodine for details.

H₃C

971	Phenazopyridine (C ₁₁ H ₁₁ N ₅) H ₂ N N NH ₂ N N NH ₂	5.15	U	+H	Potentiometric	H ₂ O t = 25	 Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
972	Phenethicillin (C ₁₇ H ₂₀ N ₂ O ₅ S) $(H_3 + H_4 + H_5 + H_5 + H_4 + H_5 + H_4 + H$	2.73 ± 0.04 2.78	A U	-H -H	Potentiometric	H_2O t = 25 c = 0.0091	 Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, <i>J. Pharm. Pharmacol.</i>, Suppl. 15, 222–231T (1963). Rollo IM, Physicochemical properties of some semisynthetic penicillins, <i>Can. J. Physiol. Pharmacol.</i>, 50, 976–985 (1972); cited in N&K.
973	α-Phenethylamine (1-amino-1- phenylethane) (C ₈ H ₁₁ N) H_2 CH ₃	9.08 ± 0.02	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ $I \le 0.001$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details. From $pK_b = 4.92$.
974	Phenformin (C ₁₀ H ₁₅ N ₅)	2.7 11.8 3.1 12.9 \pm 0.1	บ บ บ	+H +H +H +H	Potentiometric	H_2O t = 32 I undefined H_2O t = 25 H_2O t = 25 I > 0.1	Moody JE, Phenformin hydrochloride, <i>APDS</i> , 4 , 319–332 (1975). "Phenformin is a strongly basic substance and consequently exists in di and mono ionic forms. Ray has reported the ionization constants, $pK_a' = 11.8$ and $pK_a'' = 2.7$ at 32° . In our laboratory (Moody JE, USV Pharmaceutical Corp, Tuckahoe, NY), the apparent $pK_a'' = 3.1$ was measured at 25° by potentiometric titration. The second ionization constant, pK_a' , could not be reliably measured in aqueous medium by our method. However, Garrett has calculated an approximate pK_a' of 13.0 from plots of the reciprocals of the apparent partition coefficients against the hydrogen ion concentration." Ray P, <i>Chem. Rev.</i> , 61 , 313–359 (1972). Garrett ER, Tsau J and Hinderling PH, Application of ion-pair methods to drug extraction from biological fluids. II, <i>J. Pharm. Sci.</i> , 61 , 1411– 1418 (1972). NB: From the average of results using CH ₂ Cl ₂ /water and 1:1 CHCl ₃ - tert amyl alcohol/water partitioning systems. Activity coefficients from the literature were used to correct the high NaOH concentrations to activities, hence this value is a thermodynamic value.

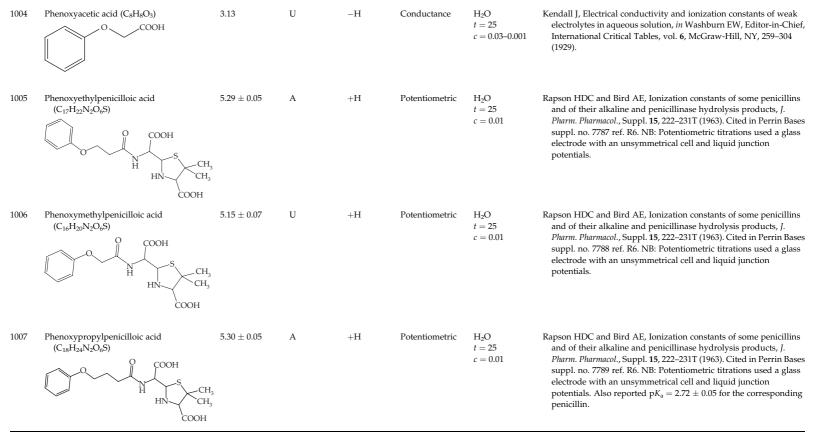
l)
ł	,

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
975	Phenindamine (C ₁₉ H ₁₉ N)	8.11 ± 0.08	U	+H	Potentiometric	H ₂ O t undefined I = 0.30 (NaCl)	 Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines. <i>Helv. Chim. Acta</i>, 61, 2530–2537 (1978). NB: See Cycliramine for details.
976	Phenindione (C ₁₀ H ₁₅ O ₂)	4.09	U	-H	Spectro	H_2O I = 0.1 t = 25.0	 Stella VJ and Gish R, Kinetics and mechanism of ionization of the carbon acids 4'-substituted 2-phenyl-1,3-indandiones, <i>J. Pharm. Sci.</i>, 68(8), 1047–1049 (1979). NB: See Anisindione for details.
977	Pheniramine (C ₁₆ H ₂₀ N ₂) $(H_{2}CH_{2}N(CH_{3})_{2})$	$\begin{array}{c} 4.03 \pm 0.08 \\ 9.32 \pm 0.06 \end{array}$	U U	+H +H	Potentiometric	H ₂ O t undefined I = 0.30 (NaCl)	 Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i>, 61, 2530–2537 (1978). NB: See Cycliramine for details.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
982	Phenothiazines						 Zografi G and Munshi MV, Effect of chemical modification on the surface activity of some phenothiazine derivatives, <i>J. Pharm. Sci.</i>, 59, 819–822 (1970). "The relative surface activity of various phenothiazine derivatives has been measured under solution conditions which for the first time allow meaningful comparison of structural effects A primary factor to consider also is how substitution influences the dissociation constant(s) of the amino group(s) and hence the degree of ionization at the pH being utilized for comparison. A table listing data on 12 phenothiazine derivatives and numerous graphs plotting surface pressure vs. molar concentration are included."
983	Phenothiazine, 10-[N-(4-carbamoyl) piperidinyl]-propyl-2-chloro (pipamazine) (C ₂₀ H ₃₂ ClN ₃ OS) $\overrightarrow{R_1} = \overbrace{N}^{CONH_2}$ $\overrightarrow{R_2} = Cl$	8.60	U	+H	Potentiometric	H ₂ O <i>t</i> undefined <i>c</i> < 0.002	Chatten LG and Harris LE, Relationship between p $K_{\rm b}$ (H ₂ O) of organic compounds and E _{1/2} values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7428 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported p $K_{\rm b}$ = 5.40 at unknown temperature (assumed 25 °C). See parent structure above. See also Pipamazine, no. 1119.
984	$\label{eq:phenothiazine, 2-chloro-10-(3-dimethylamino-propyl)-(chlorpromazine) (C_{17}H_{19}ClN_2S) \\ R_1 = (CH_2)_3N(CH_3)_2 \\ R_2 = Cl$	9.3	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	 Green AL, Ionization constants and water solubilities of some aminoalkylphenothiazine tranquillizers and related compounds, <i>J. Pharm. Pharmacol.</i>, 19, 10–16 (1967). Cited in Perrin suppl. no. 7429 ref. G29. NB: See Phenothiazine parent structure above. See Amitriptylline for details.
985	Phenothiazine, 2-chloro-10-(3- dimethylamino-propyl)- (chlorpromazine)	9.22	U	+H	Potentiometric	H ₂ O t undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7429 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_b = 4.78$ at unknown temperature.

986	Phenothiazine, 2-chloro-10-[N-(2- hydroxy)ethyl]-piperazinylpropyl- (C ₂₁ H ₂₂ ClN ₃ OS) $R_1 =$ $R_1 =$ $R_1 =$ $R_2 = Cl$	7.8	U	+H	soly	H_2O $t = 24 \pm 1$	Cited in Perrin suppl. no. 7430 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above.
987	$\begin{array}{l} Phenothiazine, 2-chloro-10-[N-methyl]\\ piperazinyl-propyl- (prochlorperazine)\\ (C_{20}H_{24}ClN_{3}S)\\ R_{1}=\\ \\ R_{1}=\\ \\ R_{2}=Cl \end{array} \xrightarrow{\begin{subarray}{c} CH_{3}\\ N \\ R_{2}=Cl \end{array} \end{array}$	8.1	U	+H	soly	H ₂ O t = 24 ± 1	Cited in Perrin suppl. no. 7431 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above. See also separate entries for Prochlorperazine.
988	Phenothiazine, 2-chloro-10-[N-methyl] piperazinyl-propyl- (prochlorperazine)	3.60 7.54	U U	+H +H	Potentiometric	H ₂ O <i>t</i> undefined	Chatten LG and Harris LE, Relationship between pK_b (H_2O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7431 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_b = 6.46$, 10.40 at unknown temperature (assumed 25 °C).
989	Phenothiazine, 2-chloro-10-[N-(2- propionyloxy)-ethyl] piperazinylpropyl- (C ₂₄ H ₂₆ ClN ₃ O ₂ S) $R_1 =$ $R_1 =$ $R_2 = Cl$	7.3 _CH ₂ CH ₃	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Cited in Perrin suppl. no. 7432 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above.

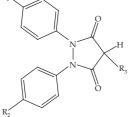
Appendix A (continued)


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
990	Phenothiazine, 2-chloro-10-[<i>N</i> -(2- propionyloxy)-ethyl] piperazinylpropyl-	3.20 7.15	U U	+H +H	Potentiometric	H ₂ O t undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7432 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_b = 6.85$, 10.80 at unknown temperature (assumed 25 °C).
991	$\label{eq:constraint} \begin{array}{l} Phenothiazine, 10-(2-diethylaminoethyl)-\\ (C_{18}H_{22}N_2S)\\ R_1=(CH_2)_2N(CH_2CH_3)_2\\ R_2=H \end{array}$	7.0	U	+H	Potentiometric	H ₂ O t undefined	Chatten LG and Harris LE, Relationship between $P_{\rm b}$ (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7433 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_{\rm b} = 7.0$ (assumed $t = 25$ °C). See parent structure above.
992	$\label{eq:constraint} \begin{array}{l} Phenothiazine, 10-(2-di-\\methylaminomethyl)-propyl-2-\\methoxy- (methotrimeprazine)\\(C_{19}H_{24}N_2OS)\\ R_1 = CH_2CH(CH_3)CH_2N(CH_3)_2\\ R_2 = OCH_3 \end{array}$	9.15	U	+H	Potentiometric	H ₂ O <i>t</i> undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7434 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_b = 4.85$ at unknown temperature (assumed 25 °C). See parent structure above. See Methotrimeprazine separate entry—appears to be from the Chatten and Harris 1962 result.
993	Phenothiazine, 10-(2- dimethylaminopropyl)- ($C_{17}H_{20}N_2S$) (promethazine) $R_1 = CH_2CH(CH_3)N(CH_3)_2$ $R_2 = H$	9.1	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Cited in Perrin suppl. no. 7435 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above.
994	R ₂ = n Phenothiazine, 10-(2- dimethylaminopropyl)-	9.1	U	+H	Potentiometric	H ₂ O t undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7435 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar amounts of the free base and the salt. From reported $pK_b = 4.90$ at unknown temperature (assumed 25 °C).

995	Phenothiazine, 10-(3- dimethylaminopropyl)- (C ₁₇ H ₂₀ N ₂ S) (promazine) R ₁ = (CH ₂) ₃ N(CH ₃) ₂	9.4	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Perrin suppl. no. 7436 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above.
996	$\begin{split} R_2 &= H \\ Phenothiazine, 10-(3- \\ dimethylaminopropyl)-2- \\ trifluoromethyl- (trifluopromazine) \\ (C_{18}H_{19}F_{3}N_{2}S) \\ R_1 &= (CH_{2})_3N(CH_3)_2 \\ R_2 &= CF_3 \end{split}$	9.2	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Perrin suppl. no. 7437 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above. See also Trifluopromazine separate entry.
997	Phenothiazine, 10-(3- dimethylaminopropyl)-2- trifluoromethyl-	9.41	U	+H	Potentiometric	H ₂ O t undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7437 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported pK (assumed 25 °C) = 4.59 at unknown temperature (assumed 25 °C).
998	Phenothiazine, 10-(N-methyl) piperazinylpropyl-2-trifluoromethyl- (trifluoperazine) (C ₂₁ H ₂₄ F ₃ N ₃ S) R ₁ = R ₁ = $\begin{pmatrix} & & \\ & & $	8.1	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	 Perrin suppl. no. 7438 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above and Trifluoperazine separate entry.
999	Phenothiazine, 10-(N-methyl) piperazinylpropyl-2-trifluoromethyl- (trifluoperazine)	3.90 8.40	U	+H	Potentiometric	H ₂ O t undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7438 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported values for $pK_b = 5.60$, 10.10 at unknown temperature (assumed 25 °C).

Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1000	Phenothiazine, 10-[2-(<i>N</i> -methyl) piperidinyl]ethyl-2-methylthio- $(C_{21}H_{22}N_2S_2)$ $H_3C - N$	9.5	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Perrin suppl. no. 7439 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above.
1001	$R_1 = R_2 = SCH_3$ Phenothiazine, 10-[2-(N-methyl)	9.16	U	+H	Potentiometric	H ₂ O	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of
	piperidinyl]ethyl-2-methylthio-					t undefined	organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7439 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_b = 4.84$ at unknown temperature (assumed 25 °C).
1002	Phenothiazine, 10-(N-methyl)piperidinyl] methyl- (mepazine) (C ₁₉ H ₂₂ N ₂ S) H ₃ CN	9.7	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Perrin suppl. no. 7440 ref. G29. See no. 984 for details. NB: See Phenothiazine parent structure above and Mepazine separate entry.
	$\begin{array}{l} R_1 = \\ R_2 = H \end{array}$						
1003	Phenothiazine, 10-(N-pyrrolidinyl)ethyl- (pyrathiazine) (C ₁₈ H ₂₀ N ₂ S) N $R_1 = R_2 = H$	8.91	U	+H	Potentiometric	H ₂ O <i>t</i> undefined	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several non-aqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7441 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. From reported $pK_b = 5.0$ ° at unknown temperature (assumed 25 °C). See parent structure above. See separate entry for Pyrathiazine.


312

Append	ix A	(continued)	

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1008	N-Phenylanthranillic acid (C ₁₃ H ₁₁ NO ₂)	4.15	U	-Н	soly	H_2O $t = 25 \pm 0.1$ I = 0.11	 Terada H, Muraoka S and Fujita T, Structure-activity relationships of fenamic acids, <i>J. Med. Chem.</i>, 17, 330–334 (1974). NB: See Flufenamic acid for details.
t = 23 Die Struktur der Redu	Girod E, Delley R, Hafliger F, Uber derivate des Phenylbutazons III. Die Struktur der Reduktionsprodukte des γ-keto-phenylbutazons, <i>Helv. Chim. Acta</i> , 40, 408–428 (1957).						
	N-N O H CH ₂ CH ₂ CH ₂ CH ₃	5.25	U	-Н	Potentiometric	80%MCS	NB: Also reported apparent pK _a values from titrimetry with tetramethylammonium hydroxide in 80% methocellosolve for 29 other related compounds.
1010	Phenylbutazone	4.53 ± 0.06	А	-H	Spectro	$\begin{array}{l} H_2O \\ t = 25.0 \pm 0.05 \\ I = 0.00 \end{array}$	Prankerd RJ, Determination of the pK_a of phenylbutazone, 4th Year Undergraduate Research Project, Department of Pharmacy, University of Otago, Dunedin, New Zealand, 1973. NB: The Guggenheim modification of the Debye-Hückel equation was used to account for ionic strength effects by extrapolating to $I = 0.00$.
1011	Phenylbutazone	4.53	А	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 6.39. The assignment of the pK_a value to a basic group is in disagreement with the consensus of literature, which assigns this value to the carbon acid system.
1012	Phenylbutazone	$\begin{array}{l} \mathrm{GLp}K_{\mathrm{a}}:\ 4.30\pm0.01\ \mathrm{A\&S}: \end{array}$	А	-H	Spectro	H_2O t = 25 I = 0.15 (KCl)	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta 434, 157–167 (2001).
		4.34 ± 0.04	А	-H		Ar atmos- phere	NB: See clioquinol for details.

1013	Phenylbutazone	4.43	U	-Н	Spectro	H_2O I = 0.1 $t = 25.0 \pm 0.2$	Stella VJ and Pipkin JD, Phenylbutazone ionization kinetics, <i>J. Pharm. Sci.</i> , 65 (8), 1161–1165 (1976). NB: $pK_a = 4.33$ by stopped flow pH jump spectrophotometry.
1014	Phenylbutazone	4.5	U	-H	Potentiometric	H_2O t = 20 I undefined	Rainer VG, Krüger U and Klemm K, Syntheses und physicalisch- chemische Eigenschaften von Lonazolac-Ca einem neuen Antiphlogistikum/Antirheumatikum, ArzneimForsch., 31(4), 649–655 (1981). NB: See Indomethacin for details.
1015	Phenylbutazone	4.70 ± 0.2	U	–Н	Potentiometric	H_2O t = 24	Maulding HV and Zoglio MA, pK _a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, <i>J. Pharm. Sci.</i> , 60 , 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.
1016	Phenylbutazone	4.6	U	-H	Spectro	H ₂ O <i>t</i> undefined <i>I</i> undefined	Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflam- matories, <i>Drug Dev. Ind. Pharm.</i> , 9 (5), 767–793 (1983). NB: Used dλ/dpH method. NB: See Azapropazone and Ibuprofen for details.
1017	Phenylbutazone	5.47	U	-H	Potentiometric	50% EtOH t undefined I undefined	Jahn U and Wagner-Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem-Test, ArzneimForsch., 24, 494–499 (1974).
		5.45	U	-H		80% Me cellosolve	NB: Literature values obtained from the pH of half-neutralization. Also gave a value of 4.5 in water. This last value is in good agreement with other values.
1018	Phenylbutazone analogs		U	-H	Spectro	H_2O t = RT I undefined	Perel JM, Snell MM, Chen W and Dayton PG, A study of structure- activity relationships in regards to species difference in the phenylbutazone series, <i>Biochem. Pharmacol.</i> , 13 , 1305–1317 (1964). NB: All compounds where $R_1 = OH$ have a p K_{a2} value of 10.0 ± 0.2 .

Compound	R ₁	R ₂	R ₃	pK _{a1}
G-34208	OH	Н	t-Bu	7.1
G-35716	OH	Н	<i>i</i> -Pr	5.8
G-13838	Н	Н	<i>i</i> -Pr	5.5
Oxyphenbutazone	OH	Н	<i>n</i> -Bu	4.7
Phenylbutazone	Н	Н	<i>n</i> -Bu	4.5
G-32170	F	F	<i>n</i> -Bu	4.5
G-29665	OH	Н	-(CH ₂) ₂ CH(Me)OH	4.3
G-25592	Н	Н	-(CH2)2-O-Ph	4.2
G-33378	OH	Н	-(CH2)2-S-Ph	4.1
G-28231	Н	Н	-(CH ₂) ₂ CH(Me)OH	4.0
G-25671	Н	Н	-(CH2)2-S-Ph	3.9
G-28234	NO ₂	Н	<i>n</i> -Bu	3.2
G-32642	OH	Н	-(CH ₂) ₂ -SO-Ph	3.1
Sulfinpyrazone	Н	Н	-(CH ₂) ₂ -SO-Ph	2.8
G-32567	CH ₃ SO ₂ -	CH ₃ SO ₂ -	<i>n</i> -Bu	2.6
G-29701	ОН	Н	O CH ₂ CH ₂ CH ₃	2.3

Appendix A	(continued)
------------	-------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1019	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one ($C_{15}H_{12}N_2O$) 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.17 12.49	U U	+H -H	Spectro	2% aq. EtOH t = 25	 Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i>, 33, 1519–1522 (1983). "The acidity constants (pK-values) in the aqueous phase with 2% ethanol were determined spectrophotometrically at 25 °C according to published methods (Albert and Serjeant, 1971). Each pK-value was detemined from the absorbance at three or more pH- values." NB: Partition coefficients were also detemined. The data were used as in linear free energy relationships to obtain substituent constants.
1020	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-fluoro-7,8-dichloro (C ₁₅ H ₉ Cl ₂ FN ₂ O)	2.26 11.20	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1021	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1,3-dimethyl-2',7-dichloro (C ₁₇ H ₁₄ Cl ₂ N ₂ O)	2.07	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1022	$\begin{array}{l} 5\mbox{-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one, 4'-trifluoromethyl} \\ (C_{16}H_{11}F_{3}N_{2}O) \end{array}$	3.06 12.30	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1023	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 3-methyl-7-chloro (C ₁₆ H ₁₃ ClN ₂ O)	3.57 12.29	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1024	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-ethyl-7-chloro (C ₁₇ H ₁₅ ClN ₂ O)	3.18	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1025	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 3'-trifluoromethyl (C ₁₆ H ₁₁ F ₃ N ₂ O)	3.22 12.26	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1026	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-trifluoro-methyl-7-chloro $(C_{16}H_{10}ClF_3N_2O)$	1.73 11.95	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.

1027	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-bromo-7-chloro (C ₁₅ H ₁₀ BrClN ₂ O)	2.09 11.84	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See parent compound for details.
1028	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2',7-dichloro (C ₁₅ H ₁₀ Cl ₂ N ₂ O)	2.17 11.80	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1029	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-4'-methoxy-7-chloro (C ₁₇ H ₁₅ ClN ₂ O ₂)	4.00	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1030	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 3'-methoxy-7-chloro (C ₁₆ H ₁₃ ClN ₂ O ₂)	3.29 11.93	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1031	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-2'-fluoro-7-iodo (C ₁₆ H ₁₂ FIN ₂ O)	2.45	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1032	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-2',7-dichloro (C ₁₆ H ₁₂ Cl ₂ N ₂ O)	1.92	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1033	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-methyl-7-chloro (C ₁₆ H ₁₃ ClN ₂ O)	3.14 11.96	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1034	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-trifluoromethyl (C ₁₆ H ₁₁ F ₃ N ₂ O)	3.25 11.68	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See parent compound for details.
1035	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-4'-chloro-7-fluoro (C ₁₆ H ₁₂ ClF ₂ O)	1.92	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See parent compound for details.
1036	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-2',6',7-trichloro (C ₁₆ H ₁₁ Cl ₃ N ₂ O)	0.80	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.

ထ Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1037	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1,2'-dimethyl-7-chloro (C ₁₇ H ₁₅ ClN ₂ O)	2.93	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1038	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-thiomethyl-7-chloro (C ₁₆ H ₁₃ ClN ₂ OS)	2.65 11.95	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1039	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-7-thiomethyl (C ₁₇ H ₁₆ N ₂ OS)	3.70	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1040	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-chloro (C ₁₅ H ₁₁ ClN ₂ O)	3.48 11.82	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1041	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-thiomethyl (C ₁₆ H ₁₄ N ₂ OS)	3.96 12.27	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1042	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-fluoro-7-ethyl (C ₁₇ H ₁₅ FN ₂ O)	3.41 12.25	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1043	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 4'-fluoro-7-chloro (C ₁₅ H ₁₀ ClF ₂ O)	3.21 12.07	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1044	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2',6'-difluoro-8-chloro (C ₁₅ H ₁₀ ClF ₂ N ₂ O)	1.95 11.36	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1045	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methoxymethyl-7-chloro (C ₁₇ H ₁₅ ClN ₂ O ₂)	2.74	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.

1046	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-7-chloro (C ₁₆ H ₁₅ ClN ₂ O)	3.17	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1047	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-2'-fluoro-7-chloro (C ₁₆ H ₁₂ ClFN ₂ O)	2.22	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1048	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	1.61	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 3-methyl-2'-chloro-7-nitro (C ₁₆ H ₁₃ ClN ₃ O ₃)	10.79	U	-H		t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1049	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	2.57	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 2'-fluoro-7-chloro (C ₁₅ H ₁₀ ClFN ₂ O)	11.77	U	-H	•	t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1050	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	1.63	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 2',6'-difluoro-7-chloro (C ₁₅ H ₉ ClF ₂ N ₂ O)	11.64	U	-H	-	t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1051	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	3.66	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 2'-methoxy-7- chloro $(C_{16}H_{13}ClN_2O_2)$	12.05	U	-H		t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1052	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	4.39	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 7-methyl (C ₁₆ H ₁₄ N ₂ O)	12.44	U	-H	Ĩ	t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1053	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	2.39	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 2'-trifluoromethyl (C ₁₆ H ₁₁ F ₃ N ₂ O)	12.24	U	-H	Ĩ	t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1054	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	4.60	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 7-dimethylamino (C ₁₇ H ₁₇ N ₃ O)	12.76	U	-H	I	t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1055	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	1.57	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 2'-chloro-7-nitro ($C_{15}H_{10}ClN_3O_3$)	10.50	U	-H		t = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See parent compound for details.

32 O Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1056	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 3-hydroxy-2',7-dichloro (C ₁₅ H ₁₀ Cl ₂ N ₂ O ₂)	0.39 11.03	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See paren compound for details.
057	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 4'-fluoro (C ₁₅ H ₁₁ FN ₂ O)	4.01 12.31	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
058	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-fluoro (C ₁₅ H ₁₁ FN ₂ O)	3.52 12.14	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See paren compound for details.
.059	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-methoxy (C ₁₆ H ₁₄ N ₂ O ₂)	4.04 12.46	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See paren compound for details.
.060	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 3-hydroxy-7-chloro (C ₁₅ H ₁₁ ClN ₂ O ₂)	1.62 11.24	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See paren compound for details.
.061	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-7-nitro (C ₁₆ H ₁₃ N ₃ O ₃)	2.63	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See paren compound for details.
062	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-nitro (C ₁₅ H ₁₂ N ₃ O ₃)	2.88 11.88	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See paren compound for details.
063	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-2'-fluoro-7-nitro (C ₁₆ H ₁₃ FN ₃ O ₃)	1.87	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See paren compound for details.
1064	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methoxymethyl-7-nitro (C ₁₇ H ₁₆ N ₃ O ₄)	2.09	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>Arzneim-Forsch.</i> , 33, 1519–1522 (1983). NB: See paren compound for details.

1065	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-cyano (C ₁₆ H ₁₁ N ₃ O)	2.88 11.17	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1066	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-[butane-2,4-diol]-2'-fluoro-7- iodo (C ₁₉ H ₁₈ FIN ₂ O ₃)	2.31	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See parent compound for details.
1067	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-ethyl-7-amino (C ₁₇ H ₁₇ N ₃ O)	4.07	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1068	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 2'-fluoro-7-acetyl (C ₁₇ H ₁₃ FN ₂ O ₂)	2.67 11.22	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1069	5-Phenyl-1,3-dihydro-1,4-benzodiazepin-	0.92	U	+H	Spectro	2% aq. EtOH	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4-
	2-one, 2′,7-dinitro (C ₁₅ H ₁₀ N ₄ O ₅)	10.45	U	-H		<i>t</i> = 25	benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33 , 1519–1522 (1983). NB: See parent compound for details.
1070	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-[butane-2,4-diol]-2'-fluoro-7- chloro (C ₁₉ H ₁₈ ClFN ₂ O ₃)	2.26	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1071	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methyl-7-amino (C ₁₆ H ₁₅ N ₃ O)	4.24	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1072	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methoxymethyl-7-amino (C ₁₇ H ₁₇ N ₃ O ₂)	3.81	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1073	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1- methyl-2'-fluoro-7-amino (C ₁₆ H ₁₄ FN ₃ O)	3.55	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, <i>ArzneimForsch.</i> , 33, 1519–1522 (1983). NB: See parent compound for details.
1074	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-methoxymethyl-2'-fluoro-7- amino (C ₁₂ H ₁₆ FN ₃ O ₂)	3.34	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.

Speed Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1075	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 7-amino ($C_{15}H_{13}N_3O$)	4.51 12.98	U U	+H -H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1076	5-Phenyl-1,3-dihydro-1,4-benzodiazepin- 2-one, 1-[butane-2,4-diol]-7-nitro (C ₁₉ H ₁₉ N ₃ O ₅)	2.36	U	+H	Spectro	2% aq. EtOH t = 25	Seiler P and Zimmermann I, 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-ones. Experimental verification of substituent constants, ArzneimForsch., 33, 1519–1522 (1983). NB: See parent compound for details.
1077	Phenylephrine (Neo-synephrine) (C ₉ H ₁₃ NO ₂) HO CH ₂ NHCH ₃	8.86	U	+Н, –Н	Potentiometric	H ₂ O (extrap) $t = 25.0 \pm 0.2$ $I \sim 0.01$	 Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i>, 73, 2611–13 (1951). NB: See Amphetamine for details. From pK_b = 5.14.
	ОН						
1078	Phenylethylamine (C ₈ H ₁₁ N)	9.83	U	+H	Potentiometric	$\begin{array}{l} H_2O \\ t = 25.0 \pm 0.2 \\ I \leq 0.001 \end{array}$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details.
1079	Phenylethylamine	9.78	U	+H	Potentiometric	H2O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
		9.88 ± 0.1	U	+H	Potentiometric	H_2O t = 25	Kappe T, Armstrong MD, Ultraviolet absorption spectra and apparent acidic dissociation constants of some phenolic amines, J. Med. Chem., 8, 368–374 (1965). See Levarterenol (noradrenaline (no. 729) and m-Hydroxyphenylethylamine, 2-hydroxy (no. 1081)
1080	Phenylethylamine, 2-hydroxy (C ₈ H ₁₁ NO)	8.90	U	+H	Potentiometric	H ₂ O t undefined I undefined	for details. Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB Method as described by Parke and Davis (1945).

1081	<i>m</i> -Hydroxyphenylethylamine, 2-hydroxy (C ₈ H ₁₁ NO ₂)	8.67	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
		$\begin{array}{c} 9.56 \pm 0.05 \\ 9.63 \pm 0.1 \end{array}$	U U	+H -H	Spectro Potentiometric	H_2O t = 25	Kappe T and Armstrong MD, Ultraviolet absorption spectra and apparent acidic dissociation constants of some phenolic amines, <i>J. Med. Chem.</i> , 8 , 368–374 (1965). NB: The pK_a for the phenolic group was determined spectrophotometrically and the value then used to correct the potentiometric titration curve for the ionization of this group. The resulting difference titration curve was then use to estimate the pK_a value for the amine group. As the amine group pK_a value was estimated by this approach, the experimental error
1082	<i>m</i> -Hydroxyphenylethylamine, 2-hydroxy, <i>N</i> -methyl (C ₉ H ₁₃ NO ₂)	8.89	U	+H	Potentiometric	H ₂ O t undefined I undefined	is necessarily larger than for the phenolic group. Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
1083	p-Hydroxyphenylethylamine (C ₈ H ₁₁ NO)	9.22	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
		9.74 ± 0.05	U	+H	Spectro	H ₂ O	Kappe T and Armstrong MD, Ultraviolet absorption spectra and
		10.52 ± 0.1	Ū	-H	Potentiometric	t = 25	apparent acidic dissociation constants of some phenolic amines, J. Med. Chem., 8 , 368–374 (1965). NB: See Levarterenol (noradrenaline (no. 729) and <i>m</i> -Hydroxyphenylethylamine, 2-hydroxy (no. 1081) for details).
1084	p-Hydroxyphenylethylamine, N-methyl (C ₉ H ₁₃ NO)	9.36	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM and Mayer JR, Nachod FC, Anomalous pKa values of some substituted phenylethylamines, JACS, 81, 92–94 (1959). NB: Method as described by Parke and Davis (1945).
		9.76 ± 0.05	U	+H	Spectro	H ₂ O	Kappe T and Armstrong MD, Ultraviolet absorption spectra and
		10.71 ± 0.1	Ū	-H	Potentiometric	t = 25	apparent acidic dissociation constants of some phenolic amines, J. Med. Chem., 8 , 368–374 (1965). NB: See Levarterenol (noradrenaline (no. 729) and <i>m</i> -Hydroxyphenylethylamine, 2-hydroxy (no. 1081) for details).
1085	<i>m,p-</i> Dihydroxyphenylethylamine (C ₈ H ₁₁ NO ₂)	8.93	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81, 92–94 (1959). NB: Method as described by Parke and Davis (1945).
1086	<i>m,p</i> -Dihydroxyphenylethylamine, <i>N</i> -methyl (C ₉ H ₁₃ NO ₂)	8.78	U	+H	Potentiometric	H ₂ O <i>t</i> undefined <i>I</i> undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81, 92–94 (1959). NB: Method as described by Parke and Davis (1945).

Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1087	<i>p</i> -Hydroxyphenylethylamine, 2-hydroxy (C ₈ H ₁₁ NO ₂)	8.81	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
		9.57 ± 0.05	U	+H	Spectro	H ₂ O	Kappe T and Armstrong MD, Ultraviolet absorption spectra and
		9.66 ± 0.1	U	-H	Potentiometric	t = 25	apparent acidic dissociation constants of some phenolic amines, <i>J. Med. Chem.</i> , 8 , 368–374 (1965). NB: See Levarterenol (noradrenaline (no. 729) and <i>m</i> -Hydroxyphenylethylamine, 2-hydroxy (no. 1081) for details).
1088	p-Hydroxyphenylethylamine, 2-hydroxy, N-methyl (C ₉ H ₁₃ NO ₂)	8.62	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pKa values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
1089	Phenylethylamine, 2-hydroxy, N-methyl (C9H ₁₃ NO)	9.31	U	+H	Potentiometric	H ₂ O t undefined I undefined	Tuckerman MM, Mayer JR and Nachod FC, Anomalous pK _a values of some substituted phenylethylamines, <i>JACS</i> , 81 , 92–94 (1959). NB: Method as described by Parke and Davis (1945).
1090	Phenylpenilloic acid (C14H17N2O3S)	1.51	U	-H		H ₂ O	Woodward RB, Neuberger A and Trenner NR, in Clarke H, Johnson
	N H H CH ₃	5.18	Ū	+H		t = 5	JR and Robinson Sir R. (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422 (1949). NB: Method was not described in this paper.
1091	COOH Phenylpenilloic acid	1.50	U	-H		H ₂ O	Woodward RB, Neuberger A and Trenner NR, <i>in</i> Clarke H, Johnson
1071	Thenysperimole ded	4.90	U	+H		t = 25	JR and Robinson Sir R. (eds.), <i>The Chemistry of Penicillin</i> , Princeton University Press, Princeton, NJ, 415–422 (1949). NB: Method was not described in this paper.
1092	Phenylpropanolamine (C ₉ H ₁₃ NO)	9.014	Α	+H	Potentiometric	H ₂ O t = 25 I = 0.00	 Lukkari S, Electrolyte effect on the ionization constant of pharmaceuticals, alpha-((2-pyridylamino)methyl)-benzyl alcohol (phenyramidol) and alpha-(1-aminoethyl)benzyl alcohol (norephedrine; phenylpropanolamine), <i>Farm. Aikak.</i>, 79, 95–99 (1970). "The acid ionization constants of phenyramidol and phenylpropanolamine in aqueous solutions at 25 °C. were determined potentiometrically. The values pK° = 6.488 and pK° = 9.014, respectively, were obtained for the acid ionization constants at zero ionic strength. The effect of ionic strength on the ionization constant, as adjusted with sodium perchlorate, was determined."

324

1093	Phenylpropanolamine	9.05	U	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, J. Assoc. Off. Anal. Chem., 54, 1179–1191 (1971). NB: See amphetamine for further details.
1094	Phenylpropanolamine	9.44 ± 0.04	Α	+H	Potentiometric	H_2O t = 20.0 I = 0.1 (glycine)	Lewis GP, The importance of ionization in the activity of sympathomimetic amines, <i>Br. J. Pharmacol.</i> , 9 , 488–493 (1954). NB: Reported pK_a values for a further 23 sympathomimetic amines. Where compounds contained phenolic group as well as the amine, both potentiometric and spectrophotometric methods were used. Methods were similar to Kappe and Armstrong, see Levarterenol (no. 729). Cited in Kanfer I, Haigh JM and Dowse R, Phenylpropanolamine hydrochloride, <i>APDS</i> , 12 , 357–380 (1983).
1095	Phenylpropylmethylamine (1-Methylamino-2-phenylpropane) (C ₁₀ H ₁₅ N)	10.07	Α	+H	Potentiometric	H_2O t = 25.0 ± 0.5 I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i>, 54, 1179–1191 (1971). NB: See Amphetamine for further details.
1096	Phenylpropylmethyl-amine (Vonedrine)	9.88 ± 0.02	U	+H	Potentiometric	H_2O (extrap) $t = 25.0 \pm 0.2$ $I \sim 0.01$	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–13 (1951). NB: See Amphetamine for details. From $pK_b = 4.12$. Cited in: Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal.</i> <i>Chem.</i> , 34 , 1495–1501 (1962).
1097	5-Phenylvaleric acid (C ₁₀ H ₁₄ O ₂)	4.59 ± 0.02	U	–Н	Potentiometric	H_2O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, <i>Pharm. Res.</i> , 15 (2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol- water) and log P (dioleylphosphatidylcholine unilamellar vesicles).
1098	Phenyramidol (C ₁₃ H ₁₄ N ₂ O) OH	6.488	Α	+H	Potentiometric	H ₂ O I = 0.00 t = 25	Lukkari S, Electrolyte effect on the ionization constant of pharmaceuticals, α -((2-pyridylamino)methyl)benzyl alcohol (phenyramidol) and α -(1-aminoethyl)benzyl alcohol (norephedrine; phenylpropanolamine), <i>Farm. Aikak.</i> , 79 , 95–99 (1970). "The acid ionization constants of phenyramidol and phenylpropanolamine in aqueous solutions at 25 °C. were determined potentiometrically. The values pK° = 6.488 and pK° = 9.014, respectively, were obtained for the acid ionization constants at zero ionic strength. The effect of ionic strength on the ionization constant, as adjusted with sodium perchlorate, was determined."

Appendix A	(continued)
------------	-------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)		
1099	Phenyramidol	5.85	U	+H	Potentiometric	60:40 DMF- H ₂ O t = 25	Gray AP, Heitmeier DE and Spinner EE, JACS, 81 , 4351–4355 (195 reported the following data:		
						I = 25 $I = \sim 0.01$	Name	pKa'	
							2-mandelamidopyridine	2.94	
							2-mandelamido-4-picoline	3.25	
							2-(β-hydroxyphenethylamino)-pyridine	5.85	
							4-(β-hydroxyphenethylamino)-pyridine	8.49	
							2-(β-hydroxyphenethylamino)-4-picoline	6.50	
							6-(β-hydroxyphenethylamino)-3-picoline	6.30	
							2-(β-hydroxyphenethylamino)-5-chloropyridine	3.70	
							2-(2-hydroxypropylamino)-pyridine	6.10	
							2-(β-hydroxy-β?β-diphenylethylamino)-pyridine	5.50	
							2-(β-acetoxyphenethylamino)-pyridine	5.85 (approx)	
							1-(β-hydroxyphenethyl)-2-imino-1,2- dihydropyridine	11.6 (approx)	
							1-(β-acetoxyphenethyl)-2-acetylimino-1,2- dihydropyridine	5.83	
							2-(γ-hydroxy-γ-phenylpropylamino)-pyridine	6.15	
							2-phenethylaminopyridine	6.10	

NB: All values assessed as U = uncertain. See also Gray AP and Heitmeier DE, Aminopyridines. I. β-hydroxyalkylaminopyridines via glycolamidopyridines, *JACS*, **81**, 4347–4350 (1959); cited pK_a values for 2-aminopyridine (6.86) and 4-aminopyridine (9.17), from Albert A, Goldacre R and Phillips J, *J. Chem. Soc.* 2240–2249 (1948).

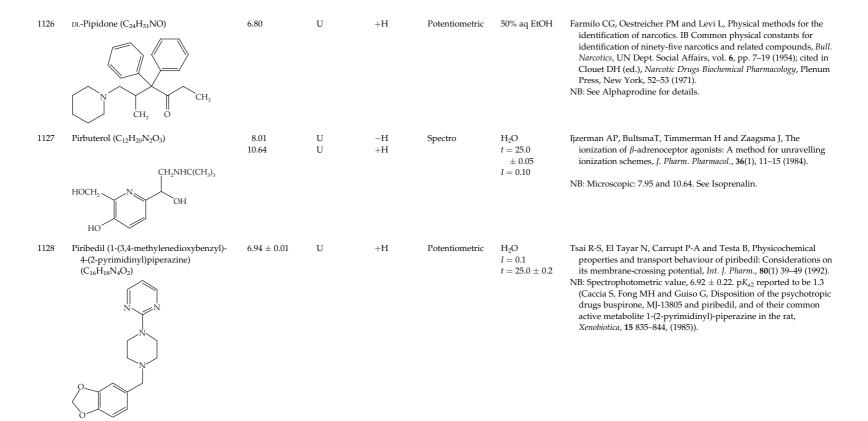
two determinations."

1100	Phenytoin (C ₁₅ H ₁₂ N ₂ O ₂)	8.31 ± 0.04 8.33	U U	-H -H	Spectro ($\lambda = 236$ nm) Potentiometric	1% EtOH in H ₂ O t undefined I undefined H ₂ O t undefined I = 0.01	Agarwal SP and Blake MJ, Determination of the pK _a ' value for 5,5- diphenylhydantoin <i>J. Pharm. Sci.</i> , 57 , 1434–1435 (1968). NB: Cited by Philip J, Holcomb JJ and Fusari SA, Phenytoin, <i>APDS</i> , 13 , 417– 440 (1984). Spectrophotometric method according to Albert and Serjeant (1962). Potentiometric results from linear extrapolation to 0% of apparent values for titration of sodium phenytoin with 1-N HCl in 20%, 30%, 40%, and 50% v/v aqueous ethanol.
	ö						
1101	Phenytoin	8.06	U	-H	soly	H ₂ O/MeOH (0-4%)	Schwartz PA, Rhodes CT and Cooper JW, Solubility and ionization
						(0-476) pH = 4.8-8.4	characteristics of phenytoin, J. Pharm. Sci., 66 , 994–997 (1977). "The solubility of phenytoin (I) was determined in pH 7.4 and 5.4 phosphate buffers at 5 temperatures; in methanol 0–4%; and in pH 4.8–8.4 buffer solutions. The data obtained from the buffer solutions were used to calculate the apparent dissociation constant of I as 8.06"
1102	Phenytoin	8.32 ± 0.01	U	-H	Spectro, Potentiometric	H ₂ O	Schwartz PA, Rhodes CT and Cooper JW, Solubility and ionization characteristics of phenytoin, J. Pharm. Sci., 66, 994–997 (1977).
1103	Phenytoin	8.43	U	+H	CE/pH (-ve ion mode)	H_2O t = 25	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB
					ion mode)	I = 2.5 I = 0.025	and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 8.33. Assignment of the pK_a value to a basic group is in disagreement with the consensus of literature, which assigns this value to the imide acid system.
1104	Phenytoin	8.21 (0.14)	U	-H	Spectro (253 nm)	H_2O t = 20.0	Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis.
		(0.14)			(255 mm)	t = 20.0	Determination of dissociation constants, <i>Int. J. Pharm.</i> , 92 (1), 15–22 (1993). NB: See Acetaminophen for further details. An alternative graphical method gave $pK_a = 8.2$.
							(

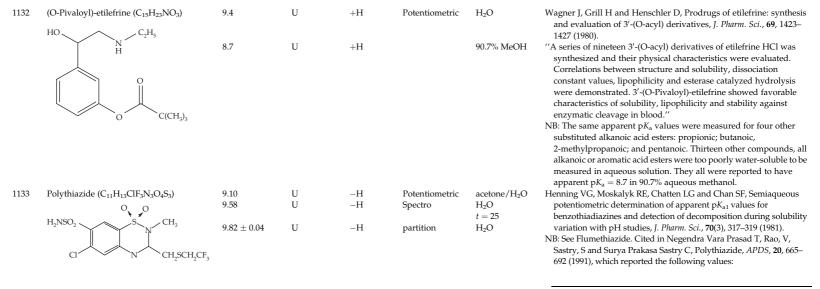
Appendix	A	(continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1105	Phosphocreatine (C ₄ H ₁₀ N ₃ O ₅ P) HO M P NH N CH_2 COOH HO NH NH NH NH NH NH NH NH	$\begin{array}{c} 4.7 \pm 0.01 \\ 11.0 \pm 0.05 \end{array}$	A U	-H +H	Potentiometric	H ₂ O t = 25.0	Breccia A, Fini A, Girotti S and Stagni G, Correlation between physico-chemical parameters of phosphocreatine, creatine, and creatinine, and their reactivity with their potential diffusion in tissue, <i>Pharmatherapeutica</i> , 3 (4), 227–232 (1982). NB: See Creatine for details.
1106	Phosphocreatine	2.7 4.5 12	U U U	H H +H	Potentiometric	H ₂ O t = 37	Meyerhof O and Lohmann K, The natural guanidinophosphoric acids (phosphagens) in striated muscle. II. Physico-chemical properties of the guanidinophosphoric acids, <i>Biochem. Z.</i> , 196 , 49– 72 (1928). Cited in Perrin Bases 3410 ref. M41. CA 23:7362.
1107	Phthalic acid $(C_8H_6O_4)$ COOH	2.950 5.408	R R	-H -H	Potentiometric	$\begin{array}{l} {\rm H_2O} \\ t = 25.0 \pm 0.01 \\ I = 0.000 \\ ({\rm KCl}) \end{array}$	Hamer WJ, Pinching GD and Acree SF, First dissociation constant of o-phthalic acid and related pH values of phthalate buffers from 0° to 60°, J. Res. Nat. Bur. Stand., 35, 539–564 (1945); Hamer WJ and Acree SF, J. Res. Nat. Bur. Stand., 35, 381–416 (1945). NB: Used electrochemical cell without liquid junction potentials; detailed procedures were required to extrapolate ionic strength effects to zero.
1108	Physostigmine salicylate (C ₂₂ H ₂₇ N ₃ O ₅)	1.96 8.08 DH	U U	+H +H	Spectro	H ₂ O t = 15	 Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i>, 162, 289–353 (1925). Cited in Perrin Bases 2947 ref. K47. NB: See Aconitine for details.
1109	Physostigmine	$\begin{array}{l} {\rm GLp}K_{\rm a}:\\ 8.17\pm 0.02\\ {\rm A\&S:}\\ 8.10\pm 0.09 \end{array}$	A U	+H +H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	 Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i>, 434, 157–167 (2001). NB: See Clioquinol for details.

1110	Picolinic acid (C ₆ H ₅ NO ₂)	1.5 5.49	U A	$^{+\mathrm{H}}_{-\mathrm{H}}$	Potentiometric	H_2O $t = 18 \pm 2$ c = 0.04	Holmes F and Crimmin WRC, The stabilities of metal chelate compounds formed by some heterocyclic acids. I. Studies in aqueous solution, J. Chem. Soc., 1175–1180 (1955).
		0.99	А	+H	Spectro	H ₂ O	Evans RF, Herington EFG and Kynaston W, Determination of
		5.39	A	-H	opeeuo	t = 25	dissociation constants of the pyridine-monocarboxylic acids by
	Л СООН	0.07				I = 0.03	ultraviolet photoelectric spectrophotometry. Trans. Farad. Soc., 49,
		1.01	А	+H	Potentiometric	H ₂ O	1284–1292 (1953). NB: Data for pK_{a1} was obtained with $I > 0.03$.
		5.32	A	-H	roundomeane	t = 22	Green RW and Tong HK, The constitution of the pyridine
		0.02				c = 0.05 to 0.1 N ₂ atmosphere	monocarboxylic acids in their isoelectric forms, <i>JACS</i> , 78 , 4896–4900 (1956). Used a glass electrode standardized with phthalate solution ($pH = 4.00$) and the Guntelberg equation to correct for I.
		1.60	U	+H	Spectro	H ₂ O	Estimated the microconstants from spectrophotometric data on the
		5.40	А	-H		$t = 20 \pm 2$	acid and its methyl ester: pK_A , 1.04; pK_B , 2.21; pK_C , 5.29; pK_D , 4.12;
						I = 0.01;	where the subscripts represent the following equilibria: A,
						$c < 5 imes 10^{-4}$	diprotonated to zwitterion; B, diprotonated to neutral; C, zwitterion
		5.3	А	-H	Spectro	H ₂ O	to fully deprotonated; D, neutral to fully deprotonated. Also
						t = 25.0	reported the corresponding data for picolinic and isonicotinic acids.
						I=0.005- 0.025	Jellinek HHG and Urwin JR, Ultraviolet absorption spectra and dissociation constants of picolinic, isonicotinic acids and their amides, <i>J. Phys. Chem.</i> , 58 , 548–550 (1954). Used glass electrode to measure pH values and recorded spectra with a Hilger Uvispek spectrophotometer. Ionic strength was extrapolated to zero with the Debye-Huckel equation.
							 Fischer A, Galloway WJ and Vaughan J, Structure and reactivity in the pyridine series. I. Acid dissociation constant of pyridinium ions, <i>J. Chem. Soc.</i> B, 3591–3596 (1964). All data were cited in Perrin Bases no. 1076–77; Perrin Bases suppl.
1111	Pilocarpine (C ₁₁ H ₁₆ N ₂ O ₂)	7.00	А	+H	Potentiometric	H ₂ O	no. 5081. Lukkari S and Palonen M, Potentiometric and spectrophotometric
	O H ₃ C					t = 25 I = 0.00 (NaCl, NaClO ₄)	studies on the ionization of pilocarpine in aqueous solution, <i>Suomen Kemistilehti B</i> , 41 , 225–8 (1968). Cited in Perrin Bases suppl. no. 7487.
1112	H ₃ C N Pilocarpine	7.08 ± 0.02	А	+H	Potentiometric	H_2O t = 25.0	Takacs-Novak K and Avdeef A, Interlaboratory study of log P
						I = 25.0 I = 0.1 (NaCl)	determination by shake-flask and potentiometric methods, J. Pharm. Biomed. Anal., 14, 1405–1413 (1996). NB: See Acetaminophen for further details.

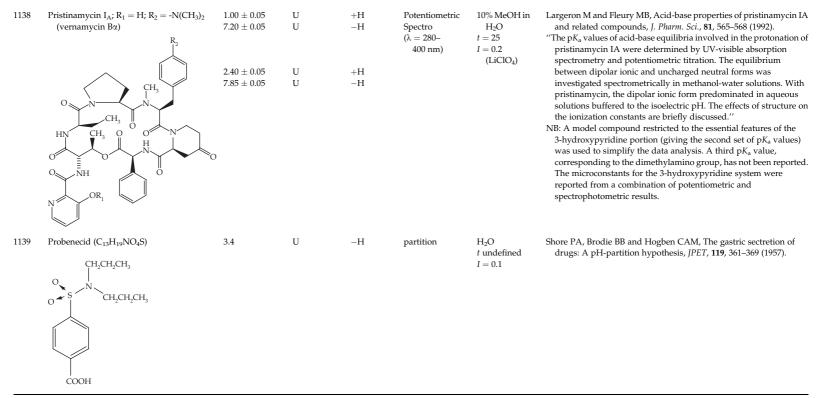

Score Appendix A (continued)

Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
Pilocarpine	6.98	А	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 7.02.
Pilocarpine	$GLpK_a$: 7.06 ± 0.02	А	+H	Spectro	H_2O t = 25 I = 0.15 (KCl)	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta, 434, 157–167 (2001).
	7.12 ± 0.14	U	+H		Ar atmos- phere	NB: See Clioquinol for details.
Pilocarpine	7.07	U	+H			 Longwell A, Birss S, Keller N and Moore D, Effect of topically applied pilocarpine on tear film pH, <i>J. Pharm. Sci.</i>, 65, 1654–1657 (1976). "The reduction in tear film pH produced by I eyedrops or spray solution is attributable to the acid pH and buffer capacity of these solutions. Delivery of I base without pH change was achieved with ocular therapeutic systems, because the drug (pK_a = 7.07) was delivered free, or virtually so, of excipients."
Pilocarpine	1.63 7.05	U U	$^{+\mathrm{H}}_{+\mathrm{H}}$	Spectro	$\begin{array}{l} H_2O\\ t=15 \end{array}$	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases 2949 ref. K47. NB: See Aconitine for details.
Pilocarpine	7.15 12.57	U U	$^{+\mathrm{H}}_{+\mathrm{H}}$		t = 20.0	Al-Badr AA and Aboul-Enein HY, Pilocarpine, APDS, 12, 385–427 (1983). NB: These are clearly pKb values.
Pilocarpine	6.97	Α	+H	Potentiometric	H_2O t = 30 I = 0.07	Cowgill RW and Clark WM, Coordination of imidazoles with ferrimesoporphyrin, J. Biol. Chem., 198 , 33–61 (1952). Cited in Perrin Bases 2949 ref. C51 (pK _a value was misquoted as 6.87). Study used a glass electrode (carefully calibrated) and solutions were titrated with carbonate-free KOH.
Pipamazine (C ₂₀ H ₃₂ ClN ₃ OS)	8.60	U	+H	Potentiometric	$H_2O \text{ (extrap)}$ $t = 24 \pm 1$ $I \sim 0.002$	 Chatten LG and Harris LE, Relationship between pK_b (H₂O) of organic compounds and E_{1/2} values in several non-aqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962). Cited in Perrin Bases suppl. no. 7438 ref. C10. NB: Study used glass electrode measurements of the pH value of solutions containing equimolar proportions of the free base and the salt. Results for several different concentrations in methanol were extrapolated back to 0% methanol.
	Pilocarpine Pilocarpine Pilocarpine Pilocarpine Pilocarpine Pilocarpine Pilocarpine Pilocarpine Pilocarpine	Pilocarpine 6.98 Pilocarpine GLpK_a: 7.06 \pm 0.02 A&S: 7.12 \pm 0.14 Pilocarpine 7.07 Pilocarpine 7.07 Pilocarpine 1.63 7.05 Pilocarpine 1.63 7.05 Pilocarpine 6.97 Pilocarpine 6.97 Pipamazine (C ₂₀ H ₃₂ ClN ₃ OS) 8.60	Compound Name $pK_a value(s)$ qualityPilocarpine6.98APilocarpine $GLpK_a:$ 7.06 ± 0.02 7.12 ± 0.14A A&S: 7.12 ± 0.14UPilocarpine7.07UPilocarpine1.63 7.05UPilocarpine1.53 12.57UPilocarpine6.97APilocarpine8.60UPipamazine (C ₂₀ H ₃₂ CIN ₃ OS)8.60U	Compound Name pK_a value(s)qualitytypePilocarpine 6.98 A $+H$ Pilocarpine $GLpK_a$: 7.06 ± 0.02 A $+H$ $A\&S$: 7.12 ± 0.14 U $+H$ Pilocarpine 7.07 U $+H$ Pilocarpine 1.63 UU $+H$ Pilocarpine 7.15 UU $+H$ Pilocarpine 6.97 A $+H$ Pilocarpine 8.60 U $+H$ Pilocarpine 8.60 U $+H$	Compound Name pK_s value(s)qualitytypeMethodPilocarpine6.98A+HCE/pH (+ve ion mode)PilocarpineGLpK_s: 7.06 \pm 0.02A A& +H A&S: 7.12 \pm 0.14HSpectroPilocarpine7.07U+HPilocarpinePilocarpine1.63 7.05U U+HSpectroPilocarpine1.63 7.05U U+HSpectroPilocarpine6.97A H+HPotentiometricPilocarpine7.15 12.57U U+H HPotentiometricPilocarpine8.60U+HPotentiometric	Compound Name pK_s value(s)qualitytypeMethodConditionsPilocarpine6.98A+H $CE/pH(+ve)$ ion mode) H_2O $t = 25$ $I = 0.025PilocarpineGLpK_s:A & S:7.12 \pm 0.14SpectroH_2Ot = 0.15 (KCI)Ar atmospherePilocarpine7.07U+HSpectroH_2Ot = 0.15 (KCI)Ar atmospherePilocarpine1.637.05U+HSpectroH_2Ot = 15Pilocarpine1.6312.57U+HSpectroH_2Ot = 15Pilocarpine6.97A+HPotentionetricH_2Ot = 30I = 0.07Pilocarpine6.97A+HPotentionetricH_2Ot = 30I = 0.07Pipamazine (C_{20}H_{32}CIN_3OS)8.60U+HPotentionetricH_2Ot = 24 \pm 1I \sim 0.002$


1120	Piperazine (C ₄ H ₁₀ N ₂) H N N H	5.333 9.731	R R	+H +H	Potentiometric	H ₂ O t = 25 I = 0.01 to 0.10	 Hetzer HA, Robinson RA, Bates RG, Dissociation constants of piperazinium ion and related thermodynamic quantities from 0 to 50°, <i>J. Phys. Chem.</i>, 72, 2081–2086 (1968). Cited in Perrin Bases suppl. no. 5572 ref. H36. NB: Very careful work using an electrochemical cell without liquid junction potentials. Activity coefficients were calculated for measurements made on carbonate-free solutions at the following temperatures:
							T (°C) $pK_{a1} pK_{a2}$ T (°C) $pK_{a1} pK_{a2}$ T (°C) $pK_{a1} pK_{a2}$
							0 5.816 10.407 20 5.424 9.864 40 5.066 9.367 5 5.712 10.259 25 5.333 9.731 45 4.981 9.252 10 5.614 10.126 30 5.246 9.609 50 4.896 9.142
							15 5.518 9.996 35 5.153 9.485
1121	Piperazine	5.55 9.81	U U	$^{+\mathrm{H}}_{+\mathrm{H}}$	Potentiometric	H_2O t = 25.0 I undefined	Hall HK, Field and inductive effects on the base strength of amines, JACS, 78, 2570-2572 (1956). Cited in Perrin Bases no. 1465 ref. H5. NB: Used glass electrode in cell with liquid junction potentials. No
		5.57	U	+H	calorimetry	H ₂ O	activity corrections. See also Piperazine, Newton and Kluza. Foye 1
		9.81	U	+H		2	gave 5.7; 9.8 (cited Merck Index). Dragulescu C, Policec S, Thermometric titration of weak diacidic bases. <i>Studii Cercetari Chim.</i> , 9, 33–40 (1962). CA 58:30272. Cited in Perrin Bases suppl. no. 7488. NB: From pK _b values 4.19 and 8.43 at unknown temperature (assumed 25 °C).
1122	Piperazine estrone sulfate ($C_{22}H_{32}N_2O_5S$)	3.6 9.7	U U	+H +H	Potentiometric	acetonitrile, 80% v/v	Chang ZL, Piperazine Estrone Sulfate, <i>APDS</i> , 5 , 375–402 (1976). Cited Wimer DC, Abbott Laboratories, personal communication. "The apparent pK_a value of the (free base) piperazine nitrogen was found to be 3.6, by titration in acetonitril-water (80/20, v/v) with aqueous soldium hydroxide. Attempts to find systems to extrapolate the pK_a to 100% water were unsuccessful The pK_a value of the protonated piperazine nitrogen (proton lost) was found to be 9.7 by titration in pyridine-water mixtures with methanolic KOH, and extrapolation to 100% water."

Append	lix A ((continued)
--------	---------	------------	---

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1123	Piperidine (C ₅ H ₁₁ N)	11.20	U	+H	Potentiometric	$\begin{array}{l} \mathrm{H_{2}O} \\ t = 25.0 \pm 0.2 \\ I = 0.2 \ \mathrm{(NaCl)} \\ \mathrm{N_{2} \ atmos-} \\ \mathrm{phere} \end{array}$	Rosenblatt DH, Hull LA, DeLuca DC, Davis GT, Weglein RC and Williams HKR, Oxidations of amines. II. Substituent effects in chlorine dioxide oxidations, <i>JACS</i> , 89 1158–1163 (1967). Cited in Perrin Bases suppl. no. 4961, ref. R22a. Used a glass electrode in a cell with liquid junction potentials. Solutions were carbonate-free. No activity corrections were made. Calibrated pH meter at $pH = 7.00$ and 10.00.
1124	Piperidine	11.123	R	+H	Potentiometric	H_2O $t = 25.0 \pm 0.2$ I = 0.01 to 0.10 (NaCl) N ₂ atmosphere	 Bates RG and Bower VE, Dissociation constant of piperidinium ion from 0° to 50° and related thermodynamic quantities, <i>J. Res. Natl. Bur. Stand.</i>, 57, 153–157 (1956) Perrin Bases, no. 967 ref. B28. NB: Very careful work using an electrochemical cell without liquid junction potentials. Activity coefficients were calculated for measurements made on carbonate-free solutions at the following temperatures:
							$T(^{\circ}C) pK_{a} T(^{\circ}C) pK_{a} T(^{\circ}C) pK_{a}$
							0 11.963 20 11.280 40 10.670 5 11.786 25 11.123 45 10.526 10 11.613 30 10.974 50 10.384 15 11.443 35 10.818 10.384
							See also Hong W-H and Connors KA, <i>J. Pharm. Sci.</i> , 57 , 1789–90 (1968), who reported $pK_a = 11.22$, but without measurement details or references.
1125	Piperine (C ₁₇ H ₁₉ NO ₃)	1.98	U	+H	Spectro	H ₂ O t = 15.0	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases 2950 ref. K47. NB: See Aconitine for details; Arnall F, The determination of the relative strengths of some nitrogen bases and alkaloids, <i>J. Chem. Soc.</i> 117 , 835–839 (1920). Reported $pK_a = 1.42$ at $t = 55$ °C from kinetic measurements. Cited in Perrin Bases 2950 ref. A73.


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1129	Piroxicam (C ₁₅ H ₁₃ N ₃ O ₄ S) O O CH_3 H N O	5.3	U	-H	Spectro	H ₂ O t undefined I undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used d\/dpH method. See Azapropazone and Ibuprofen for details. Craig gave 4.6 (no ref.).
1130	Piroxicam	6.3	U	-Н	Potentiometric	H2O-dioxan (2:1)	 Mihalic M, Hofman H, Kuftinec J, Krile B, Capler V, Kajfez F and Blazevic N, Piroxicam, <i>APDS</i>, 15, 509–531 (1986). NB: Cited refs 4, 7 and 18: Wiseman EH, Chang Y-H and Lombardino JG, Piroxicam, a novel anti-inflammatory agent, <i>ArzneimForsch.</i>, 26, 1300–1303 (1976). NB: "An acidity constant (<i>pK</i>_a) was determined by potentiometric titration of piroxicam in 2:1 dioxane-water at 25 °C. The apparent <i>pK</i>_a value was estimated from the half-neutralization point" Lombardino JG, Wiseman EH and McLamore WM, Synthesis and antiinflammatory activity of some 3-carboxamides of 2-alkyl-4-hydroxy-2<i>H</i>-1,2-benzothiazine-1,1-dioxide, <i>J. Med. Chem.</i>, 14, 1171-1175 (1971). NB: This reference also reported apparent <i>pK</i>_a values for numerous analogues of piroxicam. Lombardino JG, Wiseman EH and Chiaini J, Potent antiinflammatory <i>N</i>-heterocyclic 3-carboxamides of 4-hydroxy-2-methyl-2<i>H</i>-1,2-benzothiazine-1,1-dioxide, <i>J. Med. Chem.</i>, 16, 493–496 (1973). NB: This reference also reported apparent <i>pK</i>_a values for a further 14 heterocyclic analogues of piroxicam.
1131	Piroxicam	$\begin{array}{c} 2.33 \pm 0.18 \\ 5.07 \pm 0.03 \end{array}$	U A	+H -H	Potentiometric	H_2O t = 25.0 I = 0.15 (KCl)	 Sirius Technical Application Notes, vol. 2, pp. 110–111 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Analyte concentration, 0.2–0.7 mM. Extrapolated to 0 wt% MeOH from data obtained in 27–67 wt% MeOH by the Yasuda-Shedlovsky procedure.

Value	Ref.	Source
9.10	18	Hennig et al. (this entry).
	20	Hennig UG, MSc Thesis Univ. Alberta, Canada.
9.82 ± 0.04	19	Khan AS and Cantwell FF, Measurement of acidity constants of
		benzothiadiazines by solvent extraction with use of a membrane phase separator, Talanta, 33 , 119–123 (1986).
11.0	21	Scriabine A, Schreiber EC, Yu M, Wiseman EH, Renal clearance of polythiazide, <i>Proc. Soc. Exptl. Biol. Med.</i> 110, 872–875 (1962).
9.58	22	Yamazaki M, Suzuka T, Ito Y, Oith S, Kitamura M, et al., Biopharmaceutical studies of thiazide diuretics. I., <i>Chem.</i> <i>Pharm. Bull.</i> , 32 , 2380–2386 (1984).

Appendix A	(continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1134	Porfiromycin (C ₁₆ H ₂₀ N ₄ O ₅) H_2N O O O O O O O O H_2 H_3C O N O O O H_3 N O H_3 O O O H_3 O O O H_3 O O O H_3 O O O O O O H_3 O O O O O H_3 O O O O O O H_3 O O O H_3 O O O H_3 O O O H_3 O O O H_3 O O O O H_3 O O O O O H_3 O O O O O O H_3 O	-1.3 -1.2 ~1.5 12.44 2.4	บ บ บ บ	+H +H +H -H +H	Potentiometric Spectro $(\lambda = 363 \text{ nm})$ kinetic	H_2O t = RT H_2O t = 25	 Underberg WJM and Lingeman H, Determination of pK_a values of some prototropic functions in mitomycin and porfiromycin, <i>J. Pharm. Sci.</i>, 72, 553–556 (1983). NB: See also Mitomycin C. The prototropic properties of mitomycin and porfiromycin were studied, and the dissociation constants for 2 potentially basic groups and one acidic function were established by titration. The kinetics of the tautomerization preceding the prototropic reaction in an alkaline medium are also discussed. MCClelland RA and Lam K, Kinetics and mechanism of the acid hydrolysis of mitomycins, <i>JACS</i>, 107, 5182–5186 (1985). NB: First order behaviour observed. Other observed kinetic pK_a values:
1135	Pralidoxime chloride (C ₇ H ₉ ClN ₂ O) Cl ⁻ CH ₃ Cl ⁻ CH=NOH	7.8–8	U	+H			Porfiromycin, 25 °C, 2.4.Banakar UV and Patel UN, Pralidoxime chloride, APDS, 17, 533–569 (1988) Oxime group (Connors, Amidon & Stella, Chemical Stability of Pharmaceuticals, 1986). ~8-Pralidoxime (AHFS, 1987).
1136	Prenylamine (C ₂₄ H ₂₇ N)	8.74 ± 0.02 9.47	U U	+H +H	Potentiometric	40% EtOH t = 25.0 H ₂ O	 Mannhold R, Rodenkirchen R, Bayer R and Haus W, The importance of drug ionization for the action of calcium antagonistsand related compounds, <i>ArzneimForsch.</i>, 34, 407–409 (1984). NB: See Aprindine for details.
1137	Primaquine (C ₁₅ H ₂₁ N ₃ O)	3.74 9.99	U U	+H +H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

Appendix A (coni	tinued)	
------------------	---------	--

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1140	Procaine (C ₁₃ H ₂₀ N ₂ O ₂) O O O O O O O O	$\begin{array}{c} 2.29 \pm 0.01 \\ 9.04 \pm 0.01 \end{array}$	A A	+H +H	Potentiometric	H ₂ O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, <i>Pharm. Res.</i> , 15 (2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol- water) and log P (dioleylphosphatidylcholine unilamellar vesicles
1141	Procaine	9.04 ± 0.01	А	+H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See
1142	Procaine	9.09 ± 0.03	А	+H	Potentiometric	H_2O t = 20.0 I = 0.10 (KCl) N_2 atmos-	 Acetaminophen for further details. Buchi J and Perlia X, Beziehungen zwischen de physikalisch- chemische Eigenschaften und der Wirkung von Lokalanasthetic <i>ArzneimForsch.</i>, 10, 745–754 (1960). NB: See Cocaine for details.
1143	Procarbazine (C ₁₂ H ₁₉ N ₃ O) CONHCH(CH ₃) ₂ CONHCH(CH ₃) ₂ CH ₂ NHNHCH ₃	6.8	U	+H	Potentiometric	phere H_2O I = 0.1	Rucki RJ, Procarbazine hydrochloride, <i>APDS</i> , 5 , 403–427 (1976). NB: From Philip C, Hoffmann-La Roche Inc., personal communication.
1144	Prochlorperazine	8.14 ± 0.06	U	+H	partition/pH	H_2O $t = 20 \pm 0.5$ <i>I</i> not reported but pK _a was stated to be indepen- dent of I.	 Vezin WR and Florence AT, The determination of dissociation constants and partition coefficients of phenothiazine derivatives, <i>Int. J. Pharm.</i>, 3, 231–237 (1979). NB: See Chlorpromazine and Promethazine for additional details. See separate entries for Phenothiazine, 2-chloro-10-(<i>N</i>-methylpiperazinyl)-3-propyl.

1145	Prochlorperazine	8.1	U	+H	soly	H_2O $t = 24 \pm 1$ I undefined	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.
1146	Prochlorperazine	3.60 7.54	U U	+H +H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962).
1147	Prochlorperazine	7.5 8.1	U U	+H +H			Zografi G, Munshi MV, Effect of chemical modification on the surface activity of some phenothiazines, J. Pharm. Sci., 59, 819–822 (1970). NB: Cited the values of Green (1967) and Chatten and Harris (1962).
1148	Progabide (C ₁₇ H ₁₆ CIFN ₂ O ₂) F OH F N(CH ₂) ₃ CONH ₂ Cl	$\begin{array}{c} 3.41 \pm 0.04 \\ 12.95 \pm 0.07 \end{array}$	A U	+H -H	Spectro	0.4% MeOH t = 37.0 I undefined	Farraj NF, Davis SS, Parr GD and Stevens HNE, Dissociation and partitioning of progabide and its degradation product, <i>Int. J. Pharm.</i> , 46 , 231–239 (1988). "The pK _{a1} value was determined to be 3.41 with a SD of 0.02 the pK _{a2} value was found to be 12.95 the pK _a (of degradation product (3-fluoro-6-hydroxy-4'-chlorobenzophenone, SL79.182)) was found to be 8.94 \pm 0.18 (phenolic hydroxyl)."
1149	Promazine (C ₁₇ H ₂₀ N ₂ S)	9.40	U	+H	soly	H ₂ O $t = 20.0 \pm 0.1$ I = 0.15	 Schill G, Photometric determination of amines and quaternary ammonium compounds with bromothymol blue, Part 5. Determination of dissociation constants of amines, <i>Acta Pharm. Succ.</i> 2, 99–108 (1965). NB: See Chloroquine for details. See separate entries under Phenothiazine.
1150	Promazine	9.4	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1151	Promazine	9.34	U	+H	Potentiometric	H ₂ O t = 25 I undefined Ar atmos- phere	 Seiler P, Simultaneous determination of partition coefficient and acidity constant of a substance, <i>Eur. J. Med. Chem.</i>, 9, 663–665 (1974). NB: See Amitriptylline for details.
1152	Promazine	9.39	U	+H	Potentiometric	H_2O (extraj t = 20 N_2 atmos- phere	 p) Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazine derivatives by solid adsorbents, <i>J. Pharm. Sci.</i>, 55, 785–794 (1966). NB: See Chlorpromazine for details.
1153	Promethazine (C ₁₇ H ₂₀ N ₂ S) H ₃ C CH ₃ CH ₃ CH ₃	8.99 ± 0.03	Α	+H	partition	H_2O $t = 20 \pm 0.1$ I not report but pK_a was state to be indepen- dent of L	 Int. J. Pharm., 3, 231–237 (1979). "The solubility dependence on pH has been used for phenothiazines and tricyclic drugs by Green, but there are discrepancies of up to 0.9 pK units in some of the results from these two methods Table 1 gives the pK_a value determined by the method described
						_	This This This Base Titrn Soly work Base Titrn Soly work
							Promethazine 9.09 9.1 8.99 Thioridazine 9.16 9.5 9.62 Chlorpromazine 9.26 9.3 9.40 Prochlorperazine 7.54 8.1 8.14

... the measurement of the pH dependency of partition coefficients was ... applied to 8 phenothiazine derivatives Precise spectrophotometry was essential in this method, but this coupled with a large number of data points can lead to a precision of $<\pm 0.03$ in pK_a."

9.7 9.48 Fluphenazine

8.40 8.1 8.05

7.98

8.05 -

Triflupromazine 9.41 9.2 9.29 Trifluperazine

-

Pecazine

1154	Promethazine	9.00	U	+H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46 (4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
1155	Promethazine	9.10	U	+H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962). NB: See Chlorpromazine for details.
1156	Promethazine	9.1	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, J. Pharm. Pharmacol., 19, 10–16 (1967). NB: See Amitriptylline for details.
1157	Proparacaine (C ₁₆ H ₂₆ N ₂ O ₃) COOCH ₂ CH ₂ N(Et) ₂ NH ₂ OCH ₂ CH ₂ CH ₃	3.22	U	+H	Spectro	H ₂ O	 Hefferren J, Klessig R and Dietz C, Ultraviolet absorption of local anaesthetics with an aromatic amino group as a function of pH, J. Dental Res., 42, 793–802 (1963). NB: Cited in Whigan DB, Proparacaine hydrochloride, APDS, 6, 423–456 (1977). Also reported values for procaine, butethamine, tetracaine, chlorprocaine, propoxycaine, butylaminobenzoate, benzocaine, benoxinate, metabutethamine and metabutoxycaine.
1158	Propionic acid (C ₃ H ₆ O ₂) CH ₃ CH ₂ COOH	$4.874 \ \pm 0.003$	R	-H	Potentiometric	H ₂ O $t = 25.0 \pm 0.01$ I = 0.00 (KCl)	Harned HS and Ehlers RW, The dissociation constant of propionic acid from 0 to 60°, <i>JACS</i> , 55 , 2379–83 (1933). NB: Used hydrogen electrodes in cells without liquid junction potentials. Solutions were prepared with carbonate-free sodium hydroxide. The effects of ionic strength from added KCl extrapolated to $I = 0.00$.
1159	Propofol (C ₁₂ H ₁₈ O) OH (CH ₃) ₂ CH CH(CH ₃) ₂	11.10	A	-H	Spectro	H ₂ O t = 20	 Serjeant E and Dempsey B, Ionisation constants of organic acids in aqueous solution, IUPAC Chemical Data Series No. 23, Pergamon Press, no. 5583, p. 621 (1979). Demerseman P, Lechartier JP, Reynaud R, Cheutin A, Royer R and Rumpf P, Bull. Soc. Chim. Fr., 2559–2563 (1963).

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1160	Propranolol (C ₁₆ H ₂₁ NO ₂) HO CH ₂ NHCH(CH ₃) ₂	9.53 ± 0.01	А	+H	Potentiometric	H_2O $t = 25 \pm 0.5$ I = 0.15 (KCl)	 Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, <i>Pharm. Res.</i>, 15(2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol- water) and log P (dioleylphosphatidylcholine unilamellar vesicles).
		9.40 ± 0.01	А	+H	Potentiometric	H_2O $t = 25 \pm 0.5$ I = 0.001 (KCl)	Sirius Technical Application Notes, vol. 2 , pp. 81–82 (1995). Sirius Analytical Instruments, Ltd., Forest Row, East Sussex, RH18 5DW, UK.
		9.14	U	+H	Potentiometric	H_2O t = 37 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999).
1161	Propranolol	9.57	A	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 9.15.
1162	Propranolol	9.51	Α	+H	Potentiometric	MeOH/H ₂ O t = 25	 Irwin WJ and Belaid KA, Drug delivery by ion exchange. Part 2. Physicochemical properties of ester prodrugs of propranolol, <i>Drug Dev. Ind. Pharm.</i>, 13(9–11), 2033–2045 (1987). "The pK_a values, solubilities and partition coefficients of a series of O-n-acylpropranolol prodrugs were determined. Titrations in a range of aqueous methanolic solutions were used to estimate the pK_a, while titration under non-logarithmic conditions (when excess undissolved base was present in the system) was used to datemine achievabilities."

determine solubilities."

1163	Propranolol	9.32 (0.03)	U	+H	Potentiometric	H_2O $t = 20.0 \pm 0.5$	Zaagsma J and Nauta WT, β-Adrenoceptor studies. 1. <i>In vitro</i> β-adrenoceptor blocking antiarrhythmic and local anaesthetic activities of a new series of aromatic bis(2-hydroxy-3- isopropylaminopropyl) ethers, <i>J. Med. Chem.</i> , 17 , 507–513 (1974). "pK _a values were determined by potentiometric titration of the bases ²¹ , which were dissolved in 30, 40, 50, 60, 70 and 80% aqueous EtOH by volume, with ethanolic HCl at 20° \pm 0.5. From the pK _a values obtained, the intercept at 100% H ₂ O with its S.E. was calculated by the method of least squares." Ref. 21: Roos AM, Rekker RF and Nauta WT, Base strength of substituted dimethyl[2-(diphenyl-methoxy)ethyl]amines. <i>ArzneimForsch.</i> , 20 , 1763–1765 (1970); Roos AM, Rekker RF, Nauta WT, <i>Pharm. Acta</i> <i>Helv.</i> , 38 , 569–576 (1963). NB: Lists propranolol and 11 related compounds with pK _a = 9.22–9.45. NB: This example illustrates the pitfalls of using titration in partly aqueous mixtures followed by extrapolation to 100% water content. Compare with the examples above, even allowing for the I and temperature differences. Studies on lidocaine suggest that I has little influence on amine pK _a values (in the range <i>I</i> = 0.005 to 0.077), while lower temperature should give a stronger base, not weaker, as here.
1164	Propranolol	9.72	U	+H	Potentiometric	H_2O t = 23.0	Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i> , 76 (8), 611–620 (1987). NB: See Benzoic acid for further details.
1165	Propranolol	9.43	U	+H	Potentiometric	H_2O t = 22 I = 0.5	Quigley JM, Jordan CGM and Timoney RF, The synthesis, hydrolysis kinetics and lipophilicity of O-acyl esters of propranolol, <i>Int. J.</i> <i>Pharm.</i> , 101 , 145–163 (1994). NB: Potentiometric titrations were also done in the presence of octanol; the difference gave the partition coefficient. Also reported values for a series of propranolol esters.
1166	Propranolol	9.45	U	+H	Potentiometric	H_2O t = 21-24 (RT)	Schurmann W and Turner P. Membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol, J. Pharm. Pharmacol., 30 , 137–147 (1978). NB: See Atenolol for details.

Ω 4 - Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1167	Propranolol	9.23	U	+H	Potentiometric	H_2O t = 35 c = 0.001 N ₂ atmosphere	Schoenwald RD and Huang HS, Corneal penetration behaviour of β -blocking agents. I. Physicochemical factors, <i>J. Pharm. Sci.</i> , 72 , 1266–1272 (1983). NB: Used 1-mL syringe burette and Metrohm autotitrator with glass electrode. The pK_a value was determined from a modified Gran plot. Also reported the following values:
							Compound pKa Compound pKa Compound pKa
							acebutolol 9.20 levobunolol 9.32 penbutolol 9.26 atenolol 9.32 metoprolol 9.24 sotalol 8.15, 9.65
							bevantolol 8.38 nadolol 9.39 timolol 9.21 bufuralol 8.97 oxprenolol 9.32
1168	Propranolol	9.40	U	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=20.0 \end{array}$	Mannhold R, Dross KP and Reffer RF, Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches, <i>Quant-StructAct. Relat.</i> , 9, 21–28 (1990).
1169	Propranolol	9.50	U	+H	Potentiometric	H_2O (extrap) $t = 25 \pm 1$ I undefined Ar atmos- phere	approaches, Guinn Jonat. The Heatry, <i>J. 21</i> -26 (17)/37. Cheymol G, Poirier J-M, Carrupt PA, Testa B, Weissenburger J, Levron J-C and Snoeck E., Pharmacokinetics of β-adrenoceptor blockers in obese and normal volunteers, <i>Br. J. Clin. Pharmacol.</i> , 43 , 563–570 (1997).
1170	Propranolol	9.7	U	+H	partition/pH	H_2O t = 37	 Kramer SD and Wunderli-Allenspach H, pH-dependence in the partitioning behavior of (RS)-(³H)propranolol between MDCK cell lipid vesicles and buffer, <i>Pharm. Res.</i>, 13, 1851–1855 (1996). "The pH dependent partitioning of (RS)-propranolol hydrochloride (bL-propranolol hydrochloride) between kidney epithelial (MDCK) cell lipids and buffer was studied using equilibrium dialysis at 37 C and pH7–11 The highest apparent partition coefficient was 1797 at pH 9.7, the lowest was 805 at pH 6.9. Curve fitting with a combination of Henderson-Hasselbach equations revealed an inflection point at 9.7, the apparent pK_a of propranolol, and 2 additional pK_a values, 7.7 and 10. These values corresponded to the pK_a of free fatty acids in lipid bilayers and the pK_a of phosphatidylethanolamine, respectively. True partition coefficients (<i>P</i>) of the neutral and ionized solute were fitted for each ionization status of the membrane."

1171	Propylhexedrine (C ₁₀ H ₂₁ N) CH ₃ NHCH ₃	10.52	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ $I \le 0.001$	 Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines <i>JACS</i>, 73, 2611–2613 (1951). NB: See Amphetamine for details. This compound was insufficiently soluble in water; pH measurements were performed in a series of ethanol-water solutions, which were then extrapolated back to 0% ethanol.
1172	Prostaglandin E1	4.85 ± 0.07	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ l = 0.1 (NaCl)	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK _a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: By extrapolation from 13–34% w/w aqueous MeOH. See Acetaminophen for full details.
1173	Prostaglandin E ₂ (C ₂₀ H ₃₂ O ₅)	4.77 ± 0.09	U	-H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 9–25%w/w aqueous MeOH. See Acetaminophen for full details. See separate entry for Dinoprostone.
1174	Prostaglandin F _{2x} (C ₂₀ H ₃₄ O ₅) HO HO HO OH	4.90	U	-H	Potentiometric	$\begin{array}{l} \mathrm{H_2O} \\ t=25\pm2 \\ I=0.0 \\ c<0.01 \\ \mathrm{N_2\ atmosphere} \end{array}$	Roseman TJ and Yalkowsky SW, Physicochemical properties of prostaglandin F2 α (tromethamine salt). Solubility behaviour, surface properties and ionization constants, <i>J. Pharm. Sci.</i> , 62 , 1680–1685 (1973). NB: Used carbonate-free solutions and corrected for effects of ionic strength with modified Debye-Huckel equation. The value given is for concentrations below the CMC. At concentrations >CMC, the apparent pK _a value increased to 5.6, due to micelle formation.
1175	Pseudoecgonine (C ₉ H ₁₅ NO ₃)	9.70	Α	+H	Potentiometric	H_2O t = 25 I < 0.02	Chilton J and Stenlake JB, Dissociation constants of some compounds related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, <i>J. Pharm. Pharmacol.</i> , 7 , 1004–1011 (1955). Cited in Perrin 2862 ref. C27. NB: The study used measurements of pH with a glass electrode. There should be another pK _a value for the –COOH group.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1176	Pseudoecgonine, methyl ester (C ₁₀ H ₁₇ NO ₃) CH ₃ H COOCH ₃ OH	8.15	Α	+H	Potentiometric	H ₂ O t = 25 I < 0.02	Chilton J and Stenlake JB, Dissociation constants of some compounds related to lysergic acid: Beta-dimethylaminopropionic acid, dihydroarecaidine, ecgonine and their derivatives, <i>J. Pharm. Pharmacol.</i> , 7 , 1004–1011 (1955). Cited in Perrin 2862 ref. C27. NB: The study used measurements of pH with a glass electrode. See also Jensen HH, Lyngbye L, Jensen A and Bols M, Stereoelectronic substituent effects in polyhydroxylated piperidines and hexahydropyridazines, <i>Chem. Eur. J.</i> , 8 (5), 1218–1226 (2002). This paper reported pK_a values for methyl pseudoecgonine (8.2) and methyl ecgonine (9.1), along with more than 60 other piperidines or closely related compounds.
1177	Pseudoephedrine (C ₁₀ H ₁₅ NO) H CH_3NH H CH_3	9.73	A	+H	Potentiometric	H_2O t = 25.0 ± 0.5 I = 0.01	 Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off.</i> <i>Anal. Chem.</i>, 54, 1179–1191 (1971). NB: See Amphetamine for further details.
1178	Pseudoephedrine	9.22	U	+H	Potentiometric	80% aqueous MCS	Prelog V and Häfliger O, Cinchona alkaloids. IX. The influence of configuration on basicity and the relative cofiguration at carbons 8 and 9, <i>Helv. Chim. Acta</i> , 33 , 2021–2029 (1950). CA 45:29705. MCS = methylcellosolve. Cited in Benezra SA and McRae JW, Pseudoephedrine hydrochloride, <i>APDS</i> , 8 , 489–507 (1979). NB: Shown to be a stronger base than ephedrine, $pK_a = 9.14$. Similarly, <i>N</i> -methylephedrine ($pK_a = 8.50$) was found to be a weaker base than <i>N</i> -methylpseudoephedrine ($pK_a = 8.81$).

1179	Pseudotropine (C ₈ H ₁₅ NO) CH_3	9.86 ± 0.05	А	+H	Potentiometric	H_2O t = 25 I = 0.0006 $N_2 \text{ atmosphere}$	Geissman TA, Wilson BD and Medz RB, The base strengths of cis- and trans-1,2-aminoalcohols, <i>JACS</i> , 76 , 4182–4183 (1954). Cited in Perrin Bases No. 2956 ref. G7. NB: Used pH measurements on solutions containing equimolar amounts of the base and salt.
	N N	10.26	А	+H	Potentiometric	H_2O $t = 25$ $I < 0.1$	Smith PF and Hartung WH, Cis- and trans-tropine (tropanol), JACS, 75, 3859–60 (1953). Cited in Perrin Bases No. 2956 ref. S56. NB: Used pH measurements on solutions containing equimolar
	он Ч	10.40	U	+H	Spectro	H_2O t = 15 c = 0.03-0.04	amounts of the base and salt. Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases No. 2956 ref. K47. NB: See Aconitine for details.
1180	Pteridine, 2,4-diamino-6-methyl (C ₇ H ₈ N ₆)	5.5	U	+H	Spectro	H_2O t unspecified $I \sim 0.1$	Zakrewski SF, Relationship between basicity of certain folate analogues and their affinities for folate reductase, <i>J. Biol. Chem.</i> , 238 (12), 4002–4004 (1963). NB: Stock solutions of each compound (100 ug/mL) were diluted (1:9) with a buffer consisting of KCI, glycine, monobasic potassium phosphate and citric acid (each at 25 mM) that had been adjusted to the desired pH with 5 M NaOH or HCl. UV spectra recorded with a Beckman DU. No record of pH meter or calibration procedure. The pK _a values appear to have been read directly from plots of optical density versus pH.
1181	Pteridine, 2,4-diamino-6-formyl (C ₂ H ₆ N ₆ O) NH_2 N	5.6	U	+H	Spectro	H_2O t unspecified $I \sim 0.1$	 Zakrewski SF, J. Biol. Chem., 238(12), 4002–4004 (1963). NB: See Pteridine, 2,4-diamino-6-methyl, for details. No indication of stability problems that can be anticipated with such an easily oxidisable compound as this. This paper also reported the following data: 1. 2,6-diaminopurine (C₅N₆N₆); pK_a = 5.1 2. 2,4-diamino-6-methylpyrimidine (C₅N₈N₄); pK_a = 7.7 3. 2,4-diamino-6-hydroxypyrimidine (C₄N₆N₄O); pK_a = 3.5
1182	Pteridine, 2,4-diamino-6-hydroxy ($C_6H_6N_6O$)	4.3	U	+H	Spectro	H_2O t unspecified $I \sim 0.1$	Zakrewski SF, J. Biol. Chem., 238(12), 4002–4004 (1963). NB: See Pteridine, 2,4-diamino-6-methyl, for details.

347

4 Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1183	Pteridine, 2-amino-4-hydroxy-6-formyl (C ₇ H ₅ N ₅ O ₂) OH N H ₂ N N N N	2.0	U	+H	Spectro	H_2O t unspecified $I \sim 0.1$	Zakrewski SF, J. Biol. Chem., 238 (12), 4002–4004 (1963). NB: See Pteridine, 2,4-diamino-6-methyl, for details.
1184	Pteridine, 2-amino-4-hydroxy-6-methyl (C ₇ H ₇ N ₅ O) OH N H_2N OH N N N N N N N N N N	2.5	U	+H	Spectro	H ₂ O <i>t</i> unspecified <i>I</i> ~ 0.1	Zakrewski SF, <i>J. Biol. Chem.</i> , 238 (12), 4002–4004 (1963). NB: See Pteridine, 2,4-diamino-6-methyl, for details.
1185	Pyrathiazine (C ₁₈ H ₂₀ N ₂ S)	8.91	U	+H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	 Chatten LG and Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962). Cited in: Foye 1 (2 refs), see Idoxuridine; N&K Chatten LG (ed.), <i>Pharmaceutical Chemistry</i>, vol. 1, Dekker, New York, 1966, pp. 85–87. NB: See Methdilazine and separate entry for Phenothiazine, 10-(<i>N</i>-pyrrolidinyl-2-ethyl).
1186	Pyrathiazine	9.36	U	+H	Potentiometric	H ₂ O (extrap) t = 20 N ₂ atmos- phere	Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazin derivatives by solid adsorbents, <i>J. Pharm. Sci.</i> , 55 , 785–794 (1966). NB: See Chlorpromazine for details.

1187

Pyridoxal (C₈H₉NO₃)

U

soly

-H

H₂O

H₂O

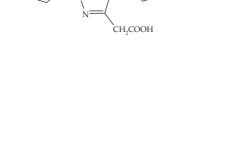
t = 37

I = 0.15

Zimmerman I, Determination of pKa values from solubility data, Int. J. Pharm., 13(1), 57-65 (1983).

Compound	pK _{a1}	pK _{a2}	So (mg∕L)
Sulphadiazine	6.42	2.07	58.6
Pyrazolic Acid	5.35		48.9
Lisuride Hydrogen Maleate	7.24		20.6

Refined calculations using weighted least squares regression (Lewis, Int. J. Pharm., 18, 272-212 (1984)) gave (sd):


Compound	pK _{a1}	pK _{a2}	So (mg∕L)
Sulphadiazine Pyrazolic Acid Lisuride Hydrogen	6.44 (0.01) 4.90 (0.09) 7.29 (0.02)	2.06 (0.09)	61.0 (1.6) 18.6 (3.6) 18.4 (0.6)
Maleate			

NB: This paper gave a detailed discussion of the solubility-pH dependence equation. Values for the correlation coefficient (r = 0.99 to 1.00) indicated very good fit of the experimental data to the solubility-pH equation for a single ionizing group. Metzler DE and Snell EE, Spectra and ionization constants of the vitamin B₆ group and related 3-hydroxypyridine derivatives, JACS, 77, 2431-2437 (1955). Cited in Perrin Bases. No. 3330 ref. M40. NB: See Isopyridoxal for details.

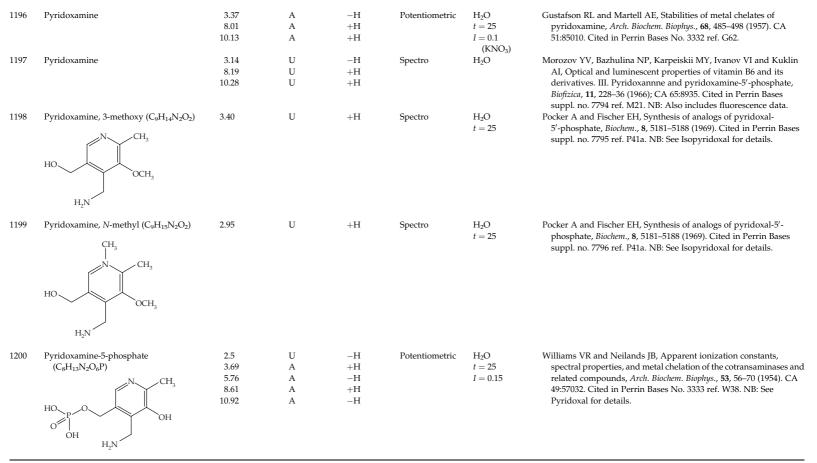
Williams VR and Neilands JB, Apparent ionization constants, spectral properties, and metal chelation of the cotransaminases and related compounds, Arch. Biochem. Biophys., 53, 56-70 (1954). CA 49:57032. Cited in Perrin Bases. No. 3330 ref. W38.

Nagano K and Metzler DE, Machine computation of equilibrium constants and plotting of spectra of individual ionic species in the pyridoxal-alanine system, JACS, 89, 2891-2900 (1967). Cited in Perrin Bases suppl. no. 7791 ref. N2. NB: Used spectrophotometric measurements combined with pH measurements (pK_{a1}, pK_{a2}) or solutions of known high alkali concentration (pKa3).

1188

Н	O CHO	8.66 13	A U	-H -H		t = 25 I = 0.1
Н	ОСТОН	13	U	-H		I = 0.1
	CHO					
1189 P	yridoxal	4.23	А	+H	Potentiometric	H ₂ O
		8.70	А	-H		t = 25 $I = 0.15$
1190 P	yridoxal	4.13	А	+H	Spectro	H ₂ O
		8.37	А	-H	1	t = 50
		13.04	А	-H		

А


4.20

Pyrazolic acid (C17H13ClN2O2)

+H

Spectro

No.	Compound Name	nK value(s)	Data	Ionization	Method	Conditions	Comments and Reference(s)
INO.	Compound Name	pK _a value(s)	quality	type	Method	Conditions	
1191	Pyridoxal, 3-methoxy (C ₉ H ₁₁ NO ₃) HO CH_3 HO OCH_3	4.55	U	+H	Spectro	H ₂ O t = 25	Pocker A, Fischer EH, Synthesis of analogs of pyridoxal-5'- phosphate, <i>Biochem.</i> , 8, 5181–5188 (1969). Cited in Perrin Bases suppl. no. 7792 ref. P41a. NB: See Isopyridoxal for details.
1192	CHO Pyridoxal, <i>N</i> -methyl (C ₉ H ₁₂ NO ₃) $HO \longrightarrow CH_3 \longrightarrow CH_3 \oplus CH_3 \oplus$	3.90	U	-H	Spectro	H ₂ O t = 25	Pocker A and Fischer EH, Synthesis of analogs of pyridoxal-5'- phosphate, <i>Biochem.</i> , 8 , 5181–5188 (1969). Cited in Perrin Bases suppl. no. 7793 ref. P41a. NB: See Isopyridoxal for details.
1193	Pyridoxal-5-phosphate (C ₈ H ₁₀ NO ₆ P)	4.14 6.20 8.69 <2.5	A A A U	+H -H -H -H	Potentiometric	H_2O t = 25 I = 0.15	Williams VR, Neilands JB, Apparent ionization constants, spectral properties, and metal chelation of the cotransaminases and related compounds, <i>Arch. Biochem. Biophys.</i> , 53 , 56–70 (1954). CA 49:57032. Cited in Perrin Bases. No. 3331 ref. W38. NB: See Pyridoxal for
1194	Pyridoxamine (C ₈ H ₁₂ N ₂ O ₂) HO $(C_8H_{12}N_2O_2)$ HO (CH_3) (H_2N)	3.31 7.90 10.4	A U U	-H +H +H	Spectro Potentiometric Potentiometric	H_2O t = 25 I = 0.1	details. Metzler DE and Snell EE, Spectra and ionization constants of the vitamin B ₆ group and related 3-hydroxypyridine derivatives, <i>JACS</i> , 77 , 2431–37 (1955). Cited in Perrin Bases No. 3332 ref. M40. NB: See Isopyridoxal for details.
1195	Pyridoxamine	3.54 8.21 10.63	A A A	-H +H +H	Potentiometric	H_2O t = 25 I = 0.15 (NaCl)	Williams VR and Neilands JB, Apparent ionization constants, spectral properties, and metal chelation of the cotransaminases and related compounds, <i>Arch. Biochem. Biophys.</i> , 53, 56–70 (1954). CA 49:57032. Cited in Perrin Bases No. 3332 ref. W38. NB: See Pyridoxal for details.

Appendix A (conti	inued)
-------------------	--------

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1201	Pyridoxamine-5-phosphate	3.12 8.33 10.39	U U U	+H +H -H	Spectro	$\begin{array}{l} H_2O\\ t = ?? \end{array}$	Morozov YV, Bazhulina NP, Karpeiskii MY, Ivanov VI and Kuklin AI, <i>Biofizica</i> 11 , 228-36 (1966); CA 65:1620f. Cited in Perrin Bases suppl. no. 7797 ref. M21. NB: See Pyridoxamine for details.
1202	Pyridoxine (C ₈ H ₁₁ NO ₃) H ₃ C N CH ₂ OH	5.00 8.96	U A	+H -H	Potentiometric	H_2O t = 25.0 I = 0.15 (mixed)	Williams VR and Neilands JB, Apparent ionization constants, spectral properties, and metal chelation of the cotransaminases and related compounds, <i>Arch. Biochem. Biophys.</i> , 53 , 56–70 (1954). CA 49:57032. Cited in Perrin Bases No. 3334 ref. W38. NB: See Pyridoxal for details.
1203	Pyridoxine	4.67 9.02	U A	+H –H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 5.06 and 8.37.
1204	Pyridoxine	$\begin{array}{c} 4.87 \pm 0.01 \\ 8.89 \pm 0.01 \end{array}$	U A	+H –H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_{a1} = 4.84 \pm 0.01 \ pK_{a2} = 8.87 \pm 0.01 \ at I = 0.1 \ (KNO_3).$
1205	Pyridoxine	5.00 8.97	U U	+H –H	Spectro	H_2O $t = 16.5 \pm 0.5$ c = 0.0001	 Lunn AK and Morton RA, Ultra-violet absorption spectra of pyridoxine and related compounds, <i>Analyst</i>, 77, 718–731 (1952). Cited in Perrin Bases no. 3334 ref. L67. NB: Used a combination of spectrophotometric and pH measurements. See also Aboul-Enein HY and Loutfy MA, Pyridoxine hydrochloride, <i>APDS</i>, 13, 447–478 (1984).
1206	Pyridoxine	2.7 5.00 9.0	U U U	+H? +H -H		H ₂ O t undefined	Snell EE, Chemical structure in relation to biological activities of vitamin B6, <i>Vitam. Horm.</i> , 16 , 77–125 (1958); CA 53:2789.

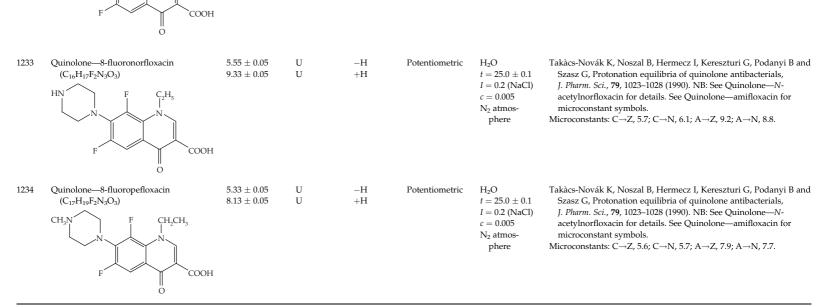
1207	1,3-bis[(2-Pyridyl)-methyleneamino]- guanidine (C ₁₃ H ₁₃ N ₇)	$\begin{array}{c} 2.91 \pm 0.05 \\ 6.22 \pm 0.08 \end{array}$	U U	+H +H	Spectro	$\begin{array}{l} H_2O\\ t=20\pm 1\\ I=0.1 \end{array}$	Asuero AG, Herrador MA and Camean AM, Spectrophotometric evaluation of acidity constants of diprotic acids: Errors involved as a consequence of an erroneous choice of the limit absorbances,
							Analytical Letters, 19 , 1867–1880 (1986).
1208	Pyridylmethyl phosphate esters	2-subst.			Potentiometric	H ₂ O	Murakami Y and Takagi M, Solvolysis of organic phosphates. I.
	$(C_6H_8NO_4P)$	~ 1	U	-H		t = 80	Pyridylmethylphosphate.
		4.15	U	+H		$I \sim 0.002$	"The acid dissociation constants of pyridylmethyl phosphates were
	Ĭ I	6.54	U	-H			evaluated at 80° by titrating $2 imes 10^{-3}\mathrm{M}$ solutions with standard
	CH,O — Р OH						base or acid. Titrations were carried out as quickly as possible to
		3-subst.					minimize any possible errors caused by the partial hydrolysis of
	N OH	~ 1	U	-H			the phosphates and checked by duplicate runs."
	N OII	4.43	U	+H			NB: these values were measured for use with data on the kinetics for
		6.48	U	-H			hydrolysis of these esters. Details given for pH meter calibration in
		4-subst.					the kinetics section and it is assumed that the same procedures
		~1 4.73	U U	-H +H			were used for the pK_a measurements. An experimental method was used to estimate activity coefficients at $I = 0.1$ M.
		4.73 6.42	U	+п –Н			was used to estimate activity coefficients at $I = 0.1M$.
1209	Pyrrolo[2,3-d]pyrimidine derivatives	5.64	U	+H	Potentiometric	H ₂ O	Hammer RH, Pyrrolo (2,3-d) pyrimidines, J. Pharm. Sci., 57, 1616-
		(R = ethyl)				t = 25	1619 (1968). NB: Used glass electrode to measure pH in titrations.
	NHR 	5.52 (R = n- propyl)	U	+H		I undefined	Also reported R = 1-piperidyl, $pK_a = 5.28$ (U).
		5.66 (R = n-	U	+H			
	N N	pentyl)					
	N N						
	CH,						
	3						
1210	Quinacrine (C ₂₃ H ₃₀ ClN ₃ O)	-6.3	U	+H	Spectro	H ₂ O	Capomacchia AC and Schulman SG, Electronic absorption and
	$N(C_2H_5)_2$	8.2	U	+H	Spectro	t undefined	fluorescence spectrometry of quinacrine, Anal. Chim. Acta, 77,
		10.2	U	+H	Potentiometric	I not reported but low	79–85 (1975). NB: Irvin JL, McQuaid and Irvin EM, <i>JACS</i> , 72 , 2750–2752 (1950) reported a value of –6.49 by a spectroscopic
	\langle	< 3	U	+H	Potentiometric	H ₂ O	method at 30 °C in strongly acidic solutions.
		7.53	U	+H		t = 20	Christophers SR, Dissociation constants and solubilities of bases of
	HN	10.12	U	+H			anti-malarial compounds. I. Quinine. II. Atebrin, Ann. Trop. Med.
	HIN' CH ₃						Parasitol., 31 , 43–69 (1937). CA 31:58602. This paper reported pK_b
	OCH ₂						values of >11, 6.47 and 3.88.

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1211	Quinidine (C ₂₀ H ₂₄ N ₂ O ₂) CH ₂ =CH	4.2 8.77	U U	+H +H	Spectro	H_2O t = 15.0 c = 0.006 to 0.01	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin no. 2957 ref. K47. See Aconitine for details. See also Quinin no. 1220.
	но	4.12	U	+H	kinetic	<i>t</i> = 55	Perrin also cited a pK _a of 4.12 at 55 °C from the rate of inversion of sucrose (ref. A73, Arnall F, JCS, 117 , 835–839 (1920)).
	CH ₃ O						
1212	Quinidine	4.00 8.54	U U	+H +H	calorimetric	H ₂ O t undefined	Dragulescu C and Policec S, Thermometric titration of weak diacidi bases. <i>Studii Cercetari Chim.</i> , 9, 33–40 (1962). CA 58:30272. Cited in Perrin suppl. no. 7488. NB: From pK _b values 5.46 and 10.0 at unknown temperature (assumed 25 °C).
1213	Quinidine	4.2 8.8	U U	+H +H		$\begin{array}{l} H_2O\\ t=25.0 \end{array}$	Loutty MA, Hassan MMA and Muhtadi FJ, Quinidine Sulfate, APD. 12, 483–536 (1983). Cited <i>The Pharmaceutical Codex</i> 11th Edn., The Pharmaceutical Press, London (1979). NB: also states pK _a values a 20° are 5.4 and 10–these look like pK _b values.
1214	Quinine (C ₂₀ H ₂₄ N ₂ O ₂) CH ₂ =CH \checkmark ^H	8.34	U	+H	Potentiometric	H_2O t = 20 I = 0.02	Christophers SR, Dissociation constants and solubilities of bases of anti-malarial compounds. I. Quinine. II. Atebrin, Ann. Trop. Med. Parasitol. 31, 43–69 (1937). CA 31:58602. Cited in Perrin Bases no.
	HO	4.21	U"mixed constant"	+H	Potentiometric	H_2O t = 20 I = 0.002	2958 ref. C30. NB: This paper reported pK_b values of 5.70 (equivalent to $pK_a = 8.47$) and 9.85 (equivalent to $pK_a = 4.32$), usin $pK_w = 14.167$ at 20 °C. These do not correspond exactly with the values quoted by Perrin. Also reported the solubility-temperatur dependence.
	CH ₃ O						

1215	Quinine	8.52 4.13	А	+H +H	Potentiometric	H_2O t = 25 c = 0.001	These data are attributed in Perrin no. 2958 to ref. B130 (Brown HC and Mihm XR, Steric effects in displacement reactions, <i>JACS</i> , 77, 1723 (1955)), but are actually from Gage JC, <i>Analyst</i> , 82 (1957). See
1216	Quinine	3.95 8.6	U U	+H +H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Brucine for full details. Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 4.77 and 9.04.
1217	Quinine	$\begin{array}{l} {\rm GLp}K_{\rm a}{\rm :} \\ {\rm 4.33} \pm 0.01 \\ {\rm 8.59} \pm 0.01 \\ {\rm A\&S}{\rm :} \\ {\rm 4.30} \pm 0.04 \\ {\rm 8.56} \pm 0.05 \end{array}$	A A U A	+H +H +H +H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i> , 434 , 157–167 (2001). NB: See Clioquinol for details.
1218	Quinine	4.6	U	+H	fluoro	H_2O t undefined c = 0.0003	Eisenbrand J, The determination of dissociation constants of fluorescing materials by quantitative measurements of fluorescence, <i>Z. Physik. Chem.</i> , 144 , 441–462 (1929). CA 24:6898. Cited in Perrin Bases no. 2958 ref. E19. NB: This result is slightly higher than those reported by methods that measure ground state ionization constant.
1219	Quinine	4.32 8.4	A U "mixed constant"	+H	Potentiometric	H_2O t = 30 I = 0.1	Irvin JL and Irvin EM, Apparent dissociation exponents of quinine, pamaquine, and a quinolylpiperidylcarbinol: Application of an extended pH scale, J. Biol. Chem., 174 , 577–587 (1939). Cited in Perrin Bases no. 2958 ref. I6. NB: Also reported pK ₂ of 4.33 by a spectrophotometric method, same conditions (U).
1220	Quinine	4.5 8.23	U U	+H	Spectro	H_2O t = 15 c = 0.003-0.01	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162, 289–353 (1925). Cited in Perrin Bases no. 2958 ref. K47. See Aconitine for details.
1221	Quinine	7.73	U	+H	Potentiometric	80% aqueous MCS	Prelog V and Häfliger O, Cinchona alkaloids. IX. The influence of configuration on basicity and the relative configuration at carbons 8 and 9, <i>Helv. Chim. Acta</i> , 33 , 2021–2029 (1950). CA 45:29705. NB: Paper also reported the following: Epiquinine, $pK_a = 8.44$; quinidine, $pK_a = 7.95$; 9-epiquinidine, $pK_a = 8.32$. These data were useful in determining the relative configurations of the cinchona alkaloids.
1222 ארק	Quinine	$\begin{array}{c} 4.24 \pm 0.09 \\ 8.55 \pm 0.04 \end{array}$	U A	+H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	 Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i>, 151, 235–248 (1997). NB: By extrapolation from 15–69% w/w aqueous MeOH. See Acetaminophen for full details.

Appendix A	(continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)		
1223	Quinine	3.85 to 4.32 8.15 to 8.58	U U	+H +H	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.15 (KCl)	Avdeef A, Box KJ, Comer JEA, Gilges M, Hadley M, Hibbert C, Patterson W and Tam KY, PH-metric log P 11. pK _a determination of water-insoluble drugs in organic solvent-water mixtures, <i>J. Pharm.</i> <i>Biomed. Anal.</i> , 20 , 631–641 (1999). NB: Used a Sirius PCA101 autotitrator. Titration results were extrapolated from a range of aqueous organic cosolvent mixtures, as follows:		
							Cosolvent pK_1 (SD) pK_2 (SD) Acetonitrile 4.13 (0.01) 8.52 (0.03) Dimethyl 3.85 (0.07) 8.15 (0.06) formamide		
1224	Quinolone—N-acetylnorfloxacin (C ₁₈ H ₂₀ FN ₃ O ₄) H_3C $(C_1^{H_2}H_2^{-1})$ $(C_2^{H_3}H_2^{-1})$ $(C_2^$	6.53 ± 0.05 OH	U	-H	Potentiometric Spectro	H_2O $t = 25.0 \pm 0.1$ I = 0.2 (NaCl) c = 0.005 N_2 atmosphere	Tetrahydrofuran4.07 (0.09)8.58 (0.04)Takàcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B and Szasz G, Protonation equilibria of quinolone antibacterials, J. Pharm. Sci., 79 , 1023–1028 (1990).NB: Used autoburette with accuracy of ± 0.005 cm ³ . Data for N- acetylnorfloxacin and norfloxacin ethyl ester was used in in conjunction with spectrophotometric data to estimate the microconstants for quinolones that had two overlapping pKa values.		


1225	Quinolone—amifloxacin ($C_{16}H_{19}FN_4O_3$) CH_3N NHCH ₃ F COOH	6.28 7.39	U U	-H +H	soly	H_2O $t = 25.0 \pm 0.1$ I = 0.15	Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i> , 63 , 237–250 (1990). "The pK _a values of amifloxacin, ciprofloxacin HCl and difloxacin HCl were determined by the solubility method. In these experiments, excess drug was added to a series of buffer solutions from pH 4 to 9 (pH 4–6, 0.15M acetate buffer; pH 6.5–8, 0.05M phosphate buffer; pH 8.5–9.0, 0.15M borate buffer; $\mu = 0.15$ with NaCl). Solutions were protected from light and allowed to equilibrate for at least 48 h in a shaking water bath at 25(± 0.1) °C. The sample was filtered (5 µm), diluted with mobile phase and assayed by LC. All solubility experiments were conducted in triplicate.
							$St = So\{([H^+]^2 + K_1[H^+] + K_1K_2) / K_1[H^+]\}$
							 where St is the total solubility, So the intrinsic solubility of the neutral species (or zwitterion) and K₁ and K₂ represent apparent dissociation constants. Intrinsic solubilities, K₁ and K₂ values for amifloxacin, ciprofloxacin, and difloxacin were determined by fitting Eqn 4 to experimental solubility data with an RS1 curve-fitting algorithm."
1226	Quinolone—amifloxacin	5.42 ± 0.05	U	-H	Potentiometric	H ₂ O	Takàcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B,
		7.57 ± 0.05	U	+H		$t = 25.0 \pm 0.1$ I = 0.2 (NaCl) c = 0.005 N ₂ atmosphere	Szasz G, Protonation equilibria of quinolone antibacterials, <i>J. Pharm. Sci.</i> , 79 , 1023–1028 (1990). NB: See Quinolone— <i>N</i> - acetylnorfloxacin for details. Microconstants: C(ation) \rightarrow Z(witterion), 5.7; C(ation) \rightarrow N(eutral), 5.8; A(nion) \rightarrow Z(witterion), 7.3; A(nion) \rightarrow N(eutral), 7.2.
1227	Quinolone—ciprofloxacin (C ₁₇ H ₁₈ FN ₃ O ₃)	6.09	U	-H	Soly	H ₂ O	Ross DL and Riley CM, Aqueous solubilities of some variously
	HN N F COOH	8.74	U	+H		$t = 25.0 \pm 0.1$ I = 0.15	substituted quinolone antimicrobials, <i>Int. J. Pharm.</i> , 63 , 237–250 (1990). NB: See Amifloxacin (no. 1225).
1228	Quinolone—ciprofloxacin	6.12 8.83	U	-H +H	Spectro	H ₂ O	Yu XQ, Britten NJ and Davidson GWR, Solubilities and apparent macroscopic dissociation constants of ciprofloxacin and norfloxacin, <i>Pharm. Res.</i> , 9 , 101 , S-219 (1992). NB: From alternative solubility method, $pK_{a1} = 6.24$; $pK_{a2} = 8.73$.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1229	Quinolone—8-desfluorolomefloxacin (C ₁₇ H ₂₀ FN ₃ O ₃) $HN \qquad \qquad$	$\begin{array}{c} 5.98 \pm 0.05 \\ 8.39 \pm 0.05 \end{array}$	U U	-H +H	Potentiometric	$\begin{array}{l} {\rm H_2O} \\ t = 25.0 \pm 0.1 \\ I = 0.2 \; ({\rm NaCl}) \\ c = 0.005 \\ {\rm N_2 \; atmosphere} \end{array}$	 Takàcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B and Szasz G, Protonation equilibria of quinolone antibacterials, <i>J. Pharm. Sci.</i>, 79, 1023–1028 (1990). NB: See Quinolone—Nacetylnorfloxacin for details. See Quinolone—amifloxacin for microconstant symbols. Microconstants: C→Z, 6.0; C→N, 7.0; A→Z, 8.4; A→N, 7.4.
.230	Quinolone—difloxacin (C ₂₁ H ₁₉ F ₂ N ₃ O ₃) F $CH_{3}N$ F $CH_{3}N$ F F $CH_{3}N$	6.06 7.63	U U	H +H	soly	H_2O $t = 25.0 \pm 0.1$ I = 0.15	Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i> , 63, 237–250 (1990). NB: See Amifloxacin (no. 1225).
1231	Quinolone—enoxacin (C ₁₅ H ₁₇ FN ₄ O ₃) HN $(C_1H_5 + C_2H_5 + C_2H_5 + C_2OOH + $	6.06 7.63	U U	-H +H	Spectro $(\lambda = 272)$	H ₂ O $t = 22 \pm 1$ I = 0.15 (NaCl)	Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i> , 63 , 237–250 (1990). "The PK_a values of all the compounds, except amifloxacin, ciprofloxacin HCl, and difloxacin HCl, were determined spectrophotometrically at ambient temperature (22 ± 1 °C). A wavelength was chosen where the absorbance of the three species (cation, zwitterion, and anion) varied the greatest. The change of absorbance, at the selected wavelength, with pH was also monitored. The same total concentration of drug (between $2 > 10^{-4}$ and 2×10^{-5} M) was used for all measurements. Ionic strength was held at 0.15 with NaCl. Linearity of absorbance with respect to concentration,, was established for all compounds in their cationic and anionic forms. All spectrophotometric measurements were made in triplicate.

 $AT = (AM[H^+] + AAK_1)/([H^+] + K_1)$ (1)

$$AT = (AC[H^+]^2 + AMK_1[H^+] + AAK_1K_2) / ([H^+]^2 + K_1[H^+] + K_1K_2)$$
(2)

Spectrophotometrically determined apparent K_1 and K_2 values ... were calculated by fitting Eqn 2 to the experimental (absorbance) data with an RS1 curve-fitting algorithm. For nalidixic acid, Eqn 1 was used. The value for r^2 was greater than 0.999 in all cases." Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, *Int. J. Pharm.*, **63**, 237–250 (1990). NB: See Enoxacin (no. 1231).

Spectro

 $(\lambda = 272)$

 H_2O

 $t = 22 \pm 1$

I = 0.15

(continued)

1232

CH₂N

Quinolone-fleroxacin (C17H18F3N3O3)

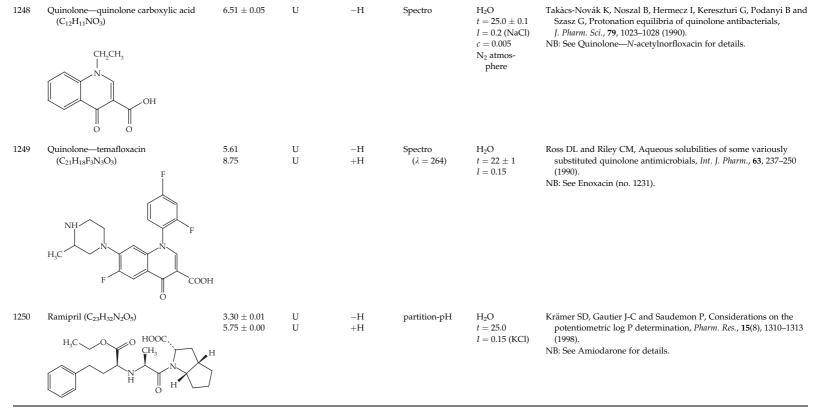
CH,CH,F

5.46

8.10

U

U


-H

+H

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)		
1235	Quinolone—lomefloxacin $(C_{17}H_{19}F_2N_3O_3)$ HN F C_2H_5 H_3C N F C_2OOH G $OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$	5.82 9.30	U U	-H +H	Spectro $(\lambda = 266)$	H_2O $t = 22 \pm 1$ I = 0.15	 Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i>, 63, 237–250 (1990). NB: See Enoxacin (no. 1231). Also quoted in Sanzgiri YD, Knaub SR and Riley CM, Lomefloxacin, <i>APDS</i>, 23, 321–369 (1994). 		
1236	Quinolone—lomefloxacin	$\begin{array}{c} 5.49 \pm 0.05 \\ 8.78 \pm 0.05 \end{array}$	U U	-H +H	Potentiometric	$\begin{array}{l} {\rm H_2O} \\ t = 25.0 \pm 0.1 \\ I = 0.2 \; ({\rm NaCl}) \\ c = 0.005 \\ {\rm N_2 \; atmosphere} \end{array}$	Takàcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B Szasz G, Protonation equilibria of quinolone antibacterials, <i>J. Pharm. Sci.</i> , 79 , 1023–1028 (1990). NB: See Quinolone— <i>N</i> - acetylnorfloxacin for details. See Quinolone—amifloxacin for microconstant symbols. Also quoted in Sanzgiri YD, Knaub SR Riley CM, Lomefloxacin, <i>APDS</i> , 23 , 321–369 (1994). Microconstants: $C \rightarrow Z$, 5.7; $C \rightarrow N$,6.0; $A \rightarrow Z$, 8.6; $A \rightarrow N$, 8.3.		
1237	Quinolone—nalidixic acid ($C_{12}H_{12}N_2O_3$) H_3C N N N N $COOH$	5.95	U	-H	Spectro $(\lambda = 310)$	H_2O $t = 22 \pm 1$ I = 0.15	Microconstants: C→Z, 5.7; C→N,6.0; A→Z, 8.6; A→N, 8.3. Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i> , 63, 237–250 (1990). NB: See Enoxacin (no. 1231).		
1238	Quinolone—nalidixic acid	6.13 ± 0.05	U	-H	Spectro	H_2O $t = 25.0 \pm 0.1$ I = 0.2 (NaCl) c = 0.005 N ₂ atmosphere	Takàcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B and Szasz G, Protonation equilibria of quinolone antibacterials, J. Pharm. Sci., 79, 1023–1028 (1990). NB: See Quinolone—N- acetylnorfloxacin for details.		

1239	Quinolone—norfloxacin ($C_{16}H_{18}FN_3O_3$) HN C_2H_5 F C_2H_5 COOH	6.30 8.38	U U	-H +H	Spectro $(\lambda = 274)$	H_2O $t = 22 \pm 1$ I = 0.15	Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i> , 63 , 237–250 (1990). NB: See Enoxacin (no. 1231).
1240	Quinolone—norfloxacin	$\begin{array}{c} 6.22 \pm 0.05 \\ 8.51 \pm 0.05 \end{array}$	U U	-H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.2 (NaCl) c = 0.005 N ₂ atmosphere	 Takàcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B and Szasz G, Protonation equilibria of quinolone antibacterials, <i>J. Pharm. Sci.</i>, 79, 1023–1028 (1990). NB: See Quinolone—N-acetyInorfloxacin for details. See Quinolone—amifloxacin for microconstant symbols. Microconstants: C→Z, 6.3; C→N, 7.2; A→Z, 8.5; A→N, 7.6.
1241	Quinolone—norfloxacin	$\begin{array}{c} 6.34 \pm 0.06 \\ 8.75 \pm 0.07 \end{array}$	U U	-H +H	Potentiometric	H ₂ O t = 25	 Mazuel C, Norfloxacin, <i>APDS</i>, 20, 557–600 (1991). "The pK_a values for norfloxacin were determined by dissolution of the compound in dilute aqueous sodium hydroxide or hydrochloric acid solution and potentiometric titrations of the solutions at 25 °C with 0.1N HCl or 0.1N sodium hydroxide. The pK_{a1} (carboxylic acid) and pK_{a2} (protonated piperazine nitrogen) are respectively 6.34 ± 0.06 and 8.75 ± 0.07 (21). 21. Kyorin Pharmaceutical Co. Ltd., Tokyo, Japan, unpublished data."
1242	Quinolone—norfloxacin	6.30 8.69	U U	-H +H	Spectro	H ₂ O	Yu XQ, Britten NJ and Davidson GWR, Solubilities and apparent macroscopic dissociation constants of ciprofloxacin and norfloxacin, <i>Pharm. Res.</i> , 9 , 101 , S-219 (1992). NB: From alternative solubility method, $pK_{a1} = 6.45$; $pK_{a2} = 8.69$.
1243	Quinolone—norfloxacin ethyl ester $(C_{18}H_{22}FN_3O_3)$ HN C_2H_5 F C_2H_5 COOC_2H_5	8.48 ± 0.05	U	+H	Spectro	H_2O $t = 25.0 \pm 0.1$ I = 0.2 (NaCl) c = 0.005 N_2 atmosphere	 Takàcs-Novák K, Noszal B, Hermezz J, Kereszturi G, Podanyi B and Szasz G, Protonation equilibria of quinolone antibacterials, J. Pharm. Sci., 79, 1023–1028 (1990). NB: See Quinolone—<i>N</i>-acetylnorfloxacin for details.

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1244	Quinolone—ofloxacin (C ₁₈ H ₂₀ FN ₃ O ₄) CH_3N rr CH_3 F $COOH$	6.05 8.22	U U	-H +H	Spectro $(\lambda = 258)$	H ₂ O $t = 22 \pm 1$ I = 0.15	 Ross DL and Riley CM, Aqueous solubilities of some variously substituted quinolone antimicrobials, <i>Int. J. Pharm.</i>, 63, 237–250 (1990). NB: See Enoxacin (no. 1231).
1245	Quinolone—ofloxacin	$\begin{array}{c} 6.08 \pm 0.01 \\ 8.31 \pm 0.01 \end{array}$	U U	-H +H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a1 = 6.09 \pm 0.01$; $pK_a2 = 8.31 \pm 0.01$ at $I = 0.15$ (NaCl).
1246	Quinolone—orbifloxacin ($C_{19}H_{20}F_3N_3O_3$) Me HN F Me F F COO F O	~6 ~9 H	U U	-H +H	kinetic	H_2O t = 100-120 c = 0.05 to 0.2	 Morimura T, Ohno T, Matsukura H and Nobuhara Y, Degradation kinetics of the new antibacterial fluoroquinolone derivative, orbifloxacin, in aqueous solution, <i>Chem. Pharm. Bull.</i>, 43, 1052–105 (1995). "The degradation of fluoroquinolone, orbifloxacin, was studied as a function of pH (1.5–10.5), temperature (100–120 °C), and buffer concentration (0.05–0.2 M) using HPLC. Degradation followed apparent first-order kinetics under all experimental conditions The log k-pH profiles indicated specific-acid and specific-base catalyses and there were inflection points near pH 6 and 9 corresponding to the pK₈₋₁ and pK₈₋₂ values. Arrhenius data showed that the degradation at room temperature was negligible at all pH values studied."
1247	Quinolone—pefloxacin ($C_{17}H_{20}FN_3O_3$) CH_3N R F CH_2CH_3 CH_2CH_3 CH_2CH_3 CH_2CH_3 COOH	$\begin{array}{c} 6.02 \pm 0.05 \\ 7.80 \pm 0.05 \end{array}$	U U	-H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.2 (NaCl) c = 0.005 N_2 atmosphere	 Takåcs-Novák K, Noszal B, Hermecz I, Kereszturi G, Podanyi B an Szasz G, Protonation equilibria of quinolone antibacterials, <i>J. Pharm. Sci.</i>, 79, 1023–1028 (1990). NB: See Quinolone—N-acetyInorfloxacin for details. See Quinolone—amifloxacin for microconstant symbols. Microconstants: C→Z, 6.1; C→N, 6.7; A→Z, 7.7; A→N, 7.1.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)			
1251	Remoxipride (C ₁₆ H ₂₃ BrN ₂ O ₃) H H CH ₃ O CH ₃ O Br	8.9	U	+H			Lombardo F, Obach RS, Shalaeva MY and human volume of distribution values fr 2. Extended data set and leave-class-out 1242–50 (2004). Ref. 299 = Hogberg T, I Stensland B, Csorregh I and Wagner A, and antidopaminergic effects of remoxi closely related salicylamide, FLA797, ir receptor models, <i>Mol. Pharmacol.</i> , 30 , 34	or neutra statistic Ramsby Solid st pride hy relation	al and b s, <i>J. Med</i> S, de Pa tate conf ydrochlo n to dop	asic drugs. <i>Chem.</i> , 47 , ulis T, formations oride and a
1252	Repromicin (C ₃₈ H ₇₂ N ₂ O ₁₂) CH_3 , CH_3 , CH	8.83) ² 4 ₃	U	+H	Potentiometric	H ₂ O t = 25 l = 0.167	Jaynes BH, Jefson MR, Kamicker BJ, Lij Reese CP and Vu CB, Quantitative Stru among macrolide antibacterial agents: I against Pasteurella multocida, J. Med. C NB: See Azithromycin for details; avere ± 0.07 for the pK _a . Paper also reported p	nd JW, Berger CM, Froshauer SA, Hayashi SF, Hecker BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KN CP and Vu CB, Quantitative Structure-activity relation g macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> pe tr Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (se Azithromycin for details; average standard deviation for the pK _a . Paper also reported pK _a values for the foll mycin analogues, where these were obtained by reduci- yde (-CHO) group with an amine:		ly KM, lationships <i>vo</i> potency 346 (1997). viation of e following
	CH ₂ CH						Side chain:	pK _{a1}	pK _{a2}	pK _{a3}
	3						Azetidin-1-yl	8.49	9.54	
							HOCH ₂ CH ₂ NH	8.59	9.62	
							HOCH ₂ CH ₂ NCH ₃	8.56	9.18	
							HOCH ₂ CMe ₂ CH ₂ NH HOCH ₂ CH(OH)CH ₂ NH ^m	8.53 8.55	9.72 9.02	
							(2,6-dihydroxycylohexyl)amino ⁿ	8.56	9.02	
							Me ₂ N(CH ₂) ₃ NH	7.97	8.88	10.13
										0.0=

Gly-NMe(CH₂)₂NMe

Me₂N(CH₂)₃N(Gly)

to the amino group.

Me₂N(CH₂)₃N(L-Ala)

L-Ala-NMe(CH₂)₃NMe

L-Ala-NMe(CH₂)₂NMe

8.10

8.13

8.74

8.78

8.53

6.31

6.81

7.85

7.81

7.03

^m mixture of epimers; ⁿ hydroxy groups cis to each other and trans

8.95

8.90

9.81

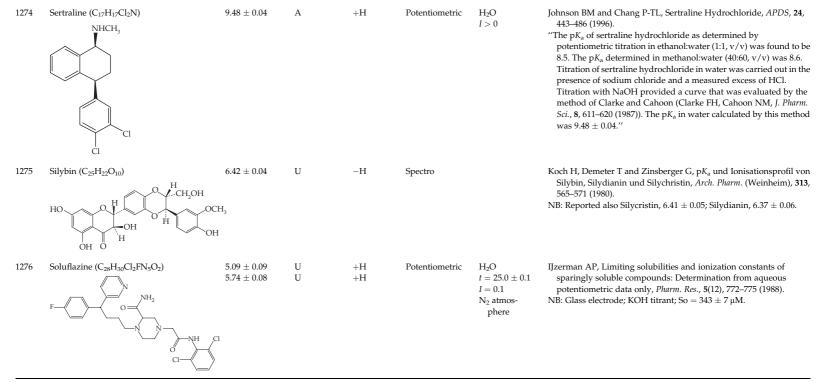
9.60

9.16

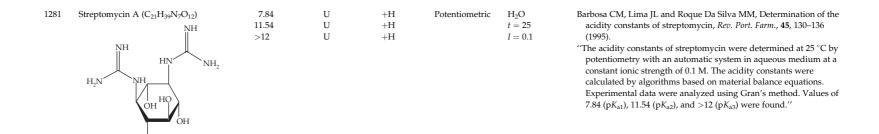
1253	Riboflavine (C ₁₇ H ₂₀ N ₄ O ₆) CH ₂ OH HO — CH HO — CH HO — CH	10.02 9.69 9.40	A A A	-H -H -H	Potentiometric	H_2O t = 10 t = 25 t = 40 <i>I</i> low but not stated	Harkins TR and Freiser H, The chelating tendency of riboflavin, J. Phys. Chem., 63 , 309–310 (1959). Cited in Perrin Bases no. 3335 ref. H30. NB: Also reported free energy change for ionization $(\Delta G = -13.2 \text{ kcal/mol})$; enthalpy change for ionization $(\Delta H = -8.3 \text{ kcal/mol})$ and entropy change for ionization $(\Delta S = 16 \text{ cal/mol/K})$.			
	HO — CH CH_2	9.93	А	-H	Potentiometric	t = 20 c = 0.001	(Δ5 = 16 cal/ http://k). Albert AA, Quantitative studies of the avidity of naturally occurring substances for trace metals, <i>Biochem. J.</i> , 54 , 646–654 (1953). Cited in Perrin Bases no. 3335 Ref. A15.			
	H ₃ C H ₃ C N N N N N N N N N									
1254	Riboflavine	-0.2 9.8	U VU	+H -H	Spectro Potentiometric	H ₂ O	Michaelis, L, Schubert MP and Smythe CV, Potentiometric study of the flavins, <i>J. Biol. Chem.</i> 116 , 587–607 (1936). Cited in Perrin Bases no. 3335 ref. M44. NB: Study used spectrophotometric measurements in strongly acid solutions (pK_{a1}) and a potentiometric method (pK_{a2}).			
1255	Riboflavine	1.7 10.2	VU VU	+H -H	fluoro	H ₂ O	Kuhn R and Moruzzi G, Dissociation constants of the flavins; dependence of the fluorescence on the pH. <i>Ber.</i> , 67B , 888–891 (1934). CA 28:42085. Cited in Perrin Bases no. 3335 Ref. K65.			
1256	Rifampin (C ₄₃ H ₅₈ N ₄ O ₁₂)	1.7	U	-H	Spectro	H ₂ O	Maggi N, Pasqualucci CR, Ballotta R and Sensi P, Rifampicin: A new			
	1 (10 00 1 12)	7.9	U	+H	Potentiometric	-	orally active rifamycin, <i>Chemotherapia</i> , 11 , 285–292 (1966). Cited in			
	CH ₃ CH ₃	3.6	U	-H	Potentiometric	80% MCS	Gallo GG, Radaelli P, Rifampin, APDS, 5, 467–513 (1976).			
	$\begin{array}{c} HO \\ H_3 \\ CH_3 COO \\ CH_3 COO \\ CH_3 O \\$	6.7 СН ₃	Ŭ	+H	Potentiometric		"The ionization properties of rifamycins have been used in conjunction with UV-VIS spectrophotometry to obtain informatio on the chromophoric part of the molecule and as a quantitative method of analysis. The pK values for rifampin have been determined spectrophotometrically and potentiometrically in solution in water and are reported in the table. Rifampin exists in water solution as the zwitterion with isoelectric point equal to 4.8."			
							pK _a pK _{MCS} Attribution			
							proton lost 1.7 3.6 hydroxyl at C-8 proton gained 7.9 6.7 piperazine N-4			

Appendix	A ((continued)	

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1257	Rifampicin	1.52	U	-Н	CE/pH	НаО	NB: The reported assignments have been questioned (see Prankerd RJ, Walters JM and Parnes JH, Kinetics for degradation of rifamipicin, an azomethine-containing drug which exhibits reversible hydrolysis in acidic solutions, <i>Int. J. Pharm.</i> 78 , 59–69 (1992)), chiefly due to the low pK_a value (1.7) claimed for the trihydroxyaromatic system. This low value was not supported by calculations using ACD/ pK_a (Ver. 9), which suggested a value for the most acidic aromatic –OH of about 5 (author's calculations; see also no. 1257). The value of 7.9 appears more likely to be due to the piperazine nitrogen, as the computed value was found to be about 7.3. No pK_a value has been reported for the azomethine nitrogen. This value is expected to be in the range 1–4, as found to the benzodiazepines. See also GAI (Sensi P and Radaelli P, <i>Farmaco (Pavia)</i> , Edn. Prat., 15 , 283 (1960); Gallo GG, Pasqualucci CR, Radaelli P, <i>Farmaco (Pavia)</i> , AR (adaelli P, <i>Harmaco (Pavia)</i> , Edn. Prat., 24 , 46 (1969); Oppolzer W and Prelog V, Uber die Konstitution und die Konfiguration der Rifamycine B, O, S und SV, <i>Helv. Chim. Acta</i> , 56 , 2287–2313 (1973).
1257	Kirampicin	1.52 7.42	U U	-n +H	(+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Hoimen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported predicted values (ACD Labs) of 4.92 and 6.42. Chem Abs database reported predicted values (ACD Labs) of 4.96 and 7.30.
1258	Rosaramicin (juvenimicin) ($C_{31}H_{51}NO_9$) O CH ₃ CH ₃		U	+H	Potentiometric	H ₂ O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative Structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a . Also cited pK _a = 8.4 in 66% DMF, potentio (Kishi T, Harada S, Yamana H, Miyake A, Studies on Juvenimicin, a new antibiotic, <i>J. Antibiot.</i> , 29 , 1171–1181 (1976)).


₃ Арр 66 —

1259	Roxithromycin ($C_{41}H_{76}N_2O_{15}$)	9.2	U	+H	NMR	$\begin{array}{l} D_2 O \\ t = 20 \end{array}$	Gharbi-Benarous J, Delaforge M, Jankowski CK and Girault J-P, A comparative NMR study between the macrolide antibiotic
	$H_{3}C$ H		U	+H	Potentiometric	<i>I</i> undefined H ₂ O <i>t</i> = 25.0 <i>I</i> = 0.15 (KCI)	roxithromycin and erythromycin A with different biological properties, <i>J. Med. Chem.</i> , 34 , 1117–1125 (1991). <i>Sirius Technical Application Notes</i> , vol. 2 , pp. 107–108, 165–166 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: An alternative method gave 9.12 ± 0.01 under the same conditions.
1260	Salbutamol (albuterol) (C ₁₃ H ₂₁ NO ₃) HOH ₂ C HO HO CH ₂ NHC(CH ₃) ₃	9.07 10.37	U U	-H, +H +H, -H	Spectro	H_2O $t = 25.0 \pm 0.05$ I = 0.10	Ijzerman AP, BultsmaT, Timmerman H and Zaagsma J, The ionization of β-adrenoceptor agonists: a method for unravelling ionization schemes, <i>J. Pharm. Pharmacol.</i> , 36 (1), 11–15 (1984). NB: Microscopic: 9.22, 10.22, 9.60 and 9.84. See Isoprenaline.
1261	Salicylamide (C ₇ H ₇ NO ₂)	8.13	U	-H		H ₂ O t = 37	 Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i>, 135, 120–127 (1962). Babhair SA, Al-Badr AA and Aboul-Enien HY, Salicylamide, <i>APDS</i>, 13, 521–548 (1984).
1262	Salicylamide	8.47 (0.13)	U	-H	Spectro (328 nm)	H ₂ O <i>t</i> = 20.0	Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i> , 92 (1), 15–22 (1993). NB: The orthogonal method is intended to correct for the effects of spectra which overlap for the protonated and deprotonated forms of the ionising species. pH values were measured at 20 °C but it was not clear if the spectral data were obtained at this temperature. Alternative graphical method gave $pK_a = 8.5$. See Acetaminophen for further details.


No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1263	Salicylamide	8.2	U	-H			Bates TR, Lambert DA and Johns WH, Correlation between the rate of dissolution and absorption of salicylamide from tablet and suspension dosage forms, <i>J. Pharm. Sci.</i> , 58 , 1468–1470 (1969).
1264	Salicylic acid (C ₇ H ₆ O ₃)	2.95	U	-H	Potentiometric	H ₂ O t = 23.0	Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i> , 76 , 611–620 (1987). NB: See Benzoic acid for further details. The phenolic group, due to proximity and Coulombic repulsion effects, has a very high value for pK_{a2} , e.g., Foye gave 13.4.
1265	Salicylic acid	2.99	U	-H	CE/pH (–ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB, Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 3.01.
1266	Salicylic acid	2.83 ± 0.03	А	-H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a = 2.88 \pm 0.01$ at $I = 0.15$ (KCl).
1267	Salicylic acid	2.75 ± 0.01	А	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ, Avdeef A, Potentiometric pK _a determination of water-insoluble compounds: validation study in methanol/water mixtures, Int. J. Pharm., 151, 235–248 (1997). NB:
		2.78 ± 0.01	А	-H	Potentiometric	H ₂ O	$pK_a = 2.73 \pm 0.03$ by extrapolation from 15.4–58.1% w/w aqueous
		13.77 ± 0.19	U	-Н		t = 25.0 I = 0.167 (KCl)	MeOH. See Acetaminophen for full details. Sirius Technical Application Notes, vol. 2 , p. 6 (1995). Sirius Analytical Instruments, Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Analyte concentration, 15.0–15.8 mM.
1268	Salicylic acid	3.52 ± 0.03	U	-H	HPLC retention/ pH	H_2O t = 25 I = 0.01	Unger SH, Cook JR and Hollenberg JS, Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed phase high pressure liquid
		3.29 ± 0.03	U	-H	P	I = 0.01 I = 0.1	chromatography, <i>J. Pharm. Sci.</i> , 67; 1364–1367 (1978). NB: See Naproxen for details.

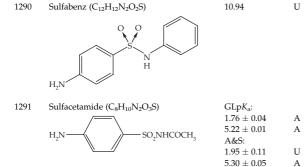
1269	Salicylic acid derivatives Salicylic acid 5-Aminosalicylic acid 5-NH ₂ Acetylsalicylic acid 5-Hydroxysalicylic acid 5-OH	$\begin{array}{c} 2.90 \pm 0.02 \\ 2.41 \pm 0.02 \\ 5.54 \pm 0.01 \\ 3.27 \pm 0.01 \\ 2.72 \pm 0.03 \\ 10.07 \pm 0.04 \end{array}$	บ บ บ บ บ	-H -H +H -H -H -H	Potentiometric	H ₂ O $t = 25 \pm 0.5$ I = 0.150 (KCl)	properties of salicy NB: Extrapolated t Shedlovsky procec aqueous MeOH. 5- DMSO (without fu	inge process vlates, J. Con o aqueous se lure from m Aminosalicy rther refiner was poorly	—the effect of phys trolled Release, 91 , 44 olutions using the M ixtures in 30%, 40% ylic acid was titrated nent), rather than M soluble. Additional	sico-chemical 49–463 (2003). Yasuda- 9 and 50% d in 4% aqueous MeOH-water
							Compound	p <i>K</i> a	Compound	р <i>К</i> а
							acid		5-Bromosalicylic acid 3-i-Propylsalicylic	2.68 ± 0.11 2.89 ± 0.01
							acid		acid 5-Carboxysalicylic	
							acid		acid 5-COOH	4.16 ± 0.03
1270	Scopolamine ($C_{17}H_{21}NO_4$)	7.55	U	+H	Spectro	H ₂ O t = 23	Schoorl N, Dissociati less common alkal 34:1900. Cited in Pe details.	oids, Pharm.	Weekblad, 76, 1497-	-1501 (1939); CA
	O CH.OH	8.15	U	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=20 \end{array}$	Perel'man Y, Sb. Nau	32b. Ref. P16	NB: Used a glass e	electrode in an
		7.62	U	+H	Potentiometric	$\begin{array}{l} H_2O\\ t=21\pm2 \end{array}$	Bottomley W and Me alkaloids, Aust. J. C 2921 ref. B86. NB: 1	ortimer PI, P Chem., 7 , 189	artition separation -196 (1954). Cited in	of tropane

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1271	Seglitide (C ₄₄ H ₃₆ N ₈ O ₇) H ₂ ^N O NH O NH CH ₃ H ₂ ^N O NH CH ₃ H ₂ O CH ₄ H ₃ O CH ₄ H ₄ O NH CH ₃ O CH ₄ H ₄ O CH ₃ CH ₄ CH ₃ O CH ₃ CH ₄ O CH ₄ O CH ₃ CH ₄ O CH ₄ O CH ₄ CH ₄ O CH ₄ O CH ₄ O CH ₄ CH ₄ O CH ₄ O	9.7	U	+H	kinetic	H ₂ O	 Krishnamoorthy R and Mitra AK, Kinetics and mechanism of degradation of a cyclic hexapeptide (somatostatin analog) in aqueous solution, <i>Pharm. Res.</i>, 9, 1314–1320 (1992). "The mechanism and kinetics of degradation of seglitide (L-363586) were studied in aqueous solution The pH rate profile exhibited specific acid catalysis at a pH less than 3 and base catalysis above pH 10.5. The kinetic pK_a was 9.7. This pK_a was attributed to the tyrosine residue It was concluded that pH and temperature have a significant effect on seglitide degradation in aqueous solution, with different mechanisms of degradation under acidic and alkaline conditions."
1272	Selegiline (Deprenyl) (C ₁₃ H ₁₇ N)	7.38 ± 0.01	U	+H	Potentiometric	H_2O t = 25.0 I = 0.1 (NaCl)	Takacs-Novak K and Avdeef A, Interlaboratory study of log P determination by shake-flask and potentiometric methods, <i>J. Pharm. Biomed. Anal.</i> , 14 , 1405–1413 (1996). NB: See Acetaminophen for further details. Also reported $pK_a = 7.42 \pm 0.01$
	H ₃ C N CH	7.48 ± 0.01	U	+H	Potentiometric	H_2O t = 25.0 I = 0.15 (KCl)	at <i>I</i> = 0.15 (KCl). Sirius Technical Application Notes, vol. 2 , pp. 26–27 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 0.46–0.70 mM.
1273	Seperidol (clofluperol) (C ₂₂ H ₂₂ ClF ₄ NO ₂)	8.43	U	+H	Potentiometric	H ₂ O t = 25	Peeters JJ, Determination of ionization constants in mixed aqueous solvents of varying composition by a single titration, <i>J. Pharm. Sci.</i> , 67 , 127–129 (1978). NB: See Cinnarizine for details. Reported literature value $pK_a = 8.44$ (potentiometric data extrapolated to 100% water).
	F ₃ C Cl HO N						

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1277	Sorbic acid (C ₆ H ₈ O ₂)	4.51 ± 0.05 (trans-trans)	А	-H	Potentiometric	H_2O t = 25	Mansfield GH and Whiting MC, Investigations on acetylenic compounds. LIII. The relative strengths of some unsaturated
	CH3 0	(1.49 ± 0.05) (cis-cis)	А	-H		t = 25 t = 0.1 (NaCl)	carboxylic acids, <i>JCS</i> , 4761–4764 (1956). Cited in Serjeant, Dempsey, Ionization Constants of Organic Acids in Water, IUPAC,
	ОН	4.8	U	-H			 Butterworths, London (1979). Values for numerous other unsaturated carboxylic acids were also given. Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, <i>International Critical Tables</i>, vol. 6, McGraw-Hill, NY, 259–304 (1929).
1278	Sorbitol ($C_6H_{14}O_6$)				Potentiometric	H ₂ O	Thamsen J, The acidic dissociation constants of glucose, mannitol and
	(-0 1 - 0)	13.57	А	-H		t = 18	sorbitol, as measured by means of the hydrogen electrode and the
	СН,ОН	14.14	А	-H		t = 0	glass electrode at 0° and 18 °C, Acta Chem. Scand., 6, 270–284 (1952).
	Н—————————————————————————————————————						
	но——н						
	н—————————————————————————————————————						
	н—————————————————————————————————————						
	CH ₂ OH						
1279	Sotalol ($C_{12}H_{20}N_2O_3S$)	8.28 ± 0.01	А	-H	Potentiometric	H ₂ O (extrap)	Sirius Technical Application Notes, vol. 2, pp. 83-84, 167-168 (1995).
	OH H N CH	9.72 ± 0.01	А	+H		$t = 25 \pm 1$ I undefined	Sirius Analytical Instruments, Ltd., Forest Row, East Sussex, RH18 5DW, UK.The same results were given by Cheymol G, Poirier J-M,
						Ar atmos- phere	Carrupt PA, Testa B, Weissenburger J, Levron J-C, Snoeck E, Pharmacokinetics of β-adrenoceptor blockers in obese and normal
	CH ₃	8.30	А	-H	Potentiometric	H ₂ O (extrap)	volunteers, Br. J. Clin. Pharmacol., 43, 563–570 (1997).
	H_3C H 9.80 U	U	+H		$t = 25 \pm 1$	Garrett ER and Schnelle K, Separation and spectrofluorometric assay	
						I = 0.20 (KCl)	of the β-adrenergic blocker sotalol from blood and urine, <i>J. Pharm Sci.</i> , 60 , 833–9 (1971). NB: Also reported $pK_{a1} = 8.35$; $pK_{a2} = 9.80$ from spectrophotometric measurements ($\lambda = 248$ nm) under the same conditions.
1280	Stearic acid (C ₁₈ H ₃₆ O ₂) CH ₃ (CH ₂) ₁₆ COOH	5.75	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=35 \end{array}$	Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine II. Mechanism of interaction with bile salts and fatty acid salt anions, J. Pharm. Sci., 59, 329–333 (1970).

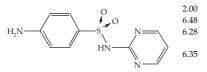
1282	Streptomycin derivatives	8.90	А	+H	Potentiometric	H_2O $t = 23 \pm 1$ I = 0.01	Inouye S, Prediction of the pK _a values of amino sugars, <i>Chem. Pharm.</i> <i>Bull.</i> Jpn., 16 , 1134–1137 (1968). CA 69:106993. Cited in Perrin suppl. nos. 7773–7776 Ref. I13. NB: Used a glass electrode in a cell with liquid junction potentials to measure pH of solutions at half- neutralization.
1283	Streptovitacin A dehydration product	10.8	U	+H	Spectro ($\lambda = 242$, 297 nm)	H_2O t = 25	Ritschel: Notari RE and Caiola SM, Catalysis of streptovitacin A dehydration: Kinetics and mechanism, J. Pharm. Sci., 58, 1203–1208 (1969). NB: The structure is a substituted 2,4,6-trialkylphenol.
1284	Strychnine (C ₂₁ H ₂₂ N ₂ O ₂) H	8.26	А	+H	Potentiometric	H ₂ O t = 25 $c = 10^{-4} - 10^{-5}$	Everett AJ, Openshaw HT, Smith GF, Constitution of aspidospermine. III., J. Chem. Soc., 1120–1123 (1957), CA 51:56814. Cited in Perrin Bases 2967 ref. E35. NB: Used glass electrode in cells with liquid junction potential.
		2.50	U	+H	Spectro	H_2O	Kolthoff IM, The dissociation constants, solubility product and
		8.20	U	+H		t = 15 c = 0.002 to 0.02	titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases no. 2967 K47. See Aconitine for details.

373


H H₃C OHC HO HO

ĊH,OH

юн


Ő

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1285	Succinic acid (C ₄ H ₆ O ₄) HOOC	4.207 5.638	R R	H H	Potentiometric	H_2O t = 25.0 I = 0.00	Pinching GD and Bates RG, First dissociation constant of succinic acid from 0° to 50° and related thermodynamic quantities, J. Res. Nat. Bur. Stand., 45, 444–449 (1950); Pinching GD and Bates RG,
	СООН	4.19 5.57	U U	H H		H_{2O} $t = 25$	 Nat. But. Standa., 40, 447–449 (1950), Filtering GD and Dates RG, Second dissociation constant of succinic acid from 0° to 50° and related thermodynamic quantities, <i>J. Res. Nat. Bur. Stand.</i>, 45, 322–328 (1950). NB: Parrott EL, <i>Pharmaceutical Technology: Fundamental Pharmaceutics</i>, Burgess Publishing Co., Minneapolis MN, p. 218 (1970).
1286	Succinic acid	4.21 5.64	U U	H H		H ₂ O	W&G: Pitman IH, Paulssen RB and Higuchi T, Interaction of acetic anhydride with di- and tricarboxylic acids in aqueous solution, <i>J. Pharm. Sci.</i> , 57, 239–245 (1968). NB: Appears to be the Pinching and Bates data after rounding.
1287	Succinic acid	4.12 5.45	U U	H H	Potentiometric	H_2O t = 23.0	 Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i>, 76(8), 611–620 (1987). NB: See Benzoic acid for further details.
1288	Succinimide (C ₄ H ₅ NO ₂) $O \xrightarrow{H} O$	9.6	U	-H			W&GC Connors KA, <i>Textbook of Pharmaceutical Analysis</i> , 1st Edn., Wiley, NY, p. 475 (1967). NB: The value was given without references or experimental detail.
1289	Sucrose (C ₁₂ H ₂₂ O ₁₁) CH_2OH OH HO OH	12.75–12.80	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I < 0.0005	 Woolley EM, Tomkins J and Hepler LG, Ionization constants for very weak organic acids in aqueous solution and apparent ionization constants for water in aqueous organic mixtures, <i>J. Solution Chem.</i>, 1, 341–351 (1972). NB: See Dextrose for details.

1292 Sulfacetamide

1293	Sulfadiazine (C10H10N4O2S)
------	----------------------------

Spectro H_2O t = 25I = 0.15 (KC Ar atmosphere CE/pH (+ve H₂O ion mode) t = 25I = 0.025Spectro H_2O t = 25I = 0.5 (NaC soly H₂O I = 0.1Potentiometric H₂O t = 20I = 0.1 (KCl

-H

+H

-H

+H

-H

+H

+H

-H

-H

-H

U

U

U

U

U

U

5.27

2.21

Ritschel: Merck 8, p. 994.

Cl)	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, Anal. Chim. Acta, 434, 157–167 (2001).
	NB: See Clioquinol for details.
	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 5.62.
	Stober H and DeWitte W, Sulfadiazine, APDS, 11, 523-546 (1982).
	"Sulfadiazine is an ampholyte, and in aqueous solutions can exist in
.Cl)	the protonated, neutral and anionic forms. Salvesen and Schroder- Neilsen (24) reported a pK_a value of 2.21 for the anilinium ion associated with sulfadiazine. These authors also stated that the pK_a of the pyrimidinium ion of 2-sulfanilamidopyrimidines is less than zero
	Reported pK _a values of sulfadiazine
21)	Group method
	-NH ₃ SO ₂ -N-H

-	

 Salvesen B and Schroder-Nielson M, Medd. Norsk. Farm. Selskap., 32, 87–96 (1971).

25. Krebs HA and Speakman JC, BMJ, 1, 47-50 (1946).

26. Willi AV and Meier W, *Helv. Chim. Acta*, **39**, 54–56 (1956). (see separate entry).

27. Koizumi T, Arita T and Kakemi K, Chem. Pharm. Bull., 12, 413–420 (1964)."

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1294	Sulfadiazine	3.93 6.42	U U	+H -H	soly	H_2O t = 37 I = 0.15	Zimmerman I, Determination of pK _a values from solubility data, <i>Int. J. Pharm.</i> , 13 , 57–65 (1983). NB: See Pyrazolic acid for details.
1295	Sulfadiazine	6.40 ± 0.06	U	-H	Potentiometric	H_2O I = 0.10	Krebs HA and Speakman JC, Dissolution constant, solubility and the pH value of the solvent, J. Chem. Soc., 593–595 (1945).
1296	Sulfadiazine (2-sulfanilamido- pyrimidine)	6.35	U	-Н	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	Willi AV and Meier W, 6. Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i> , 39 , 54–56 (1956). NB: See Sulfapyridine.
1297	Sulfadiazine	2.00	U	+H		H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between pK _b (H ₂ O) of organic compounds and E _{1/2} values in several nonaqueous solvents, Anal. Chem., 34, 1495–1501 (1962).
1298	Sulfadiazine	2.00 6.48	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1299	Sulfadiazine	6.28	U	-H		H_2O t = 37	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962). NB: Secondary source W&G quoted pK _a = 6.5, not 6.28, in citing this ref.
1300	Sulfadiazine	6.34	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, Acta Pharm. Suec., 7, 473–482 (1970). NB: See Sulphanilamide for details.
1301	Sulfadiazine, N ⁴ -acetyl (C ₁₂ H ₁₂ N ₄ O ₃ S) O O N H H N H H H N H	6.1	U	-H	Potentiometric	H_2O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.

1302	Sulfadimethoxine (C ₁₂ H ₁₄ N ₄ O ₄ S) H_2N H_2N N HN N OCH_3 HN OCH_3 HN OCH_3	5.94	U	-H	Spectro	H_2O t = 25.0 ± 0.5 I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i>, 7, 473–482 (1970).NB: See Sulphanilamide for details.
1303	Sulfadimethoxytriazine (C ₁₁ H ₁₃ N ₅ O ₄ S) H ₂ N \xrightarrow{O} \xrightarrow{N} \xrightarrow{O} \xrightarrow{O} \xrightarrow{N} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{N} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{N} \xrightarrow{O}	5.0	VU	-H	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1304	Sulfadimidine (C ₁₂ H ₁₄ N ₄ O ₂ S) H ₂ N \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} $\xrightarrow{CH_3}$ \xrightarrow{HN} \xrightarrow{N} $\xrightarrow{CH_3}$ $\xrightarrow{CH_3}$	7.59	U	-H	Spectro	H ₂ O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970). NB: See Sulphanilamide for details.
1305	Sulfadimidine (2-sulfanilamido-4,6- dimethylpyrimidine)	2.36 7.37	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1306	Sulfadimidine (2-sulfanilamido-4,6- dimethylpyrimidine)	7.51	U	-H	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	Willi AV and Meier W, 6. Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i> , 39 , 54–56 (1956). NB: See Sulfapyridine. (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1307	Sulfadimidine (sulfamethazine) (C ₁₂ H ₁₄ N ₄ O ₂ S) H ₂ N S N CH ₃ HN N CH ₃	2.65 ± 0.2 7.4 ± 0.2	U U	+H -H		H2O t undefined I undefined	Papastephanou C and Frantz M, Sulfamethazine, <i>APDS</i> , 7 , 401–422 (1978). Perlman S, The Squibb Institute, personal communication.
1308	Sulfadimidine (sulfamethazine)	7.38	U	-H		$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 13 120–127 (1962).
1309	Sulfaethidole (C ₁₀ H ₁₂ N ₄ O ₂ S) O O N N $H_{2}N$	5.36 CH ₃	U	-H		H ₂ O t = 37	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 13: 120–127 (1962).
1310	Sulfafurazole (C ₁₁ H ₁₃ N ₃ O ₃ S) H ₂ N \xrightarrow{O} $\xrightarrow{CH_3}$ CH ₃ HN \xrightarrow{O} $\xrightarrow{CH_3}$ CH ₃	4.90	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970 NB: See Sulphanilamide for details.
1311	Sulfaguanidine (C ₇ H ₁₀ N ₄ O ₂ S) H ₂ N \xrightarrow{O}_{N} \xrightarrow{O}_{N} NH ₂	2.37	U	+H		H ₂ O t = 37	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 13 : 120–127 (1962). NB: From $pK_b = 11.25$ at 37 °C, where $pK_w = 13.621$. Secondary source W&G gave $pK_a = 2.8$ in citing this ref.

1312	Sulfalene (C ₁₁ H ₁₂ N ₄ O ₃ S) $H_2N \xrightarrow{O} N \xrightarrow{O} N \xrightarrow{O} N \xrightarrow{O} H_1N \xrightarrow{V} N \xrightarrow{H_3CO} N$	6.20	U	-Н	Spectro	H ₂ O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7, 473–482 (1970). NB: See Sulphanilamide for details.
1313	Sulfamerazine (C ₁₁ H ₁₂ N ₄ O ₂ S) H_2N N N N N	2.29 7.00 ± 0.05	U U	+H -H	Spectro, Potentiometric soly	H_2O t = 24.0 I = 0.5 (NaCl) H_2O	Woolfenden RDG, Sulphamerazine, <i>APDS</i> , 6 , 515–577 (1977). Koizumi T, Arita T and Kakemi K, <i>Chem. Pharm. Bull.</i> , 12 , 413–420 (1964). NB: reported pK _a = 2.26. Krebs HA and Speakman JC, <i>Br. Med. J.</i> , 1 , 47 (1946). NB:
	H ₂ ·V HN K		C			t = 38 I = 0.1 (NaCl)	$S_o = 41 \text{ mg/100 ml}$. Sjogren B, Ortenblad B, <i>Acta Chem. Scand.</i> , 1 , 605–618 (1947).
1314	Sulfamerazine (2-sulfanilamido-4- methylpyrimidine)	6.84	U	-Н	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	Willi AV and Meier W, 6. Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i> , 39 , 54–56 (1956). NB: See Sulfapyridine.
1315	Sulfamerazine	6.95	U	-H		H_2O t = 37	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962).
1316	Sulfamerazine	6.90	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970). NB: See Sulphanilamide for details.
1317	Sulfamethine (C ₁₁ H ₁₂ N ₄ O ₂ S) $H_2N \longrightarrow S \longrightarrow N \longrightarrow OCH_2$	6.66	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970). NB: See Sulphanilamide for details.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1318	Sulfamethizole (sulfamethylthiadiazole) (C ₉ H ₁₀ N ₄ O ₂ S ₂)	5.4	VU	-Н	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1319	Sulfamethizole	5.42	U	-H		H ₂ O	Ballard BE and Nelson E, Physicochemical properties of drugs tha control absorption rate after subcutaneous implantation, <i>JPET</i> , 1 2 120–127 (1962).
						t = 37	
1320	Sulfamethizole	5.28	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elos Le, (Nolz). Elosson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, Acta Pharm. Suec., 7, 473–482 (1970) NB: See Sulphanilamide for details.
1321	Sulfamethizole, N ⁴ -acetyl (C ₁₁ H ₁₂ N ₄ O ₃ S ₂) O O O S O O CH ₃ O O O CH ₃ O O O O O O O O O O O O O O O O O O O	5.2 3	VU	-H	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1322	Sulfamethomidine ($C_{12}H_{14}N_4O_3S$) H_2N H_2N H_N H_N H_N	7.06	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970) NB: See Sulphanilamide for details.

OCH3

1323	Sulfamethoxydiazine (also called sulfameter)	6.8	U	-H			N&K Merck 9.
1324	Sulfamethoxypyridazine $(C_{11}H_{12}N_4O_3S)$ H_2N $N=N$ HN $N=N$ OCH_2	7.19	U	-H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970). NB: See Sulphanilamide for details.
1325	Sulfamethoxypyridazine	7.2	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, Proc. Soc. Exptl. Biol. Med., 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1326	Sulfamethoxypyridazine, N ⁴ -acetyl (C ₁₃ H ₁₄ N ₄ O ₃ S) O N $CHCH_3 N H H H H H H H H H H$	6.9	U	-H	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1327	SulfamilyI-3,4-xylamide $(C_{15}H_{16}N_2O_3S)$ O O S NH CH ₃ H ₂ N	4.37	U	-H	Spectro	H_2O $t = 27 \pm 1$ I = 0.2	Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, <i>Yakugaku Zasshi</i> , 84 , 90–93 (1964). NB: Note significant acid- strengthening from adjacent carbonyl group. Reported pK _a values for 10 further analogues. Cited in Ritschel.
1328	Sulfanilamide (C ₆ H ₈ N ₂ O ₂ S) H ₂ N S N N H_2	10.65	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ l = 0.2	 Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i>, 7, 473–482 (1970). "The spectrophotometric method proposed by Bates and Schwarzenbach [10, Bates RG and Schwarzenbach G, Die Bestimmung thermodynamischer Aciditatskonstanten, <i>Helv. Chim.</i> <i>Acta</i>, 37, 1069–1079 (1954)] was used"

, Appendix A (continu	ea
-----------------------	----

No.	A (continued) Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1329	Sulfanilamide	2.36	U	+H	-H by Potentio- metric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942).
		10.43	U	—Н	+H by potentio and Condu- ctance		NB: See <i>p</i> -Aminobenzoic acid for details.
1330	Sulfanilamide	10.58	U	-H		$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962).
1331	Sulfanilamide, N ¹ -acetyl (C ₈ H ₁₀ N ₂ O ₃ S)	1.78	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	H ₂ N H ₃ H	5.38	U	-H		t = 25 I = 0.05	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1332	Sulfanilamide, N^1 - <i>p</i> -aminobenzoyl	1.48	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	(C ₁₃ H ₁₃ N ₃ O ₃ S)	2.43	U	+H	t = 25	the relation of structure to activity of sulfanilamide-type	
	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	5.20	U	-H		<i>I</i> = 0.05	compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1333	Sulfanilamide, N ¹ -benzoyl (C ₁₃ H ₁₂ N ₂ O ₃ S)	1.78	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
		4.57	U	-H		t = 25	the relation of structure to activity of sulfanilamide-type
	NH ₂					<i>I</i> = 0.05	compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1334	Sulfanilamide, N ¹ -ethylsulphonyl	1.48	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	$(C_8H_{12}N_2O_4S_2)$	3.10	U	-H		t = 25 $I = 0.05$	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.

1335	$\begin{array}{l} Sulfanilamide, N^1-sulfanilyl\\ (C_{12}H_{13}N_3O_4S_2) \end{array}$	 2.89	U	-Н	Potentiometric	H_2O t = 25 I = 0.05
1336	Sulfanilamide, N ¹ -p-aminophenyl $(C_{13}H_{15}N_3O_2S)$	1.85 >5.0 10.22	U U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05
1337	Sulfanilamide, N ¹ -chloroacetyl (C ₈ H ₉ ClN ₂ O ₃ S)	1.60 3.79	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1338	Sulfanilamide, N ¹ -furfuryl (C ₁₁ H ₁₂ N ₂ O ₃ S)	2.26 10.88	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1339	Sulfanilamide, N ¹ -methyl (C ₇ H ₁₀ N ₂ O ₂ S)	2.20 10.77	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1340	Sulfanilamide, N ¹ -phenyl (C ₁₂ H ₁₂ N ₂ O ₂ S)	2.15 9.60	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1341	Sulfanilamide, N ¹ -o-tolyl (C ₁₃ H ₁₄ N ₂ O ₂ S)	2.04 9.96	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1342	Sulfanilamide, N ¹ -m-tolyl ($C_{13}H_{14}N_2O_2S$)	2.11 9.74	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1343	Sulfanilamide, N ¹ -p-tolyl (C ₁₃ H ₁₄ N ₂ O ₂ S)	2.15 9.82	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05
1344	Sulfanilamide, N^1 , N^1 -dimethyl (C ₈ H ₁₂ N ₂ O ₂ S)	2.11	U	+H	Potentiometric	H_2O t = 25 I = 0.05

Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details; not sufficiently soluble in acetic acid for
determination of the basic group.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type
compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
the relation of structure to activity of sulfanilamide-type
compounds, JACS, 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
the relation of structure to activity of sulfanilamide-type
compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory
of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
the relation of structure to activity of sulfanilamide-type
compounds, JACS, 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
the relation of structure to activity of sulfanilamide-type
compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
the relation of structure to activity of sulfanilamide-type
compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
the relation of structure to activity of sulfanilamide-type
compounds, JACS, 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic
acid for details.
ucia iti actanti.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1345	Sulfanilamide, N^1 -hydroxyethyl (C ₈ H ₁₂ N ₂ O ₃ S)	2.30 10.92	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1346	2-Sulfanilamido-5-aminopyridine (C ₁₁ H ₁₂ N ₄ O ₂ S)	1.48 3.00 8.47	U U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1347	5-Sulfanilamido-2-aminopyridine (C ₁₁ H ₁₂ N ₄ O ₂ S)	1.90 4.20 8.82	U U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1348	2-Sulfanilamido-4-aminopyrimidine (C ₁₀ H ₁₁ N ₅ O ₂ S)	3.13 9.44	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1349	2-Sulfanilamido-5-bromopyridine (C ₁₁ H ₁₀ BrN ₃ O ₂ S)	1.90 7.15	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1350	5-Sulfanilamido-2-bromopyridine (C ₁₁ H ₁₀ BrN ₃ O ₂ S)	2.00 7.12	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1351	5-Sulfanilamido-2-chloropyrimidine (C ₁₀ H ₉ ClN ₄ O ₂ S)	 5.80	U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1352	2-Sulfanilamidoimidazole (C $_9H_{10}N_4O_2S$)	 9.72	U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1353	3-Sulfanilamido-4-methylfurazan (C3H10N4O3S)	1.90 4.40	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.

1354	5-Sulfanilamido-3-methylisoxazole (C ₁₀ H ₁₁ N ₃ O ₃ S)	 4.2	U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Be
1355	2-Sulfanilamido-5-methyloxadiazole (C ₉ H ₁₀ N ₄ O ₃ S)	1.70 4.40	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1356	2-Sulfanilamido-5-methylthiadiazole $(C_9H_{10}N_4O_2S_2)$	2.20 5.45	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1357	2-Sulfanilamido-4-methylthiazole (C ₁₀ H ₁₁ N ₃ O ₂ S ₂)	2.36 7.79	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1358	2-Sulfanilamidooxazole (C ₉ H ₉ N ₃ O ₃ S)	 6.5	U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1359	2-Sulfanilamidopyrazine ($C_{10}H_{10}N_4O_2S$)	1.78 6.04	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1360	3-Sulfanilamidopyridazine (C ₁₀ H ₁₀ N ₄ O ₂ S)	1.30 2.48 7.06	U U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1361	3-Sulfanilamidopyridine ($C_{11}H_{11}N_3O_2S$)	1.60 3.00 7.89	U U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1362	$\begin{array}{l} \mbox{4-Sulfanilamidopyrimidine} \\ (C_{10}H_{10}N_4O_2S) \end{array}$	1.30 3.34 6.17	U U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве
1363	5-Sulfanilamidopyrimidine (C ₁₀ H ₁₀ N ₄ O ₂ S)	1.90 6.62	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Ве

Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.

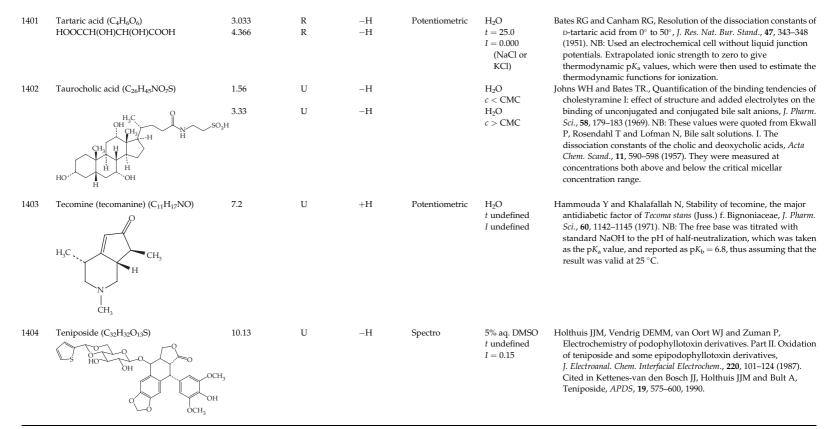
No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
	•						
1364	2-Sulfanilamido-1,3,4-thiadiazole $(C_8H_8N_4O_2S_2)$	2.15 4.77	U U	+H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1365	4-Sulfanilamido-1,2,4-triazole	1.85	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	(C ₈ H ₉ N ₅ O ₂ S)	4.66	U	-H		$\begin{array}{l}t = 25\\I = 0.05\end{array}$	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1366	Sulfanilylaminoguanidine (C7H11N5O2S)	1.30	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
		2.48	U	+H		t = 25	the relation of structure to activity of sulfanilamide-type
	— – –Н		<i>I</i> = 0.05	compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details; not sufficiently soluble in acetic acid for determination of the basic group.			
1367	Sulfanilylcyanamide (C7H7N3O2S)	_			Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
		2.92	U	-H		t = 25 $I = 0.05$	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details; not sufficiently soluble in acetic acid for determination of the basic group.
1368	Sulfanilylglycine (C ₇ H ₁₀ N ₂ O ₂ S)	3.52	U	-H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
						$\begin{array}{l}t = 25\\I = 0.05\end{array}$	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details. Not sufficiently soluble in glacial acetic acid for measurement of the basic group.
1369	Sulfanilylguanidine (C7H10N4O2S)	2.75	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.77	U	+H		t = 25	the relation of structure to activity of sulfanilamide-type
		_		-H		I = 0.05	compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details; not sufficiently soluble in acetic acid for determination of the basic group.
1370	N ³ -Sulfanilylmetanilamide	1.90	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	$(C_{12}H_{13}N_3O_4S_2)$	7.85	U	-H		t = 25 $I = 0.05$	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1371	N ⁴ -Sulfanilylsulfanilamide	3.20	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	(C ₁₂ H ₁₃ N ₃ O ₄ S ₂)	8.23	U	-H		t = 25 $I = 0.05$	the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.

1372	Sulfanilylurea (C ₇ H ₉ N ₃ O ₃ S)	1.78 5.42	U U	+H –H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details; not sufficiently soluble in acetic acid for
1373	Sulfaperine (C ₁₁ H ₁₂ N ₄ O ₂ S) H ₂ N \xrightarrow{O} N \xrightarrow{O} HN \xrightarrow{O} CH ₃	6.65	U	-Н	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	determination of the basic group. Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7, 473–482 (1970). NB: See Sulphanilamide for details.
1374	Sulfaperine (also called	2.08	U	+H	Potentiometric	H ₂ O	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of
	sulfamethyldiazine; 4-methylsulfadiazine; 2-sulfanilamido- 4-methylpyrimidine)	7.06	U	-H		t = 25 $I = 0.05$	the relation of structure to activity of sulfanilamide-type compounds, JACS, 64, 2905–2917 (1942). NB: See p-Aminobenzoic acid for details.
1375	Sulfaphenazole (C ₁₅ H ₁₄ N ₄ O ₂ S) H_2N H_2N	5.71	U	-Н		H ₂ O t = 28	 Chatten LG (ed.), <i>Pharmaceutical Chemistry</i>, Vol. 1, Dekker, New York, 1966, pp. 85–87; Nakagaki M, Koga N and Terada H, Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulphonamides with serum albumin, <i>J. Pharm. Soc. Jpn.</i>, 83, 586–590 (1963).
1376	Sulfapyridine (C ₁₁ H ₁₁ N ₃ O ₂ S) H ₂ N S N N N N N N N N N N N N N N N N N N	8.48	U	-H	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	Willi AV and Meier W, Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i> , 39 , 54–56 (1956). NB: used previously described titrimetric method (Schwarzenbach G, Willi A and Bach RO, Komplexone IV. Die Aciditat und die Erdalkalikomplexe der Anilin-diessigsaure und ihrer Substitutionsprodukte, <i>Helv. Chim. Acta</i> , 30 , 1303–1320 (1947)) with glass electrode. Solutions made in carbonate-free sodium hydroxide and then back-titrated with perchloric acid titrant. Sodium ion corrections were made at pH values >9.8.
1377	Sulfapyridine (2-sulfanilamidopyridine)	1.00 2.58	U U	+H +H	Potentiometric	H_2O t = 25	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type
		2.58 8.43	U	+п –Н		I = 25 $I = 0.05$	compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.

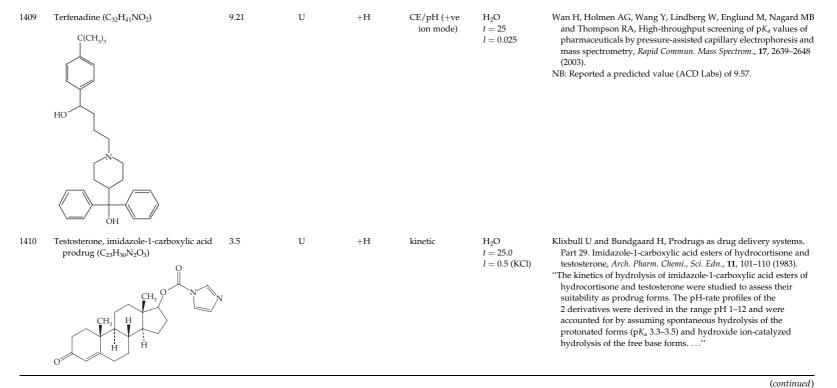
No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1378	Sulfapyridine	1.00 2.58	U U	+H +H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between pK _b (H ₂ O) of organic compounds and E _{1/2} values in several nonaqueous solvents. Anal. Chem., 34, 1495–1501 (1962).
1379	Sulfapyridine	8.45	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, Acta Pharm. Suec., 7, 473–482 (1970). NB: See Sulphanilamide for details.
1380	Sulfapyridine	8.32	U	-H		$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962).
1381	Sulfapyridine-1-oxide ($C_{11}H_{10}N_3O_3S$) $H_2N \longrightarrow S \longrightarrow N \longrightarrow O$	5.2	VU	-H	Potentiometric	H_2O t = 25 I undefined	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). "The pK_as of the sulfapyridine-1-oxides and reference drugs as well as their acetylated derivatives were approximated by titrating 0.1% solutions of the drugs in water at 25 °C with one-half of an
	3'-methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S)	6.1	VU	-H			equivalent of 0.1 N sodium hydroxide" Further values:
	4'-methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S)	5.5	VU	-H			6'-methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S), pK _a = 5.9, 6'-ethylsulfapyridine-1-oxide (C ₁₃ H ₁₄ N ₃ O ₃ S), pK _a = 6.1,
	5'-methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S)	5.7	VU	-H			4′,6′-dimethylsulfapyridine-1-oxide (C ₁₃ H ₁₄ N ₃ O ₃ S), pK _a = 6.2.
1382	Sulfapyridine-1-oxide, N ⁴ -acetyl, 6'- methyl (C ₁₄ H ₁₄ N ₃ O ₄ S)	5.4	VU	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=25 \end{array}$	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.

1383	Sulfapyridine, N ⁴ -acetyl (C ₁₃ H ₁₃ N ₃ O ₃ S) O O O H CH_3 H H H H H H H H	8.2	U	-H	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1384	Sulfasalazine (C ₁₈ H ₁₄ N ₄ O ₅ S)	0.6 2.4 9.7 DH 9.7 DH ^{11.8}	บ บ บ บ	+H -H -H -H	Spectro	H_2O t = 20 I < 0.001	Nygard B, Olofsson J and Sandberg M, Some physicochemical properties of salicylazosulphapyridine, including its solubility, protolytic constants and general spectrochemical and polarographic behaviour, <i>Acta Pharm. Suec.</i> , 3 , 313–342 (1966). Cited in McDonnell JP, Sulfasalazine, <i>APDS</i> , 5 , 515–532 (1976).
1385	Sulfathiazole (C ₉ H ₉ N ₃ O ₂ S ₂) H ₂ N	2.36 7.12	U U	+H –H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64, 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1386	Sulfathiazole (2-sulfanilamidothiazole)	7.49	U	-Н	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	Willi AV and Meier W, 6. Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i> , 39 , 54–56 (1956). NB: See Sulfapyridine.
1387	Sulfathiazole	7.10	U	-H		$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962).
1388	Sulfinpyrazone (C ₂₃ H ₂₀ N ₂ O ₃ S)	2.8	U	-H		H ₂ O t = RT I undefined	 Perel JM, Snell MM, Chen W and Dayton PG, <i>Biochem. Pharmacol.</i>, 13, 1305–1317 (1964). NB: performed in "dilute buffer solutions." See: Phenylbutazone analogs.

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1389	Sulfisomidine (2-sulfanilamido-2,4- dimethylpyrimidine) (C ₁₂ H ₁₄ N ₄ O ₂ S)	7.55	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7 , 473–482 (1970). NB: See Sulphanilamide for details.
	S N H H ₃	CH3					
1390	Sulfisomidine (4-sulfanilamido-2,6- dimethylpyrimidine)	7.49	U	-H	Potentiometric	H_2O t = 20 I = 0.1 (KCl)	Willi AV and Meier W, 6. Die Aciditatskonstanten von Benzolsulfonamiden mit heterocyclischer Amin-Komponente (The acidity constants for benzenesulfonamides with heterocyclic amine components), <i>Helv. Chim. Acta</i> , 39 , 54–56 (1956). NB: See: Sulfapyridine.
1391	Sulfisoxazole	4.96	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=37 \end{array}$	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135, 120–127 (1962).
1392	Sulfisoxazole O CH_3 H H H H H H CH_3 H H H H H H H H	5.0 I ₃	VU	-H	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.
1393	Sulfisoxazole, N ⁴ -acetyl (C ₁₃ H ₁₅ N ₃ O ₄ S) $\downarrow \qquad \qquad$	4.4 H ₃	VU	-H	Potentiometric	H ₂ O t = 25	 Scudi JW and Plekss OJ, Chemotherapeutic activity of some sulfapyridine-1-oxides, <i>Proc. Soc. Exptl. Biol. Med.</i>, 97, 639–641 (1958). NB: See Sulfapyridine-1-oxide.


1394	Sulfonazole (C ₉ H ₉ N ₃ O ₂ S ₂) H_2N H_2N S H_N N	7.27	U	-H	Spectro	H_2O $t = 25.0 \pm 0.5$ I = 0.2	Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs. IV, <i>Acta Pharm. Suec.</i> , 7, 473–482 (1970). NB: See Sulphanilamide for details.
1395	Sulfone, bis(4-aminophenyl) (4,4- diaminodiphenylsulphone; dapsone)	1.30 2.49 	U U	+H +H -H	Potentiometric	H_2O t = 25 I = 0.05	Bell PH and Roblin, RO, Jr., Studies in chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide-type compounds, <i>JACS</i> , 64 , 2905–2917 (1942). NB: See <i>p</i> -Aminobenzoic acid for details.
1396	Sulindac (C ₂₀ H ₁₇ FO ₃ S) $CH_3 - S - H$ $F - CH_3$ CH_2COOH	4.7	U	-Н		<i>t</i> = 25.0	Plakogiannis FM and McCauley JA, Foye 1 says 4.5 Sulindac, <i>APDS</i> , 13 , 573–595 (1984). no reference
1397	Sulpiride (C ₁₅ H ₂₃ N ₃ O ₄ S) O O NH C_2H_5 OCH_3 NH_2SO_2	$\begin{array}{c} 8.99 \pm 0.01 \\ 10.2 \pm 0.3 \end{array}$	A U	+H -H	Potentio- metric, Spectro	H ₂ O	Method Solvent pK_{a1} pKa1 pKa2 Method Solvent pK_{a1} pK_{a2} spectro H ₂ O 8.99 - potentio H ₂ O 9.00 10.19 potentio 7.7% 8.98 10.05 three results = 6.2268 × MeOH 10 ⁻¹¹ , which gives a mean potentio 42.4% 8.36 10.48 $pK_{a2} = 10.21 \pm 0.27$

391


So Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1398	Synephrine ($C_9H_{13}NO_2$)	9.60 ± 0.02	А	+H	Potentiometric	H_2O $t = 25.0 \pm 0.5$ I = 0.01	 Van Damme M, Hanocq M, Topart J and Molle L, Determination of ionization constants of N-(1-ethylpyrrolidin-2-ylmethyl)-2-methoxy-5-sulphamoylbenzamide (sulpiride), <i>Analysis</i>, <i>4</i>, 299–307 (1976). Van Damme M, Hanocq M and Molle L, Critical study of potentiometric methods in aqueous and hydroalcoholic media for the determination of acid dissociation constants of certain benzamides, <i>Analysis</i>, <i>7</i>, 499–504 (1979). Warren RJ, Begosh PP and Zarembo JE, Identification of amphetamines and related sympathomimetic amines, <i>J. Assoc. Off. Anal. Chem.</i>, <i>54</i>, 1179–1191 (1971). NB: See Amphetamine and Amphetamine, 4-hydroxy, for further details. Lewis (see no. 1094, Phenylpropanolamine) reported pK_{a1} = 9.59 and pK_{a2} = 9.71.
1399	CH ₂ NHCH ₃ Synephrine (Sympatol) (C ₉ H ₁₃ NO ₂)	8.90 ± 0.02	U	+H	Potentiometric	H ₂ O	Leffler EB, Spencer HM and Burger A, Dissociation constants of
1377	Synephinie (Synipatol) (Cgr1 ₁₃ (C ₂)	0.90 ± 0.02	0	TII	rotentionetre	$t_{12} = 25.0 \pm 0.2$ $I \le 0.001$	adrenergic amines. <i>JACS</i> , 73 , 2611–2613 (1951). NB: See Amphetamine for details. From $pK_b = 5.10$. Careful reading of the paper suggests that the compound was investigated in the form of its tartrate salt. This would inevitably cause a problem with the overlapping of the pK_b value with the pK_{a2} of tartaric acid (4.3, below), as shown by the substantial discrepancy with the value found by Warren <i>et al.</i> (no. 1398).
1400	Tamoxifen (C ₂₆ H ₂₉ NO)	8.71	U	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 8.69.

 C_2H_5

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1405	Terazosin (C ₁₉ H ₂₅ N ₅ O ₄) $CH_{3}O$ $CH_{3}O$ $CH_{3}O$ NH_{2}	7.1	U	+H	Potentiometric	H ₂ O	Chang ZL and Bauer JF, Terazosin, <i>APDS</i> , 20 , 693–727 (1991). NB: Titration of terazosin (presumably the HCl or some other salt) with 0.1-N aqueous NaOH using water as the sample solvent gave a pK _a value of 7.1.
1406	Terbutaline (C ₁₂ H ₁₉ NO ₃) HO CH_2 NHC(CH ₃) ₃ HO OH	8.70 10.09	A U	+H -H	Spectro	H_2O $t = 25.0 \pm 0.05$ I = 0.10	 Ijzerman AP, Bultsma T, Timmerman H and Zaagsma J, The ionization of β-adrenoceptor agonists: a method for unravelling ionization schemes, J. Pharm. Pharmacol., 36(1), 11–15 (1984). NB: microscopic: 8.73 and 10.06; Negligible formation of the neutral form. See Isoproterenol.
1407	Terbutaline	8.62	А	+H	CE/pH (+ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 9.11.
1408	Terbutaline	GLpK _a : 8.64 ± 0.06 10.76 ± 0.03	U U	+H –H	Spectro	H_2O t = 25 I = 0.15 (KCl) Ar atmosphere	Tam KY and Takacs-Novac K, Multi-wavelength spectrophotometric determination of acid dissociation constants, <i>Anal. Chim. Acta</i> , 434 , 157–167 (2001). NB: See Clioquinol for details. Cited Takacs-Novac K, Noszal B, Tokeskovesdi M, Szasz G, <i>J. Pharm. Pharmacol.</i> , 47 , 431 (1995) with values of 8.57, 9.89, 11.0.

W O Appendix A (continued)

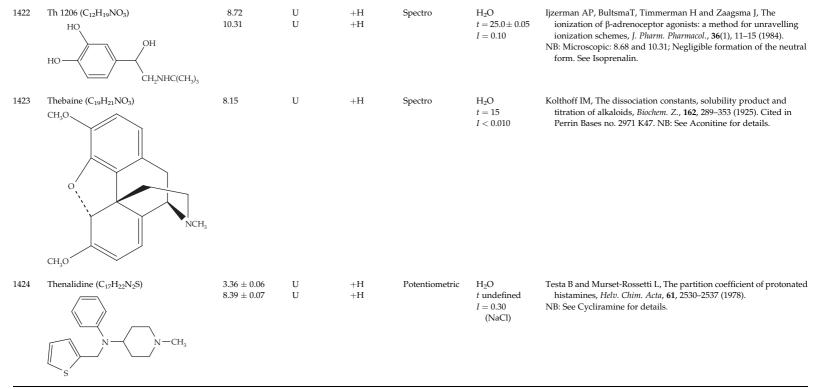
No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1411	Tetracaine (C ₁₅ H ₂₄ N ₂ O ₂) $H_{3}C$ $H_{3}C$ H_{3	8.33 ± 0.03	A	+H	Potentiometric	H_2O t = 20.0 I = 0.10 (KCl) under N ₂	 Buchi J and Perlia X, Beziehungen zwischen de physikalisch- chemische Eigenschaften und der Wirkung von Lokalanasthetica, <i>ArzneimForsch.</i>, 10, 745–754 (1960). NB: See Cocaine for details.
1412	Tetracaine	$\begin{array}{c} 2.39 \pm 0.02 \\ 8.49 \pm 0.01 \end{array}$	U U	+H +H	Potentiometric	H_2O t = 25.0 I = 0.15 (KCl)	Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric log P 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs, <i>Pharm. Res.</i> , 15 (2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol-water) and log P (dioleylphosphatidylcholine unilamellar vesicles). See also Lidocaine (no. 741). The same results were also given in Sirius Technical Application Notes, vol. 2 , p. 94–95 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK.
1413	Tetracycline (C ₂₂ H ₂₄ N ₂ O ₈) HO CH ₃ H $^{N(CH_3)_2}$	3.30 7.68 9.69	A A A	-H -H +H	Potentiometric	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Stephens C, Murai K, Brunings K and Woodward RB, Acidity constants of the tetracycline antibiotics, <i>JACS</i> , 78 , 4155–4158 (1956). Cited in Perrin Bases 3336 ref. S73. NB: Used a glass electrode with
	\land \land \land \land \land	3.33	A	-H	Potentiometric	H ₂ O	liquid junction potentials.
		7.84	А	-H		t = 20	1 / 1
	OH O OH O O	9.59 9.59	А	+H			
1414	Tetracycline	3.33	U	-H	Potentiometric	H ₂ O	Benet LZ and Goyan JE, Determination of the stability constants of
	2	7.70	U	-H		$t = 25 \pm 0.05$	tetracycline complexes, J. Pharm. Sci., 54, 983-987 (1965). NB: See
		9.50	U	+H		I = 0.01	Chlortetracycline for details. Other literature values:
							рК ₁ рК ₂ рК ₃ Т I Ref.

Albert A and Rees, CW, Avidity of the tetracyclines for the cations of metals, *Nature*, **177**, 433–434 (1956).

3.35 7.82 9.57 20 0.01 Albert (1956)

1415	Tetracycline	4.4	U	-H	NMR,	MeOH/H ₂ O	Rigler NE, Bag SP, Leyden DE, Sudmeier JL and Reilley CN,
		7.8	U	-H	Potentiometric	(1:1)	Determination of a protonation scheme of tetracycline using
		9.4	U	+H		$t = 30 \pm 2$	nuclear magnetic resonance, Anal. Chem., 37, 872-875 (1965).
						(NMR)	NB: The value assigned to $pK_{a4} = \sim 10.7$ was obtained by
		10.67	U	-H	Potentiometric	$t = 26 \pm 1$	potentiometric titration of tetracycline methiodide, that is, where
						(potentio)	the dimethylamino group had been quaternized. For three
							compounds (tetracycline, epitetracycline, and tetracycline
							methiodide), the paper also reported (from NMR measurements)

		Value for compound:				
Transition	Micro- constant	Tetra- cycline	Epitetra- cycline	Tetra methiodide		
$A^{\circ}B^{+}C^{\circ}$ to $A^{-}B^{+}C^{\circ}$	pk_1	4.49	4.91	3.98		
$A^{\circ}B^{+}C^{\circ}$ to $A^{\circ}B^{\circ}C^{\circ}$	pk_2	5.40	negligible	NA		
$A^{\circ}B^{+}C^{\circ}$ to $A^{\circ}B^{+}C^{-}$	pk_3	5.45	5.44	4.67		
$A^{-}B^{+}C^{\circ}$ to $A^{-}B^{\circ}C^{\circ}$	pk12	8.00	negligible	NA		
$A^-B^+C^\circ$ to $A^-B^+C^-$	pk13	8.51	7.93	7.72		
$A^{\circ}B^{\circ}C^{\circ}$ to $A^{-}B^{\circ}C^{\circ}$	pk21	7.09	negligible	NA		
$A^{\circ}B^{\circ}C^{\circ}$ to $A^{\circ}B^{\circ}C^{-}$	pk23	7.29	negligible	NA		
$A^{\circ}B^{+}C^{-}$ to $A^{-}B^{+}C^{-}$	pk31	7.55	7.41	7.03		
$A^{\circ}B^{+}C^{-}$ to $A^{\circ}B^{\circ}C^{-}$	pk32	7.24	8.36	NA		
$A^{-}B^{\circ}C^{\circ}$ to $A^{-}B^{\circ}C^{-}$	pk ₁₂₃	9.11	negligible	NA		
$A^{-}B^{+}C^{-}$ to $A^{-}B^{\circ}C^{-}$	pk132	8.60	9.45	NA		
$A^{-}B^{\circ}C^{-}$ to $A^{-}B^{\circ}C^{-}$	pk134	NA	NA	10.80		
$A^{\circ}B^{\circ}C^{-}$ to $A^{-}B^{\circ}C^{-}$	pk ₃₂₁	8.92	8.50	NA		


the following microconstants for the groups corresponding to pK_{a1} , pK_{a2} , and pK_{a3} , where the three functional groups, triketomethine (A), conjugated enolic-phenolic (B) and dimethylamino (C) are described as positive (+), negative (–) double negative (=) or

neutral (o) charged:

1416	Tetracycline	3.31 (0.14) 7.13 (0.21) 9.64 (-)	U U U	-H -H +H	Spectro	H_2O t = 20.0	Wahbe AM, El-Yazbi FA, Barary MH and Sabri SM, Application of orthogonal functions to spectrophotometric analysis. Determination of dissociation constants, <i>Int. J. Pharm.</i> , 92(1), 15–22 (1993). NB: See Acetaminophen for further details. Alternative
1417	Tetracycline	7.68	U	-H		H ₂ O t = 37	 graphical method gave pK_a = 3.3, 7.15, 9.65. Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i>, 135, 120–127 (1962).

Appendix A ((continued)
--------------	-------------

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1418	Tetracycline	3.69 7.63 9.24	บ บ บ	-H -H +H	Potentiometric	$\begin{array}{l} \mathrm{H_{2}O} \\ t = 30.0 \pm 0.2 \\ I = 0.01 \ \mathrm{(KCl)} \\ \mathrm{N_{2} \ atmosphere} \end{array}$	Doluisio JT and Martin AN, Metal complexation of the tetracycline hydrochlorides, J. Med. Chem., 6, 16–20 (1963). NB: Metal-free solutions of the tetracycline titrated with standard NaOH solution and the pH measured. No details were given of the pH meter calibration. Metal stability constants were determined from identical titrations in the presence of varying concentrations of nickel(II), zinc(II), or copper(II) ions.
1419	Tetracycline methiodide (C ₂₃ H ₂₇ IN ₂ O ₈)	3.9	U	-H	NMR, Potentiometric	MeOH/H ₂ O (1:1)	Rigler NE, Bag SP, Leyden DE, Sudmeier JL and Reilley CN, Determination of a protonation scheme of tetracycline using
		7.8 10.67	U U	H H	Potentiometric	$t = 30 \pm 2$ (NMR) $t = 26 \pm 1$ (potentio)	nuclear magnetic resonance, <i>Anal. Chem.</i> , 37 , 872–875 (1965). NB: See Tetracycline for details.
1420	Tetrahydro- α -morphimethine (C ₁₈ H ₂₅ NO ₃) HO HO HO N(CH ₃) ₂	8.65	Α	+H	Conductance	H_2O t = 25 $\kappa < 1.5$	Oberst FW and Andrews HL, The electrolytic dissociation of morphine derivatives and certain synthetic analgetic compounds, <i>JPET</i> , 71 , 38–41 (1941). Cited in Perrin Bases 2969 ref. O1. NB: Results were reported as K_b values. For tetrahydro- α - morphimethine, $K_b = 4.50 \times 10^{-6}$, giving p $K_b = 5.35$. See Codeine for details.
1421	Tetrahydrozoline (C ₁₃ H ₁₆ N ₂)	10.51	U	+H			Foye 1

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1425	Theobromine $(C_7H_8N_4O_2)$	1.08	U	+H	kinetic	H_2O t = 55	Arnall F, The determination of the relative strengths of some nitrogen bases and alkaloids, JCS, 117, 835–839 (1920). Cited in Perrin Bases
	O II CH ₃	<1	U	+H	Spectro	H ₂ O	2972 ref. A73. NB: Gave relative values for a further 24 compounds.
		10.0	U	-H	1	t = 25	Ref. T16: Turner A and Osol A, The spectrophotometric
	HN	9.9	U	-H	Potentiometric	H_2O $t = 18 \pm 0.5$	determination of the dissociation constants of theophylline, theobromine and caffeine, J. Am. Phar. Assoc., 38 , 158–161 (1949) for
	O N N N CH ₃	11.3	U	-H		90% ethanol $t = 18 \pm 0.5$	the spectrophotometric absorbance versus pH method. Ogston AG, Constitution of the purine nucleosides. III. Potentiometric determination of the dissociation constants of methylated xanthines, <i>JCS</i> , 1376–1379 (1935). CA 30:667. NB: Used hydrogen electrodes to measure pH changes during titration. Gave the following values in H ₂ O and 90% EtOH:
							pK _a pK _a pK _a Xanthine pK _a (90% EtOH) Xanthine pK _a (90% EtOH)
							Xanthine 7.7 9.3 1,3-dimethyl 8.6 8.7
							1-methyl 7.7 9.2 1,7-dimethyl 8.5 8.7
							3-methyl 8.5 8.6 1,9-dimethyl 6.3 6.6
							7-methyl 8.5 8.8 3,7-dimethyl 9.9 11.3
							9-methyl 6.3 6.8 xanthosine 6.0 6.6
1426	Theobromine	0.29	U	+H		H ₂ O	Ballard BE and Nelson E, Physicochemical properties of drugs that
		8.8	U	-H		t = 37	control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127 (1962). NB: $pK_a = 0.29$ from $pK_b = 13.33$ at 37 °C ($pK_w = 13.621$). Secondary source W&G reported $pK_a = 0.7$ when citing this ref.
1427	Theobromine	-0.16	U	+H	soly	$\begin{array}{l} H_2O\\ t=40.1 \end{array}$	Wood JK, The affinity constants of xanthine and its methyl derivatives, JCS, 89, 1839–1847 (1906). Cited in Perrin Bases suppl. no. 7489.
1428	Theobromine	9.96	U	-H	kinetic	$\begin{array}{l} H_2O\\ t=25 \end{array}$	Wood JK, The affinity constants of xanthine and its methyl derivatives, <i>JCS</i> , 89 , 1839–1847 (1906). Cited in Perrin Bases suppl. no. 7489. NB: pK_a value estimated from catalytic effect of the base on the rate of hydrolysis of methylacetate.

1429	Theophylline (C ₇ H ₈ N ₄ O ₂)	(0.5–2.5)	U	+H	Spectro	H_2O t = 25
	H ₃ C N H O N N O CH ₃	8.6	U	-H	Potentiometric	H_2O $I \sim 0.5$
1430	Theophylline	<1 8.6 8.6	U U U	+H -H -H	Spectro	H_2O t = 25 H_2O $t = 18 \pm 0.5$
1431	Theophylline	8.55 ± 0.01	А	-H	Potentiometric	H_2O t = 25 I = 0.151 (KCl)
1432	Theophylline	8.75 ± 0.1	U	-H	Potentiometric	$\begin{array}{l} H_2O\\ t=24 \end{array}$
1433	Theophylline	0.36 8.77	U U	+H -H		H ₂ O t = 37
1434	Theophylline	-0.24 8.79	U U	+H -H	kinetic	H_2O t = 40.1

Miyamoto H, Dissociation constant of 1,3-dimethylxanthine and thermodynamic quantities, *Sci. Rep. Niigata Univ.*, Ser. C, 23–30 (1969); CA 72:83560t (1969). Cited in Cohen JL, Theophylline, *APDS*, **4**, 466–493 (1975); Cohen JL, Ph.D. Dissertation, Univ. Wisconsin, 1969. NB: See also: Evstratova KJ and Ivanova AI, Dissociation constants and methods for analysis of some organic bases, *Farmatsiya*, **17**, 41–45, CA 69:46128a (1968); Linek K and Peciai C, *Chem. Zvesti.*, **16**, 692 (1962); CA., 58:8409h (1963).

- Turner A and Osol A, The spectrophotometric determination of the dissociation constants of theophylline, theobromine and caffeine, *J. Am. Phar. Assoc.*, **38**, 158–61 (1949). Cited in Perrin Bases no. 2973 ref. T16.
- Ogston AG, JCS, 1376–39 (1935). CA 30:667. Cited in Perrin Bases no. 2973 ref. O3. NB: Used hydrogen electrodes to measure pH changes during titration.

Sirius Technical Application Notes, vol. 2, p. 6 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: From replicated titrations in aqueous solutions. The same result was reported in Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, *J. Med. Chem.*, 46(4) 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.

- Maulding HV and Zoglio MA, pK_a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, J. Pharm. Sci., 60, 309–311 (1971). NB: See Barbituric acid, 5-allyl-5-isobutyl for details.
- Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, *JPET*, **135**, 120–127 (1962). NB: $pK_a = 0.36$ from $pK_b = 13.26$ at 37 °C where $pK_w = 13.621$. Secondary source W&G reported $pK_a = 0.7$ when citing this ref.
- Wood JK, The affinity constants of xanthine and its methyl derivatives, *JCS*, **89**, 1839–47 (1906). Cited in Perrin Bases suppl no. 7490. NB: The pK_a value was estimated from a catalytic effect on the rate of hydrolysis of methylacetate.

Ap	pendix	A ((continued)	

SCH3

No.	(continued) Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1435	Thiomalic acid (C ₄ H ₆ O ₄ S) CH ₂ COOH HS COOH	4.68 ± 0.04	U	-H	Potentiometric	H_2O $t = 20.0 \pm 0.05$ I = 0.15	Zucconi TD, Janauer GE, Donahe S and Lewkowicz C, Acid dissociation and metal complex formation constants of penicillamine, cysteine, and antiarthritic gold complexes at simulated biological conditions, <i>J. Pharm. Sci.</i> , 68 (4), 426–432 (1979) NB: See Cysteine for details.
1436 1437	Thiopentone Thiopropazate (C ₂₃ H ₂₈ ClN ₃ O ₂ S)	3.20 7.15 000CCH ₃	U U	+H +H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	 See Barbituric acid, 5-ethyl-5-(1-methylbutyl)-2-thio. Chatten LG and Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962). Cited in Foye 1 (2 refs); N&K Chatten LG (ed.), <i>Pharmaceutical Chemistry</i>, vol. 1, Dekker, NY, 1966, pp. 85–87.
1438	Thiopropazate	7.3	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.
1439	Thioridazine (C ₂₁ H ₂₆ N ₂ S ₂)	9.16	U	+H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	 Chatten LG and Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962). NB: See Chlorpromazine for details.

1440	Thioridazine	9.62 ± 0.04	А	+H	partition/ pH	H_2O $t = 20 \pm 0.5$	constant Int. J. Phi stated to	and Florence AT, The α s and partition coefficie <i>arm.</i> , 3 , 231–237 (1979). be independent of I. S azine for additional de	ents of pher NB: I was n ee Chlorpro	nothiazine derivatives, ot reported but pKa was
1441	Thioridazine	9.5	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, aminoall	Ionization constants ar kylphenothiazine tranq <i>Pharmacol.</i> , 19 , 10–16 (nd water so juilizers and	d related compounds,
1442	Thioridazine	9.45	U	+H	Potentiometric	H_2O (extrap) t = 20 N_2 atmos- phere	derivativ	Plein EM and Benmam ves by solid adsorbents Chlorpromazine for de	, J. Pharm. S	rption of phenothiazine <i>Sci.</i> , 55 , 785–794 (1966).
1443	Thyroxine, L- (Levothyroxine) (C ₁₅ H ₁₁ I ₄ NO ₄)	2.2 6.7	U U	-H -H	Potentiometric	$H_2^{1}O$ (ref. 1)	Post A and (1976).	l Warren RJ, Levothyro	xine sodiur	n, APDS, 5 , 225–281
	$(C_{15}, 1_{11}, 1_{4}, 1, 0, 0, 4)$	10.1	U	-11 +H			(1970).			
		6.73	A	-H	Spectro	H ₂ O (ref. 2)	-	<i>u=</i>		
	HO	3.83	А	-H	Potentiometric	75% DMSO		"Function	p <i>K</i> a	pKa*
	OH	8.09	А	-H		(ref. 3)		carboxyl	2.2 (1)	3.832 (3)
	NH ₂	9.14	А	+H		t = 25		phenolic hydroxyl	6.7 (2)	8.085 (3)
						I = 0.1		amino	10.1 (1)	9.141 (3)''
	I					(KNO ₃)	-			
							OUP, N (2) Gemmi hydroxy <i>Bichem. 1</i> correspo 8.45; diid (3) Wilson water m	ll CL, The apparent ior 1 groups of thyroxine a Biophys., 54, 359–367 (19 inding values for: diiod bodothyronine, 9.29; thy MF, Ionization of L-thy	nization con nd related (255). NB: Al lotyrosine, (ronine, 9.55 roxine in a ehto, 45 , 53-	stants of the phenolic compounds, Arch. lso reported 6.36; triiodothyronine, 5. 75% dimethylsulfoxide- 55 (1972). NB: From K _a
1444	Tiapamil (C ₂₆ H ₃₇ NO ₈ S ₂)	7.74 ± 0.01	U	+H	Potentiometric	40% EtOH	Mannhold	R, Rodenkirchen R, Ba	yer R and H	Iaus W, The importance
	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	8.48	U	+H		t = 25.0 H ₂ O	compou	ionization for the actior nds, <i>ArzneimForsch.</i> , 3 prindine for details.		ı antagonistsand related (1984).

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1445	Tienoxolol (C ₂₁ H ₂₈ N ₂ O ₅ S) $\downarrow \downarrow $	9.80 ± 0.1	U	+H	Potentiometric	H ₂ O	Guechot C, Bertrand A, Cramaille P and Teulon JM, Analytical profile of the new diuretic β -blocking agent tienoxolol hydrochloride, <i>ArzneimForsch.</i> , 38 , 655–660 (1988). "The pK _a of the tienoxolol base was determined by titrimetry according to the OCDE's guideline [Ligne directice de l'OCDE pour les essais des produits chimiques N° 112 , OCDE, May 1981]. The pK _a was found to be 9.80 ± 0.1."
1446	Tilmicosin (C ₄₆ H ₈₀ N ₂ O ₁₃) $(C_{46}H_{80}N_2O_{13})$ $(C_{45}H_{3$	Н	U U	+H +H	Potentiometric	H ₂ O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB. Quantitative Structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a .
1447	$\begin{array}{c} \text{Timolol} (C_{13}H_{24}N_4O_3S) \\ & & \\ $	~9.2	U	+H	Potentiometric	H ₂ O <i>t</i> = 25.0	Mazzo DJ and Loper AE, Timolol Maleate, APDS, 16, 641–692 (1987). Cited Oberholtzer E and Bondi JV, Dept. Pharmaceutical Research and Development, Merck Sharp and Dohme Research Laboratories, West Point PA, personal communication.
1448	Tixanox (7-methylsulfinyl-2-xanthone- carboxylic acid) (C ₁₅ H ₁₀ O ₅ S)	3.8	U	-Н	soly	H ₂ O t = 25 I undefined	 Chowhan ZT, pH solubility profiles of organic carboxylic acids and their salts, <i>J. Pharm. Sci.</i>, 67, 1257–1260 (1978). NB: See Naproxen for details. Also reported an apparent pK_a value of 3.8 for 7-methylthio-2-xanthonecarboxylic acid.

1449	Tocainide (C ₁₁ H ₁₆ N ₂ O) $H_3C \longrightarrow NH_2$ $HN \longrightarrow O$ $H_3C \longrightarrow CH_3$	7.75	U	+H	Potentiometric	H ₂ O $t = 25.0 \pm 0.2$ I = 0.01 (NaCl)	Johansson P-A, Liquid-liquid distribution of lidocaine and some structurally related anti-arrythmic drugs and local anaesthetics, <i>Acta Pharm. Suec.</i> , 19 , 137–142 (1982).
1450	Tolazamide (C ₁₄ H ₂₁ N ₃ O ₃ S)	3.6 5.68	U U	-H +H		t = 25 t = 37.5	Lee JK, Chrzan K and Witt RH, Tolazamide, <i>APDS</i> , 22 , 489–516, 1993. NB: Appear to ascribe both values to the sulphonamide only. No reference for the 25 °C value. Reference for the 37.5 °C value cited as Remington 17th Edn.
1451	Tolazoline ($C_{10}H_{12}N_2$)	10.3	U	+H	Potentiometric	H_2O <i>t</i> undefined I = 0.1	Shore PA, Brodie BB and Hogben CAM, The gastric secretion of drugs, <i>JPET</i> , 119 , 361–369 (1957).
1452		5.3 ± 0.1	U	-H	Potentiometric	H ₂ O <i>t</i> undefined	Haussler A and Hadju P, Dissociation constants and solubility of <i>N</i> -butyl- <i>N</i> -(<i>p</i> -tolylsulphonyl)urea, <i>Arch. Pharm. Weinheim</i> , 291 ,
40	O O S MH O NH	5.32	U	-Н		I undefined H ₂ O t = 37	531–535 (1958). NB: No activity corrections. Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> , 135 , 120–127, 1962.
	H ₃ C						

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1453	Tolbutamide	5.3 ± 0.04	U	-H	Potentiometric	H ₂ O t undefined I undefined	Crooks MJ and Brown KF, The binding of sulphonylureas to serum albumin, <i>J. Pharm. Pharmacol.</i> , 26 , 305–311 (1974).
1454	Tolmetin (C ₁₅ H ₁₅ NO ₃) H ₃ C	3.5	U	-H	Spectro	H ₂ O <i>t</i> undefined <i>I</i> undefined	 Herzfeldt CD and Kümmel R, Dissociation constants, solubilities, and dissolution rates of some selected nonsteroidal antiinflammatories, <i>Drug Dev. Ind. Pharm.</i>, 9(5), 767–793 (1983). NB: Used dA/dpH method. NB: See Azapropazone and Ibuprofen for details.
1455	Tolpropamide (C ₁₈ H ₂₃ N) CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	8.57 ± 0.08	U	+H	Potentiometric	H ₂ O t undefined I = 0.30 (NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details.
1456	<i>p</i> -Toluic acid (C ₈ H ₈ O ₂) H ₃ C COOH	$\begin{array}{c} 4.30 \pm 0.09 \\ \\ 4.41 \pm 0.01 \end{array}$	U U	-H	HPLC retention/ pH	H_2O t = 25 I = 0.01 I = 0.1	Unger SH, Cook JR and Hollenberg JS, Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed phase high pressure liquid chromatography, <i>J. Pharm. Sci.</i> , 67; 1364–1367 (1978). NB: See Naproxen for details.

1457	Trazodone (C ₁₉ H ₂₂ ClN ₅ O)	6.71 ± 0.02	U	+H	Potentiometric	H ₂ O t = 20 c = 0.0001	Suzuki H, Akimoto K, Nakagawa H and Sugimoto I, Quantitative analysis of trazodone hydrochloride in tablets by an ion-selective electrode, <i>J. Pharm. Sci.</i> , 78 , 62–65 (1989). NB: Glass/calomel electrode was used.
1458	Trazodone	6.14	U	+H	Potentiometric	50% EtOH	Baiocchi L, Chiari A, Frigerio A and Ridolfi P, Analytical profile of trazodone, ArzneimForsch., 23, 400–406 (1973). NB: Glass/calomel electrode was used. No other experimental details given.
1459	Trazodone	6.14	U	+H	Potentiometric	EtOH	Gorecki, D.K.J. and Verbeeck, R.K., Trazodone hydrochloride, APDS, 16, 693–730 (1987).
1460 407	Triazolam (C ₁₇ H ₁₂ Cl ₂ N ₄)	1.52 6.50	U U	+H +H	kinetic	H ₂ O	Konishi M, Hirai K, Mari Y, Kinetics and mechanism of the equilibrium reaction of triazolam in aqueous solution, <i>J. Pharm. Sci.</i> , 71 (12), 1328–1334 (1982). "The pK _a for the conjugate acid of Compounds I (NB: triazolam ring-opened hydrolysis product) and II (NB: triazolam) was estimated (NB: from the pH-rate profile) to be 6.50 and 1.52, respectively. No information has been reported about the pK _a s for these compounds because the reaction in aqueous solution is too fast for measurement of the dissociation constant spectrometrically the pK _a for the conjugate acid of 1,4-benzodiazepines which possess a 2'-halogen substituent in the 5-phenyl group exhibit a pK _a value lower than that for corresponding nonsubstituent compounds. Namely, the pK _a s for fludiazepam, flunitrazepam, and lorazepam were reported to be 2.29, 1.71, and 1.3, respectively, which were significantly lower than those of the corresponding compounds without halogen in the 2'-position, diazepam (pK _a = 3.3), nitrazepam (pK _a = 3.2), and oxazepam (pK _a = 1.7). The pK _a value for 8-chloro-6-phenyl-4H-s-triazolol[4,3-a][1,4] benzodiazepine (estazolam) was reported to be 2.84 from the UV absorption spectral change (NB: Koyama H, Yamada M and Matsuzawa T, <i>J. Takeda Res. Lab.</i> , 32 , 77–90 (1973)). Considering the structural difference mentioned, the estimated pK _a value for triazolam, 1.52, is reasonable."

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1461	Trichloromethiazide (C ₈ H ₈ Cl ₃ N ₃ O ₄ S ₂) NH_2SO_2 Cl NH_2SO_2	6.9	U	-H	Potentiometric	acetone/H ₂ O	 Henning VG, Moskalyk RE, Chatten LG and Chan SF, Semiaqueous potentiometric determination of apparent pK_{a1} values for benzothiadiazines and detection of decomposition during solubility variation with pH studies, <i>J. Pharm. Sci.</i>, 70, 317–319 (1981). NB: See Flumethiazide.
1462	Trifluoperazine (C ₂₁ H ₂₄ F ₃ N ₃ S)	8.05 ± 0.04	Α	+H	partition/ pH	$\begin{array}{l} H_2O\\ t=20\pm0.5\\ I \text{ not reported}\\ \text{but } pK_a\\ \text{was stated}\\ \text{to be}\\ \text{independent of I.} \end{array}$	 Vezin WR, Florence AT, The determination of dissociation constants and partition coefficients of phenothiazine derivatives, <i>Int. J.</i> <i>Pharm.</i>, 3, 231–237 (1979). NB: See Chlorpromazine and Promethazine for additional details. See separate entries for Phenothiazine, 2-chloro-10-(<i>N</i>-methylpiperazinyl)-3-propyl
1463	Trifluoperazine	3.9 8.4	U U	+H +H	Potentiometric	H ₂ O I = 0.00	 Attwood D and Natarajan, R., Effect of pH on the micellar properties of amphiphilic drugs in aqueous solution, <i>J. Pharm. Pharmacol.</i>, 33(2), 136–140 (1981). "pK_a determination. pK_a values were determined by potentiometric titration (Albert & Serjeant 1971) using a Dye Model 290 pH meter with a combined glass-silver chloride electrode An indication of the possible magnitude of such error was ascertained by determinations on chlorpromazine hydrochloride, which has a single ionizable group, at pH values well below the pK_a of 9.2 (Sorby et al., 1966) Trifluoperazine: The pK_{a1} and pK_{a2} values of this drug are 3.8 and 8.4 respectively The extrapolated value of 3.9 for pK_{a1} at zero concentration is identical with that quoted by Chatten LG, Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents, <i>Anal. Chem.</i>, 34, 1495–1501 (1962)."

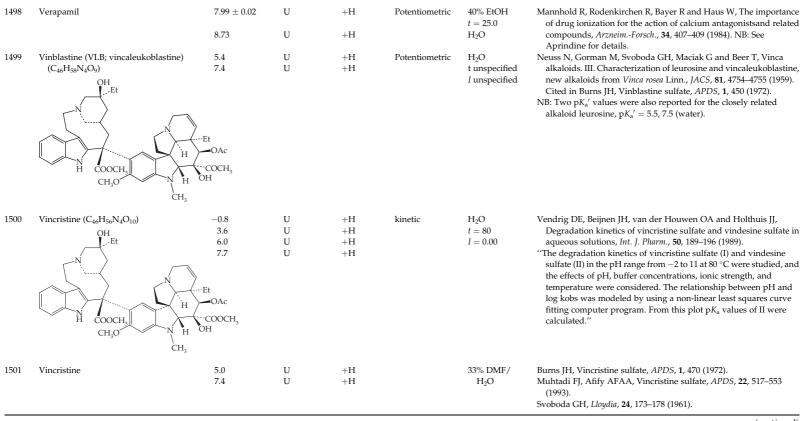
1464	Trifluoperazine	8.1	U	+H	soly	$\begin{array}{l} H_2O\\ t=24\pm1 \end{array}$	Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm. Pharmacol.</i> , 19 , 10–16 (1967). NB: See Amitriptylline for details.
1465	Trifluoperazine	4.10 8.36	U U	+H +H	Potentiometric	H_2O (extrap) t = 20 N_2 atmosphere	 Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazine derivatives by solid adsorbents, <i>J. Pharm. Sci.</i>, 55, 785–794 (1966). NB: See Chlorpromazine for details.
1466	Trifluoperazine	3.90 8.40	U U	+H +H	Potentiometric	$H_2O \text{ (extrap)}$ $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between pK _b (H ₂ O) of organic compounds and E _{1/2} values in several nonaqueous solvents. Anal. Chem., 34, 1495–1501 (1962). NB: See Chlorpromazine for details.
1467	Trifluoperazine	4.04 8.08	U U	+H +H	Potentiometric	H_2O t = 23.0	Clarke FH and Cahoon NM, Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i> , 76 , 611–620 (1987). NB: See Benzoic acid for further details.
1468	Triflupromazine (C ₁₈ H ₁₉ F ₃ N ₃ S) $N(CH_3)_2$ $N \rightarrow CF_3$ $S \rightarrow CF_3$	9.41	U	+H	Potentiometric	H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962).
1469	Triflupromazine	9.29 ± 0.04	U	+H	partition/ pH	$\begin{array}{l} H_2O\\ t=20\pm0.5 \end{array}$	Vezin WR and Florence AT, The determination of dissociation constants and partition coefficients of phenothiazine derivatives, <i>Int. J. Pharm.</i> , 3 , 231–237 (1979). NB: I was not reported but the pK_a was stated to be independent of I. See Chlorpromazine and Promethazine for additional details.
1470	Trimethoprim (C ₁₄ H ₁₈ N ₄ O ₃) OCH_3 CH_3O CH_3O CH_3O N NH_2 NH_2	6.6	U	+H	Potentiometric	H ₂ O (extrap) <i>t</i> undefined <i>I</i> undefined	 Manius GJ, Trimethoprim, APDS, 7, 445–475 (1978). Cited Piccio E, Lau E, Senkowski BZ, Hoffmann-La Roche, unpublished data. NB: Value extrapolated from linear plot of apparent values in EtOH- water mixtures. A good example (when compared with no. 1471) of the risks of linear extrapolation of results from cosolvent-water mixtures.

Appendix A (continued)

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1471	Trimethoprim	7.12 ± 0.03	А	+H	Spectro	H_2O $t = 20 \pm 0.2$ I = see text	Roth B and Strelitz JZ, The protonation of 2,4-diaminopyrimidines. I Dissociation constants and substituent effects, J. Org. Chem., 34 (4) 821–836 (1969).
	Related 2,4-diaminopyrimidines:						NB: Solutions were prepared from dilutions of stock solution in wate
	5-methyl	7.69 ± 0.03	А	+H			or EtOH; 1–2% of EtOH was found not to have observable effects
	5-benzyl	7.27 ± 0.03	А	+H			on the spectra. Buffers were prepared by dilution of stock solution
	5-(p-chloro)benzyl	7.17 ± 0.05	А	+H			with freshly boiled double-distilled water. Solutions in acetate
	Trimethoprim	7.19 ± 0.03	А	+H		H_2O $t = 20 \pm 0.2$ I = 0.1 (NaCl)	(0.01 or 0.002 M) or phosphate (0.0067 or 0.0022 M) buffers gave pK_a values that were slightly lower in the more dilute buffers; these were taken without further correction to be the thermodynamic
	Related 2,4-diaminopyrimidines:						pK_a values. Most of the values were from measurements with a
	5-methyl	7.76 ± 0.03	A	+H			Beckman Model G pH meter; later measurements also used a
	5-(p-chloro)benzy	7.25 ± 0.03	A	+H			Beckman Research Model pH meter, which gave values that differed by not more than 0.01 log unit from the values determine simultaneously with the Model G. Spectral readings from at leas 12 wavelengths were used for each pK_a value. Data were rejected the spectra did not show a precise isosbestic point. Recorded deviations are the range of values, not the standard deviation. pI values for a total of about 70 substituted 2,4-diaminopyrimidines were reported.
1472	Tripelennamine ($C_{16}H_{21}N_3$)	3.90 ± 0.08	U	+H	Potentiometric	H ₂ O	Piskorik HG, Tripelennamine hydrochloride, APDS, 14, 107-131
	CH ₂ C ₆ H ₅	8.68 ± 0.06	U	+H		t undefined I = 0.30	(1985).
	CH ₂ CH ₂ N(CH ₃) ₂					(NaCl)	Testa B and Murset-Rossetti L, The partition coefficient of protonated histamines, <i>Helv. Chim. Acta</i> , 61 , 2530–2537 (1978). NB: See Cycliramine for details. Martindale 28th Ed gave 3.9 and 9.0 at 25 °C.
1473	Triprolidine (C ₁₉ H ₂₂ N ₂)	4.01	U	+H	Potentiometric	H ₂ O	Clarke FH and Cahoon NM, Ionization constants by curve-fitting:
	H ₃ C	9.69	U	+H		<i>t</i> = 23.0	Determination of partition and distribution coefficients of acids and bases and their ions, <i>J. Pharm. Sci.</i> , 76 , 611–620 (1987). NB: See Benzoic acid for further details.

1474	Tromethamine (C ₄ H ₁₁ NO ₃) CH ₂ OH H ₂ N $-$ CH ₂ OH CH ₂ OH	8.08 ± 0.005	R	+H	Potentiometric	H_2O t = 25 I = 0.00	Bates RG and Pinching GD, Dissociation constants of weak bases from electromotive-force measurements of solutions of partially hydrolyzed salts, <i>J. Res. Nat. Bur. Stand.</i> , 43 , 519–526 (1949). Cited in Perrin Bases, ref. B31. NB: Used glass electrodes in a highly refined electrochemical cell. Other reliable values reported for temperatures between 0 and 50 °C.
1475	Tropacocaine (C ₁₅ H ₁₉ NO ₂)	9.51 ± 0.03	Α	+H	Potentiometric	H ₂ O t = 20.0 I = 0.10 (KCl) under N ₂	Buchi J and Perlia X, Beziehungen zwischen de physikalisch- chemische Eigenschaften und der Wirkung von Lokalanasthetica, <i>ArzneimForsch.</i> , 10 , 745–754 (1960). NB: See Cocaine for details.
1476	Tropacocaine	9.88	U	+H	Spectro	H_2O t = 15 I < 0.02	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases no. 2975 ref. K47. NB: See Aconitine for details.
1477	DL-Tropic acid (C ₉ H ₁₀ O ₃) COOH	3.38	U	-H	Conductance	H_2O t = 25 c = 0.03-0.001	Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, International Critical Tables, Vol. 6, McGraw-Hill, NY, 259–304
	ОН	4.20	U	-Н	Potentiometric	H ₂ O t = 25	(1929). Randinitis EJ, Barr M, Wormser HC and Nagwekar JB, Kinetics of urinary excretion of D-(-)-mandelic acid and its homologs. I. Mutual inhibitory effect of D-(-)-mandelic acid and its certain homologs on their renal tubular secretion in rats, <i>J. Pharm. Sci.</i> , 59 , 806–812 (1970). NB: See Mandelic acid for details.
1478	Tropine (C ₈ H ₁₅ NO)	10.33	A	+H	Potentiometric	H_2O t = 25 I = 0.0007	Geissman TA, Wilson BD and Medz RB, The base strengths of cis- and trans-1,2-aminoalcohols, JACS, 76, 4182–4183 (1954). Cited in Perrin Bases no. 2976 ref. G7. NB: See Pseudotropine for details.
	N H OH	11.02	U	+H		<i>I</i> = 0.05	Smith PF and Hartung WH, Cis- and trans-tropine (tropanol), <i>JACS</i> , 75 , 3859–3860 (1953). Cited in Perrin Bases no. 2976 ref. S56. NB: See Pseudotropine for details.

No.	Compound Name	pKa value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1479	Tropine	10.44	U	+H	Conductance	H_2O t = 25 c = 0.06-0.01	Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief <i>International Critical Tables</i> , vol. 6, McGraw-Hill, NY, 259–304 (1929). NB: Other values: t = 10, pK _a = 10.27; t = 50, pK _a = 10.59.
1480	Tryptophan (C ₁₁ H ₁₂ N ₂ O ₂)	2.34	А	-H	CE/pH	H ₂ O	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard ME
		9.51	А	+H	(+ve ion mode)	t = 25 I = 0.025	and Thompson RA, High-throughput screening of pK_a values of pharmaceuticals by pressure-assisted capillary electrophoresis and
		2.30	А	-H	Potentiometric	H ₂ O	mass spectrometry, Rapid Commun. Mass Spectrom., 17, 2639-2648
	,NH ₂ OH	9.30	А	+H		t = 25.0 I = 0.15 (KCl)	(2003). NB: Reported predicted values (ACD Labs) of 2.3 and 9.51 Sirius Technical Application Notes, vol. 2 , p. 10 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK.
1481	Tryptophan	2.43 9.44	A A	-H +H	Potentiometric	H_2O t = 25	Schmidt CLA, Appleman WK and Kirk PL, The apparent dissociatior constants of tryptophane and of histidine, J. Biol. Chem., 85 , 137–140
						c = 0.025	(1929). Cited in Perrin Bases no. 3301 r,ef. S13. NB: Used hydrogen
		2.18	А	-H	Potentiometric	H ₂ O	electrodes to measure pH of titrations. From a $K_{\rm a}$ value of 4.05 \times
		9.57	Α	+H		$\begin{array}{l}t=20\\c=0.005\\N_2 \text{ atmosphere}\end{array}$	10^{-10} and a K_b value of 2.4×10^{-12} . Also reported for histidine a K value of 6.7×10^{-10} and K_b values of 1.15×10^{-8} and 2.90×10^{-12} corresponding to the following p K_a values: 1.47 , 6.07 , 9.17 . Albert A, Quantitative studies of the avidity of naturally occurring substances for trace metals. <i>Biochem. J.</i> 47 , 531–538 (1950). Cited in Perrin Bases no. 3301 ref. A12. NB: Used glass electrodes for measurement of pH during titrations in carbonate-free conditions All p K_a values were reliable to \pm 0.05. NB: Other less reliable values were also cited by Perrin.
1482	Tuaminoheptane (C ₇ H ₁₇ N) H ₃ C CH ₃ NH ₂	10.48	U	+H	Potentiometric	$\begin{array}{l} \mathrm{H_2O} \ (\mathrm{extrap}) \\ t = 24 \pm 1 \\ I \sim 0.002 \end{array}$	 Chatten LG and Harris LE, Relationship between pK_b(H₂O) of organic compounds and E_{1/2} values in several nonaqueous solvents. <i>Anal. Chem.</i>, 34, 1495–1501 (1962). Cited in: Foye 1 (1 ref), see idoxuridine; N&K Chatten LG (ed.), <i>Pharmaceutical Chemistry</i>, vol. 1, Dekker, NY, 1966, pp. 85–87.

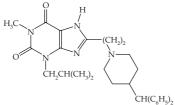

1483	Tylosin (C ₄₆ H ₇₇ NO ₁₇) $(C_{46}H_{77}NO_{17})$ $(C_{43} + C_{43} + C$	7.73 Сн ₂ Сн ₃	U	+H	Potentiometric	H_2O t = 25 I = 0.167	McFarland JW, Berger CM, Froshauer SA, Hayashi SF, Hecker SJ, Jaynes BH, Jefson MR, Kamicker BJ, Lipinski CA, Lundy KM, Reese CP and Vu CB, Quantitative Structure-activity relationships among macrolide antibacterial agents: <i>In vitro</i> and <i>in vivo</i> potency against Pasteurella multocida, <i>J. Med. Chem.</i> , 40 , 1340–1346 (1997). NB: See Azithromycin for details; average standard deviation of \pm 0.07 for the pK _a .
1484	Tyrosine (C ₉ H ₁₁ NO ₃) COOH	2.18 9.21	U A	-H +H	Potentiometric	H_2O t = 20	Albert A, Quantitative studies of the avidity of naturally occurring substances for trace metals, <i>Biochem. J.</i> , 50, 690–7 (1952). Cited in
	AH	10.47	А	-H		c = 0.005	Perrin Bases 1961 no. 3304 ref. A14. NB: Used glass electrodes for
		9.11 ± 0.01	А	+H	Potentiometric	H_2O	measurement of pH during titrations in carbonate-free conditions.
	NH ₂	10.13 ± 0.01	А	-H		t = 25 I = 0.16 (KCl)	All p K_a values were reliable to ± 0.05 . Other less reliable values were also given: p $K_1 = 2.6$; p $K_2 = 9.5$; p $K_3 = 10.3$ (spectro, no temperature reported).
	OH						Edsall JT, Martin RB and Hollingworth BR, Ionizatin of individual groups in dibasic acids, with application to the amino and hydroxyl groups of tyrosine, <i>Proc. Natl. Acad. Sci. USA</i> , 44 , 505–518 (1958). Cited in Perrin Bases 1961 no. 3304 ref. E7. NB: Used a glass electrode in cells with liquid junction potentials. These results were from direct titrations. <i>pK</i> _a values calculated from the measured microconstants were very similar.
1485	Tyrosine	2.06 ± 0.05	А	-H	soly	H_2O	Peck CC and Benet LZ, General method for determining
		9.18 ± 0.06	А	+H		t = 25.0	macrodissociation constants of polyprotic amphoteric compounds
		10.40 ± 0.09	U	-H		I = 0.00	from solubility measurements, J. Pharm. Sci., 67 , 12–16 (1978). NB: Ionic strengths were NMT 0.07M and then extrapolated to zero. Intrinsic solubility, $S_0 = 2.89 \ \mu$ M. See Dihydroxyadenine for further details.
1486	Ursodeoxycholic acid (ursodiol) (C ₂₄ H ₄₀ O ₄)	5.04 ± 0.04	А	-H	Potentiometric	H_2O $t = 25.0 \pm 0.1$	Fini A and Roda A, Chemical properties of bile acids. IV. Acidity constants of glycine-conjugated bile acids, J. Lipid Res., 28(7),
	H ₃ C., COO CH ₃ ,H HOH HOH	Н				<i>I</i> = 0.00	755–759 (1987). NB: See Chenodeoxycholic acid for full details.

- es 1961 no. 3304 ref. E7. NB: Used a glass id junction potentials. These results were values calculated from the measured similar. eral method for determining
- its of polyprotic amphoteric compounds ents, J. Pharm. Sci., 67, 12-16 (1978). NB: 0.07M and then extrapolated to zero. .89 µM. See Dihydroxyadenine for
- al properties of bile acids. IV. Acidity gated bile acids, J. Lipid Res., 28(7),

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1487	Valproic acid (C ₈ H ₁₆ O ₂)	4.6	U	—Н	Potentiometric	H ₂ O (extrap)	Chang ZL, Sodium Valproate and Valproic Acid, <i>APDS</i> , 8 , 529–556 (1979). NB: These results from titration of valproic acid with NaOH and extrapolated to 100% water from acetone–water mixtures. Titration of aqueous sodium valproate solution with aqueous HCl gave $pK_a = 4.8$.
1488	Vancomycin (C ₆₆ H ₇₅ Cl ₂ N ₉ O ₂₄) H_{HC} H_{C} H_{C	10.40 ± 0.02	บ บ บ บ	-H (COOH) +H (NHCH ₃) +H (NH ₂) -H (phenol) -H (phenol)	Potentiometric	$\begin{array}{l} H_2O\\ t=25.0\pm0.1\\ I=0.2 \ (NaCl)\\ N_2 \ atmosphere \end{array}$	Takacs-Novak K, Noszal B, Tokes-Kovesdi M and Szasz G, Acid-base properties and proton speciation of vancomycin, <i>Int. J. Pharm.</i>, 89, 261–263 (1993).NB: The functional group in parentheses is the group mainly responsible for each macroconstant.
1489	HO CONH ₂ HO CONH ₂ Vancomycin	12.00 ± 0.08 2.64 ± 0.01 7.48 ± 0.01 8.62 ± 0.01 9.28 ± 0.01 10.15 ± 0.01	U U U U U U	-H (phenol) -H (COOH) +H (NHCH ₃) +H (NH2) -H (phenol) -H (phenol)	Potentiometric	H ₂ O $t = 25.0 \pm 0.1$ I = 0.1 (NaCl)	Takacs-Novak K, Box KJ and Avdeef A, Potentiometric pK_a determination of water-insoluble compounds: Validation study in methanol/water mixtures, <i>Int. J. Pharm.</i> , 151 , 235–248 (1997). NB: See Acetaminophen for full details. The functional group in parentheses is the group mainly responsible for each macroconstant. $pK_{a1} = 2.68 \pm 0.05$, $pK_{a2} = 7.46 \pm 0.03$, $pK_{a3} = 8.71 \pm 0.04$, $pK_{a4} = 9.27 \pm 0.03$, $pK_{a5} = 10.33 \pm 0.07$, $pK_{a6} = 11.77 \pm 0.08$, by extrapolation from $6-37\%$ w/w aqueous MeOH. Very similar results (± 0.03 at worst) for $I = 0.166$ M (KCl) were
		11.88 ± 0.01	U	–H (phenol)			reported in Sirius Technical Application Notes, vol. 2 , pp. 32–35 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. Results were also obtained in 0.5 M KCl (2.63, 7.56, 8.63, 9.21, 9.94, 11.46).

1490	Vancomycin	$\begin{array}{c} 6.84 \pm 0.05 \\ 7.82 \pm 0.05 \end{array}$	U U	+H	NMR	H ₂ O t = 50 I unspecified	 Antipas AS, Vander Velde D and Stella VJ, Factors affecting the deamidation of vancomycin in aqueous solutions, <i>Int. J. Pharm.</i>, 109, 261–269 (1994). "The degradation kinetics of vancomycin hydrochloride were investigated in 2 mM aqueous solutions at 50 °C at pH 1–9.8, and amine pK_a values were titrated by ¹H-NMR at 50 °C. The deamidation of vancomycin between pH 3 and 9.8 followed pseudo-first order kinetics. In addition, the pK_a values were lower than those reported at 25 °C. Rate constants obtained from curve fitting the pH-rate profile to the observed data indicate that the reactivity of vancomycin toward deamidation in the region of pH 6–9 is influenced by its ionic state the ionic state of vancomycin may influence its degradation rate."
1491	Vanillic acid (C ₈ H ₈ O ₄) HO COOH	4.53	U	-H	Conductance	H_2O t = 25 c = 0.016- 0.001	Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in-Chief, <i>International Critical Tables</i> , vol. 6 , McGraw-Hill, NY, 259–304 (1929).
1492	Vanillin (C ₈ H ₈ O ₃) CHO \downarrow OCH ₃ OH	7.396 ± 0.004	R	-H	Spectro	H_2O I = 0.00 $t = 25.0 \pm 1.0$	Robinson RA and Kiang AK, The ionization constants of vanillin and two of its isomers, <i>Tr. Farad. Soc.</i> , 51 , 1398–1402 (1955). NB: Compounds were recrystallized to constant melting point. pH values were defined by carefully prepared phosphate solutions for which pH values were known from the electrometric measurements of Bates at the US National Bureau of Standards. Activities were estimated from Davies' equation.
1493	Vanillin, iso (C ₈ H ₈ O ₃) H O H O CH ₃	$8.88_9 \pm 0.01_9$	Α	-H	Spectro	H_2O I = 0.00 $t = 25.0 \pm 1.0$	 Robinson RA and Kiang AK, The ionization constants of vanillin and two of its isomers, <i>Tr. Farad. Soc.</i>, 51, 1398–1402 (1955). NB: See Vanillin for further details.

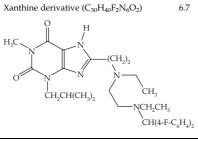
No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1494	Vanillin, ortho (C ₈ H ₈ O ₃) H \rightarrow OCH ₃	$7.91_{2}\pm 0.03_{6}$	A	-H	Spectro	H_2O I = 0.00 $t = 25.0 \pm 1.0$	Robinson RA and Kiang AK, The ionization constants of vanillin and two of its isomers, <i>Tr. Farad. Soc.</i>, 51, 1398–1402 (1955).NB: See Vanillin for further details.
1495	Verapamil (dexverapamil) ($C_{27}H_{38}N_2O_4$) OCH ₃ H ₃ CO H ₃ CO (H ₃ C) ₂ HC CN N CH ₃	8.90	U	+H	soly	H ₂ O	Surakitbanharn Y, McCandless R, Krzyzaniak JF, Dannenfelser RM and Yalkowsky SH, Self-association of dexverapamil in aqueous solution, <i>J. Pharm. Sci.</i> , 84 , 720–723 (1995). "The self-association of dexverapamil hydrochloride and its effect of the solubility-pH profile of the drug were investigated. The pK_a and intrinsic solubility of monomeric dexverapamil were determined from its pH-solubility profile to be 8.90 and 6.6 × 10^{-5} M, respectively The apparent pK_a of the self-associated drug was estimated to be 7.99 The dependence of the drug solubility on pH and the solubilization of naphthalene and anthracene as a function of ionized drug concentration suggest that the self-associated dexverapamil is a cationic dimer."
1496	Verapamil	8.75	U	+H	partition	H ₂ O	 Hasegawa J, Fujita T, Hayashi Y, Iwamoto K and Watanabe J, pKa determination of verapamil by liquid-liquid partition, <i>J. Pharm. Sci.</i>, 73, 442–445 (1984). "The pKa of verapamil hydrochloride (I) was determined by measuring the partition coefficient of I between n-heptane and aqueous buffer solution at various pH values. The effect of ionic strength and temperature on the pKa was also measured. The estimated pKa in human plasma was 8.75."
1497	Verapamil	9.07	U	+H	Potentiometric	H ₂ O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K an Artursson P, Absorption classification of oral drugs based on molecular surface properties, <i>J. Med. Chem.</i> , 46 (4), 558–570 (2003) NB: from extrapolation of aqueous-methanol mixtures to 0% methanol.



No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1502	Vindesine (C ₄₃ H ₅₅ N ₅ O ₇)	-0.8	U	+H	kinetic	H ₂ O	Vendrig DE, Beijnen JH, van der Houwen OA and Holthuis JJ,
	OH	3.5	U	+H		t = 80	Degradation kinetics of vincristine sulfate and vindesine sulfate in
	Et	5.8	U	+H		I = 0.00	aqueous solutions, Int. J. Pharm., 50, 189–196 (1989).
		8.5	U	+H			NB: See Vincristine for details.
	H COOCH ₃ CH ₃ O CH ₃ O	CONH ₂					
1503	Vindesine	6.04	U	+H	Potentiometric	H ₂ O	Barnett CJ, Cullinan GJ, Gerzon K, Hoying RC, Jones WE, Newton
		7.67	U	+H		t undefined I undefined	WM, Poore GA, Robison RL, Sweeney MJ, Todd GC, Dyke RW and Nelson RL, Structure-activity relationships of dimeric <i>Catharanthus</i>
		5.39	U	+H		66% DMF	alkaloids. 1. Deacetylvinblastine amide (Vindesine) sulfate,
		7.36	U	+H		t undefined	J. Med. Chem., 21, 88–96 (1978).
						I undefined	NB: Apparent $pK_{a'}$ values were reported for several vindesine derivatives, for example, the monohydrazide and the acid azide.
504	Warfarin (C ₁₉ H ₁₆ O ₄)	4.90 ± 0.01	А	-H	Potentiometric	H ₂ O	Avdeef A, Box KJ, Comer JEA, Hibbert C and Tam KY, pH-metric
						$t=25\pm0.5$	log P 10. Determination of liposomal membrane-water partition
	CH ₂ COCH ₃					<i>I</i> = 0.15 (KCl)	coefficients of ionizable drugs, <i>Pharm. Res.</i> , 15 (2), 209–215 (1998). NB: Used a Sirius PCA101 autotitrator. Also gave log P (octanol- water) and log P (dioleylphosphatidylcholine unilamellar vesicles- water).
	Ö						
1505	Warfarin	5.08	А	-Н	CE/pH (–ve ion mode)	H_2O t = 25 I = 0.025	Wan H, Holmen AG, Wang Y, Lindberg W, Englund M, Nagard MB and Thompson RA, High-throughput screening of pK _a values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, <i>Rapid Commun. Mass Spectrom.</i> , 17 , 2639–2648 (2003). NB: Reported a predicted value (ACD Labs) of 4.5.

1506	Warfarin	5.03 ± 0.01	А	-H	Spectro ($\lambda = 272-$ 284 nm)	H_2O $t = 25 \pm 0.2$ I = 0.1 (KCl)	Stella VJ, Mooney KG and Pipkin JD, Dissolution and ionization of warfarin, J. Pharm. Sci., 73, 946–948 (1984). "A study is described which investigated the ionization and
		5.03 ± 0.02	А	-H	2011111)	I = 0.1 (KCl) I = 0.5 (KCl)	ionization kinetics of warfarin (I), to confirm the probable existence
		5.06	A	-H	soly	I = 0.1 (KCl) $I = 0.1 (KCl)$	of a cyclic hemiketal in aqueous I solution and to determine the possible consequences of the cyclic hemiketal to acyclic enol equilibrium and ionization kinetics on the dissolution rate of I. The equilibrium aqueous solubility of unionized I at 25 °C and 0.5 ionic strength was 1.28×10^{-5} M, with an observed dissociation constant of 5.03–5.06. Hemiketal-acyclic enol ratio was estimated to be diff 20:1. Ionization rates were also calculated. Solving equations for instantaneous ionizing acids demonstrated that dissolution of I was not affected by hemiketal formation." NB: Also reported a pK_a value for phenprocoumon, 3.77 ± 0.01 at $I = 0.1$ M.
1507	Warfarin	4.82	U	-Н	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, J. Med. Chem., 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
1508	Warfarin	5.05 ± 0.1	U	-H	Spectro $(\lambda = 274 \text{ nm})$	H_2O t undefined I = 0.1	Hiskey CF, Bullock E and Whitman G, Spectrophotometric study of aqueous solutions of warfarin sodium, J. Pharm. Sci., 51, 43–46 (1962). NB: No details on calibration of pH meter or other experimental factors.
1509	Water (H ₂ O) H ₂ O 2H ₂ O <=> H ₃ O ⁺ + OH ⁻	13.996 ± 0.001	R	autopro- tolysis	Potentiometric	H_2O t = 25.00 I = 0.000	 Harned HS and Hamer WJ, The ionization constant of water and the dissociation of water in potassium chloride solutions from electromotive forces of cells without liquid junction, <i>JACS</i>, 55, 2194–2205 (1933). NB: See also Harned HS and Robinson RA, Temperature variation of the ionization constants of weak electrolytes, <i>Trans. Farad. Soc.</i>, 36, 973–978 (1940); Ramette RW, On deducing the <i>pK</i>-temperature equation, <i>J. Chem. Edn.</i>, 54(5), 280–283 (1977). For pK_w values as a function of temperature, see
1510	Water (H ₂ O) H ₂ O	13.78 ± 0.01	Α	autopro- tolysis	Potentiometric	H ₂ O t = 25.00 I = 0.1 (NaCl)	Introductory text, Section 2.2.3. Canel E and Gultepe A, Dogan A, Kihc E, The determination of protonation constants of some amino acids and their esters by potentiometry in different media, <i>J. Solution Chem.</i> , 35 (1), 5–19 (2006). NB: See Amino acid esters for details. Other values for pK _w were reported in cosolvents at the same ionic strength, and compared with closely similar literature values: Solvent 30% EtOH 50% EtOH 70% EtOH pK_w 14.17±0.03 14.40±0.02 14.67±0.01

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1511	WY-7953 (1'-amino-cyclopentanecarbox- amidopenicillin) (C ₁₄ H ₂₁ N ₃ O ₄ S)		A U	H +H	Potentiometric	H_2O t = 25.0±0.1 I = 0.00	Hou JP and Poole JW, The aminoacid nature of ampicillin and relate penicillins, <i>J. Pharm. Sci.</i> , 58 , 1510–1515 (1969). NB: See Ampicillin for details. Also reported WY-4508, the corresponding cyclohexane homologue, which had $pK_{a1} = 2.68 \pm 0.04$ and $pK_{a2} = 7.50 \pm 0.02$ under the same conditions.
1512	WY- 8542 (1'-amino-3'- methylcyclopentane- carboxamidopenicillin) (C ₁₅ H ₂₃ N ₃ O ₄ S) CH ₃ NH ₂ H	- 7.65 ± 0.06 CH ₃ CH ₃ OH	U	-H +H	Potentiometric	H_2O $t = 25.0 \pm 0.1$ I = 0.00	 Hou JP and Poole JW, The aminoacid nature of ampicillin and relate penicillins, <i>J. Pharm. Sci.</i>, 58, 1510–1515 (1969). NB: See Ampicillin for details.
1513	Xanthine Derivatives R_1 N R_3 $(CH_2)n$ N R_2 N Z					H_2O $t = 21 \pm I = 0.1$ N ₂ atmosphere	Walther B, Carrupt P-A, El Tayar N and Testa B, 8-Substituted xanthines as phosphodiesterase inhibitors: Conformation-dependent lipophilicity and structure-activity relationships, <i>Helv Chim. Acta</i> , 72 , 507–517 (1989). Potentiometric Method: Solutions (final concentration 7.5×10^{-4} M) were prepared in distilled water which had been boiled to remove O ₂ and CO ₂ and saturated with N ₂ . The ionic strength was fixed at 0.1M using KC An excess of HCl was added, and the solutions were back-titrate with 0.01N NaOH using a Metrohm 670 titroprocessor. Titration curves were determined in triplicate for each compound and the pK_a calculated using a nonlogarithmic linearization of the titratio curve proposed by Benet and Goyan [9] and modified by Leeson and Brown [10] to overcome the problem of dilution during titration. The temp was 21 ± 1 .


R1 R2 R3 n Z						Solubility method:
Me i-Bu H 2 Ph ₂ CH	6.0	U	+H	coltr		$\dots pK_a$ values were determined from solubility data at 21 \pm 1. For
-		U		soly		1 - 2
Me i-Bu H 2 ^a Ph ₂ CH	5.6	U	+H	soly		each compound, 5–7 buffer solutions (1/15M phosphate)were
H i-Bu H 2 Ph ₂ CH	5.2	U	+H	soly		prepared in the pH range 3.5–7.5. These solns were saturated by
Me i-Bu Me 2 Ph ₂ CH	6.4	U	+H	Potentiometric		addition of an excess of the compound and vigorously shaken for
Me Me H 2 Ph ₂ CH	5.6	U	+H	Potentiometric		3 h. The pH was then measured, the suspension filtered, and the
Me i-Bu H 2 H	7.9	U	+H	Potentiometric		solute concentration measured by RP-HPLC The pK_a values
Me i-Bu H 2 4-F-Ph ₂ CH	5.2	U	+H	Potentiometric		were then calculated according to Zimmermann [11].
Me i-Bu Me 2 4-F-Ph ₂ CH	6.1	U	+H	Potentiometric		NB: No details provided of pH meter calibration for either method.
Me i-Bu H 1 Ph ₂ CH	5.4	U	+H	soly		No demonstration that saturation had been reached in the
Me Me H 1 Ph ₂ CH	5.3	U	+H	soly		solubility-pH method. Use was not made of the improved data
Me Me H 3 Ph ₂ CH	6.6	U	+H	Potentiometric		handling procedure for the solubility method proposed by Lewis
Me Me 3 Ph ₂ CH	6.1	U	+H	soly		(1984) based on Zimmermann (see introductory text, refs. 52
Me i-Bu Me 3 4-F-Ph ₂ CH	5.6	U	+H	Potentiometric		and 53).
Me Ph Me 3 Ph ₂ CH	6.8	U	+H	Potentiometric		
Me Pr Me 3 Ph ₂ CH	6.4	U	+H	Potentiometric		
Et i-Bu H 3 Ph ₂ CH	6.9	U	+H	Potentiometric		
Et i-Bu Me 3 Ph ₂ CH	6.2	U	+H	Potentiometric		
Me i-Bu H 3 Ph ₂ CH	5.4	U	+H	Potentiometric		
Me i-Bu Me 3 Ph ₂ CH	6.3	U	+H	soly		
^a -CH2CH(OH)-						
Xanthine derivative $(C_{30}H_{37}N_5O_2)$	6.5	U	+H	Potentiometric	H_2O_{t-21+1}	Walther B, Carrupt P-A, El Tayar N and Testa B, 8-Substituted

1515

421

1514

c c c		
с	H_2O $t = 21 \pm 1$ I = 0.1 $N_2 \text{ atmosphere}$	 Walther B, Carrupt P-A, El Tayar N and Testa B, 8-Substituted xanthines as phosphodiesterase inhibitors: Conformation-dependent lipophilicity and structure-activity relationships, <i>Helv. Clim. Acta</i>, 72, 507–517 (1989). NB: See Xanthine Derivatives (above) for details.

Potentiometric H₂O $t = 21 \pm 1$ I = 0.1N2 atmosphere

Walther B, Carrupt P-A, El Tayar N and Testa B, 8-Substituted xanthines as phosphodiesterase inhibitors: Conformationdependent lipophilicity and structure-activity relationships. Helv. Chim. Acta, 72, 507-517 (1989). NB: See Xanthine Derivatives (above) for details.

+H

U

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
1516	Xipamide (C ₁₅ H ₁₅ ClN ₂ O ₄ S) H_2NO_2S H_2NO_2S H_2NO_2S H_2OO_2S H_1C H_2OO_2S H_1C H_2OO_2S H_1C $H_$	$\begin{array}{c} 4.75 \pm 0.04 \\ 10.0 \end{array}$	U U	-H -H	Spectro	0.4% MeOH in H ₂ O	Hempelmann FW, Untersuchungen mit Xipamid (4-Chlor-5- sulfamoyl-2',6'-salicyloxylidid). Teil I. Physicalisch-chemische und chemische Eigenschaften, <i>ArzneimForsch.</i> , 27 , 2140–2143 (1977). NB: Spectrophotometric measurements used 0.127 mM solutions of xipamid in Britton-Robinson buffer at various pH values. Temperature was not stated. The paper assigned the 4.8 value to the phenol and 10.0 to the sulphonamide group, based on the absence of the lower value in measurements on the corresponding des-sulphamoyl model compound. ACD/pK _a calculations confirmed these assignments.
		4.58	U	-H	Potentiometric	H ₂ O	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as
		10.47	U	-H		t = 37	a tool for the prediction of human passive intestinal absorption,
1517	Xylometazoline ($C_{16}H_{24}N_2$)	10.6 ± 0.1	U	+H	Spectro	I = 0.15 (KCl) H ₂ O	<i>Pharm. Res.</i> , 16 , 882–888 (1999). Golander Y and De Witte WJ, Xylometazoline hydrochloride, <i>APDS</i> ,
	H_3C $C(CH_3)_3$				-Frank	t = 22.0	14, 135–155 (1985). Cited Stott AF, Ciba-Geigy Ltd., private communication.
1518	Zidovudine (C ₁₀ H ₁₃ N ₅ O ₄)	9.53	U	+H	Potentiometric	H_2O t = 25	Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on
	HN HO N ₃ CH ₃	9.45	U	+H	Potentiometric	H_2O t = 37 I = 0.15 (KCl)	 molecular surface properties, J. Med. Chem. 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol. Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i>, 16, 882–888 (1999).

1519	Zileuton (C ₁₁ H ₁₂ N ₂ O ₂ S) $(H_3 + CONH_2 + CH_3 + CONH_2)$	10.3	U	-H	Potentiometric	H ₂ O t undefined I undefined	"The pK _a of titration formatic mixed so were ma solution	technique (Irving HM on curves of metal com olvents, J. Chem. Soc., 2 ade during the acid tit s of sodium hydroxid	nined us I and Ro plexes 1904–291 ration of e, both is	sing the Calvin-Bjerrum ossoti HS, The calculation of from pH titration curves in 0 (1954)). pH measurements
		10.5	U	-Н	soly		of 10.3. The pH de	-	solubilit	y (Table) is consistent with a
							Table: Solu	ıbility of zileuton in w	vater at v	various pH values
							рН	Solubility (mg/mL)	рН	Solubility (mg/mL)
							1.87 3.80 7.50	0.18 0.10 0.12	10.1 10.5 11.6	0.28 1.50 73.7
1520	Zileuton	10.51 (0.05)	U	-Н	Spectro	H_2O t = RT I = 0.2-0.26 (KCl, NaCl)	zileuton 1473 (19 ''Fifty mic (4.23 mM 260, 270 8451-A s least-squ monopr	, a potent 5-lipoxygen 92). roliters of a stock solu 4) was mixed with 24 ⁴ and 280 nm was reco spectrophotometer. Tr uares fit of the data to	ase inhil tion of z 50 uL of rded wit te pK _a w a model	nechanism of degradation of bitor, <i>Pharm. Res.</i> , 9 , 1465– tileuton in methanol buffer and the absorbance at th a Hewlett-Packard Model ras determined by nonlinear if or the dissociation of a bimilar values were recorded
1521	Zomepirac (C ₁₅ H ₁₄ CINO ₃) Cl	4.75 H	U	-Н	Potentiometric	H2O-EtOH (1:1 v/v)	Zinic M, K sodium, "The pK _a v titration the reco equipme G-202C, Zomepii mixture Potentio	iuftinec J, Hofman H, APDS, 15 , 673–698 (1 value of zomepirac wa using an automatic b rding unit Titrigraph ! ent from Radiometer-C was used against a ca rac accurately weighee 1:1 (v/v), was titratec metric curves were re	986). as deterr urette. N SBR-2C o Copenha lomel k l and dis l with 0. corded l	and Meic Z, Zomepirac nined by potentiometric Aodel ABU 13, coupled with of a Titrator TTT2 (all agen). The glass electrode 401 reference electrode. ssolved in an ethanol / water 1 M NaOH solution. between pH 3.45–12.0 and calculation according to
							rer. 10.			(continued)

Appendix	A	(continued)
----------	---	-------------

No.	Compound Name	pK _a value(s)	Data quality	lonization type	Method	Conditions	Comments and Reference(s)
							10. Tenford C and Wawzanek S, <i>Physical Methods of Organic Chemistry</i> , Weissberger A (ed.), Intersc. Publ. Co., vol. I Bd. 4 , p. 2915.
1522	Zopiclone (C ₁₇ H ₁₇ ClN ₆ O ₃) O	-1.5 ± 0.1	U	+H	Spectro $(\lambda = 305 \text{ nm})$	10% ACN in aq. H_2SO_4 t = 25.0	Largeron M and Fleury MB, Acid catalyzed hydrolysis of a series of zopiclone analogues, J. Pharm. Sci., 78(8), 627–631 (1989). NB: The pyrazine nitrogens were shown by spectrophotometric
		6.8	U	+H	Potentiometric	25% aq. ACN t = 25.0 I = 0.075 (LiClO ₄) c = 0.002	measurements not to protonate.
		6.76	U	+H	Potentiometric	H ₂ O t = 37 I = 0.15 (KCl)	Balon K, Riebesehl BU and Muller BW, Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption, <i>Pharm. Res.</i> , 16 , 882–888 (1999).
	└──N CH ₃						

APPENDIX B

Supplementary List— pK_a values found with little or no data quality information—mainly secondary literature

econdary interature	-							
Reliability data	has recently been found for a very small number of compounds in							
this listing. Eff	this listing. Efforts are continuing in the search for reliability data to support the							
remaining values in the primary literature. Structures not given in this list will be								
found in the Main List (Appendix A). Common secondary sources are given in								
this Appendix in abbreviated form:								
Anon	Anon, American Hospital Formulary Service, ASHP,							
	Washington DC (1977).							
Avery	Speight TM, Avery's Drug Treatment, 3rd Edn., Publishing							
	Sciences Group Inc., Littleton, MA pp. 1352-1380 (1987).							
BPC	British Pharmaceutical Codex, 11th Edn., Pharmaceutical Press,							
	London (1979).							
Clarke	Moffat A (ed.), Clarke's Isolation and Identification of Drugs, 2nd							
	Edn., Pharmaceutical Press London (1986).							
Craig	Craig PN, Drug Compendium, in Hansch C, Sammes PG, Taylor							
	JB (eds.), Comprehensive Medicinal Chemistry, vol. 6 pp. 236–965							
	(1990). The bulk (516) of the pK_a values are from the database of							
	the Medicinal Chemistry Project (A. J. Leo, Director, Medicinal							
	Chemistry Project, Chemistry Dept., Pomona College,							
	Claremont, CA 91711 USA) at Pomona College. These were							
	augmented by several values obtained from "Clarke's Isolation							
	and Identification of Drugs" and "The Merck Index", 10th Edn.							
Foye	Foye WO, Lemke TL and Williams DA, Principles of Medicinal							
	Chemistry, 4th Edn., Williams and Wilkins, Philadelphia PA							
	(1995).							
Foye 3rd	Foye WO, Principles of Medicinal Chemistry, 3rd Edn., Lea and							
	Febiger, Philadelphia PA (1989).							
Hoover	Hoover JE (ed.), Dispensing of Medication, 8th Edn., Mack							
	Publishing Co., Easton, PA, USA pp. 230, 247, 418–426, 468–634							
	(1976).							
Kortum	Kortum G, Vogel W and Andrussow K, Dissociation constants of							
	organic acids in water, IUPAC, Butterworths, London (1961).							
Martin	Martin AN, Swarbrick J and Cammarata A, Physical Pharmacy,							
	3rd Edn., Lea and Febiger, Philadelphia, PA (1983) Tables 9–2							
	and 9–3; See also the corresponding Tables in later editions.							
McEvoy	McEvoy GK (ed.), American Hospital Formulary Service, Drug							
	Information, Am. Soc. Hosp. Pharm., Washington, DC (1994).							

Merck 9	M. Windholz, <i>Merck Index,</i> 9th Edn., Merck and Co., Inc., Rahway, NJ (1976).
Merck 10	S. Budavari, <i>Merck Index</i> , 10th Edn., Merck and Co., Inc., Rahway, NJ (1983).
Merck 11	S. Budavari, <i>Merck Index</i> , 11th Edn., Merck and Co., Inc., Rahway, NJ (1989).
N&K	Newton DW and Kluza RB, pK_a values of medicinal compounds in pharmacy practice, <i>Drug Intelligence and Clinical Pharmacy</i> , 12 , 546–554 (1978).
Perrin Bases	Perrin DD, Dissociation Contants of Organic Bases in Aqueous Solution, IUPAC, Butterworths, London (1965).
Perrin Bases Suppl	Perrin DD, Dissociation Constants of Organic Bases in Aqueous Solution: Supplement, IUPAC, Butterworths, London (1972).
Ritschel	Ritschel WA, <i>in</i> Francke DE and Whitney HAK, Jr. (eds.), <i>Perspectives in Clinical Pharmacy</i> , 1st Edn., Drug Intelligence Publications, Hamilton, IL, USA pp. 325–367 (1972).
S&R	Smith SE and Rawlins MD, <i>Variability in Human Drug Response</i> , Butterworths, London pp. 154–165 (1973).
W&G	Delgado JN and Remers WA (eds.), Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 10th Edn., Lippincott-Raven, Philadelphia and New York 915–921 (1998).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
			See comments	Type (+H or -H)		Solvent t (°C) Ionic strength (I) or analyte concentration (c) in molar (M) units	Date reliability cutoff points R: Reliable = $\pm < 0.02$ A: Approx = ± 0.02 to ± 0.06 U: Uncertain = $\pm > 0.06$
							These overall data reliability cutoffs apply when all other aspects of the pK_a values have been considered. Where key variables (temperature, ionic strength and solvent composition) have not been reported, or the value was obtained from a computer program, a value is automatically assessed as U: Uncertain. A few results have been classified as VU: Very Uncertain.
1523	Acebutolol (C ₁₈ H ₂₈ N ₂ O ₄) OCH ₂ CH(OH)CH ₂ NHCH(CH ₃) ₂ COCH ₃ NHCOCH ₂ CH ₂ CH ₃	9.40	U	+H			 Kaye CM and Long AD, The influence of pH on the buccal absorption and plasma and renal elimination of acebutolol, <i>Br. J. Clin. Pharmacol.</i>, 3(1–3), 196–7 (1976). "Acebutolol has a pK_a of 9.40 and a water solubility of 0.31%."
1524	Acebutolol	9.67	U	+H			 Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man, J. Pharmacokin. Biopharm., 12, 263–287 (1984); Ref. Tempelton R, May & Baker Ltd., Dagenham, England. Personal communication.
1525	Acebutolol	9.67	U	+H			England. Personal communication. Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C and Vittoria A, Relationships between octanol-water

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1526	Acebutolol	9.4	U	+H			partition data, chromatographic indices and their dependence on pF in a set of beta-adrenoceptor blocking agents, <i>Farmaco</i> , 45 , 647–66 (1990). Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set am leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47 , 1242–1250 (2004); ref. 275 Clarke, p. 309. Cited in Foster RT and
1320	Acebutoloi	9.4	0	+n			Carr RA, Acebutolol, <i>APDS</i> , 19 , 1–2 (1990).
1527	Acenocoumarol (C ₁₉ H ₁₅ NO ₆) $\downarrow \downarrow $	4.7	U	-Н			 Anton AH, A drug-induced change ir the distribution and renal excretion of sulfonamides, <i>JPET</i>, 134, 291–303 (1961). " The value was obtained from Dayton PG, personal communication."
1528	Acetaminophen (paracetamol)	10.15	U	-H			Chow YP and Repta A, J. Pharm. Sci., 61(9), 1454–58 (1972). Cited in Fairbrother JE, Acetaminophen, <i>APDS</i> , 3 , 27(1974). NB: No experimental data was given in the Chow and Repta reference, which simply stated: Abstracted in part from a M.S. thesis by Y.P. Chow, U. Kansas, 1972. Also presented to the Basic Pharmaceutics Section, APHA Academy Meeting, April 1972.
1529	Acetaminophen (paracetamol)	9.9	U	+H			Rhodes HJ, DeNardo JJ, Bode DW and Blake MI, Differentiating non- aqueous titration of aspirin, acetaminophen and salicylamide

1530 1531	Acetaminophen (paracetamol) Acetanilide	9.86±0.13 0.61	U U	-H +H	comp	$H_2O t = 40$	mixtures, J. Pharm. Sci., 64, 1386–1388 (1975). NB: Value quoted without reference or conditions. ACD/pKa estimate Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1, Dekker,
1532	Acetazolamide	7.2	U	-H			New York, pp. 85–87 (1966); Martin. Maren TH, Mayer E and Wadsworth BC, Carbonic anhydrase inhibition I. The pharmacology of Diamox [®] , 2-acetylamino-1,3,4-thiadiazole- 5-sulfonamide, <i>Bull. Johns Hopkins</i> <i>Hosp.</i> , 95 , 199–243 (1954). Cited by: Anton AH, A drug-induced change in the distribution and renal excretion of sulfonamides, <i>JPET</i> , 134 , 291–303 (1961).
1533	Acetazolamide	7.4	U	-H			Kunka RL and Mattocks AM, Relationship of pharmacokinetics to pharmacological response for acetazolamide, <i>J. Pharm. Sci.</i> , 68 (3), 347–349 (1979). NB: Value was quoted without references or experimental details.
1534	Acetazolamide	7.2	U	-H			Parasrampuria J, Acetazolamide, APDS, 22 , 1–32 (1993). NB: No references or experimental details.
1535	Acetazolamide	7.4	U	-H		t = 37	Wallace SM and Riegelman S, Uptake of acetazolamide by human erythrocytes <i>in vitro</i> , <i>J. Pharm. Sci.</i> , 66 , 729–731 (1977).
1536	Acetohydroxamic acid (C ₂ H ₅ NO ₂) CH ₃ CONHOH	9.4	U	-H			Craig
1537	α-Acetylmethadol	8.6	U	+H			Craig
1538	Acyclovir	2.27	U	$^{+\Pi}_{+\mathrm{H}}$			Laskin OL, Clinical pharmacokinetics
1550		9.25	U	-H			of acyclovir, <i>Clin. Pharmacokinetics</i> of acyclovir, <i>Clin. Pharmacokin.</i> , 8 , 187-201. (1983). "The rise in serum creatine in the absence of renal dysfunction suggests that acyclovir, which is both a weak acid and base (pK _a 2.27 and 9.25) may compete with renal organic base transport of creatinine."

Appendix B (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1539	Adenosine	3.5	U	+H			Cheung AP and Kenney D, J. Chromatogr., 506 , 119–131 (1990). Cited in Mahler GS, Adenosine, APDS, 25 , 1–37 (1997).
1540	Ajmaline (C ₂₀ H ₂₆ N ₂ O ₂) H, HO H, HO $H_{3}C$ H, CH ₂ CH ₃	8.2	U	+H			Craig
1541	Albuterol	9.3 10.3	U U	+H -H			Avery
1542	Alclofenac (C ₁₁ H ₁₁ ClO ₃) Cl CH ₂ =CHCH ₂ O CH ₂ COOH	100		-H	potentio	DMSO/H ₂ O	 Chiarini A, Tartarini A and Fini A, pH Solubility relationship and partition coefficients for some anti-inflammatory arylaliphatic acids, <i>Arch. Pharm. Weinheim</i>, 317, 268–273 (1984). "The pK_a values of some anti-inflammatory arylaliphatic acids, including alclofenac and ibuprofen, were measured potentiometrically in dimethyl sulfoxide/water. The values were confirmed by assessing the solubility of the acids as a function of the pH of the aqueous solutions. In this way, the intrinsic partition coefficient in octanol/ water was defined."

1543	Alclofenac	4.3	U	-H	Craig
1544	Alfentanil (C ₂₁ H ₃₂ N ₆ O ₃) $O \rightarrow CH_3$ $H_3C \rightarrow N \rightarrow OCH_3$	6.5	U	+H	 Larijani GE and Goldberg ME, Alfentanil Hydrochloride: A new short-acting narcotic analgesic for surgical procedures, <i>Clinical</i> <i>Pharmacy</i>, 6, 275–282 (1987). " Alfentanil is a tertiary amine with an ionization constant of 6.5 resulting in approximately 10% ionization at physiologic pH. When compared with fentanyl (II), I has a much greater unionized fraction at Duff.
1545	Alfentanil	6.5	U	+H	 physiologic pH." Meuldermans WEG, Hurkmans RMA and Heykants JJP, Plasma protein binding and distribution of fentanyl, sulfentanil, alfentanil and lofentanil in blood, Arch. Int. Pharmacodyn., 257, 4–19 (1982). Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47,
1546	Alginic acids				1242–1250 (2004); ref. 276. Selleri R, Orzalesi G, Mari F, Bertol E, Influence of certain types of alginic acids on the activity of drugs used in gastric disorders, <i>Boll. Chim. Farm.</i> , 119 , 41–51 (1980).

		<i>w</i> + <i>t</i> >	.			Conditions	
No.	Name	p <i>K</i> _a value(s)	Data quality	Ionization type	Method	t °C; l or c M	Comments and Reference(s)
	Alginate building blocks: $ \begin{array}{c} $	Mannuronic acid: 3.38	U	-Н			Onsøyen E, Hydration induced swelling of alginate based matrix tablets at GI-tract pH conditions, <i>in</i> Karsa DR and Stephenson RA (eds.), Excipients and delivery systems for pharmaceutical formulations, <i>Roy.</i> <i>Soc. Chem.</i> , London pp. 108–122
	-OOC OH HOTHO HOTHO -OOC OH	Guluronic acid: 3.65	U	-H			(1995). NB: Linear glycuronan polymer consisting of a mixture of β-(1-4)- D-mannosyluronic acid and α-(1-4)- L-gulosyluronic acid residues
	-00C OH HO HO HO OH HO HO HO OH -00C						(RCOOH). "The organoleptic characteristics, level of impurities, exchange capacities, pK _a , pH, affinity for inorganic ions,
	Monomer: C ₆ H ₁₀ O ₇						intrinsic viscosities, molecular weights, buffer capacity in artificial gastric fluids and other properties of 3 different types of alginic acids used in antacid preparations are discussed."
1547	Allopurinol (C ₅ H ₄ N ₄ O) $\downarrow N \rightarrow H$ $\downarrow N \rightarrow N$ $\downarrow N \rightarrow N$ $\downarrow OH$	10.2	U	-Н	spectro		 Benezra SA and Bennett TR, Allopurinol, APDS, 7, 1–17 (1978). Spence J and Jones A, Burroughs Wellcome, personal communication. NB: See also Foye, gave 9.4.
1548	Allopurinol	9.00 9.4	U U	H H	potentio	H_2O t = 37 I = 0.15 (KCl)	McEvoy NB: See Aspirin, no. 96.

1549	Alphaprodine (C ₁₆ H ₂₃ NO ₂)	8.73	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi
	CH ₃ CH ₃ OOCCH ₂ CH ₃						L, Physical methods for the identification of narcotics. IB. Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull.</i> <i>Narcotics</i> , UN Dept. Social Affairs, vol. 6 , pp. 7–19 (1954). CA 48:69490; updated by Martin L, Genest K, Cloutier JAK and Farmilo CG, <i>Bull.</i> <i>Narcotics</i> , UN Dept. Social Affairs, 15 (3–4), 17–38 (1963); NB: Cited in Beckett AH, Analgesics and their antagonists. I., <i>J. Pharm. Pharmacol.</i> , 8 , 848–859 (1956); also cited by Taylor JF, Methods of Chemical Analysis, Ch. 2, in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i> , Plenum Press NY (1971). "The pK _a values are from the data of Farmilo and others, who used aqueous ethanol as solvent in many of the determinations."
1550	Alprenolol	9.63	U	+H			Avery; Heel and Avery, Drug Treatment, <i>in</i> Avery GS, 2nd Edn., ADIS Press, Sydney, 1212–1222 (1980). NB: See Acebutolol, no. 1524; ref: Bodin NO, Borg KO, Johannson R, Obianwu H and Svensson R, Absorption, distribution, and excretion of alprenolol in man, dog, and rat, <i>Acta Pharmacol. Toxicol.</i> , 35 (4), 261–269 (1974); gave pK _a = 9.7.
1551	Altretamine (hexamethylmelamine) $(C_9H_{18}N_6)$	10.3	U	+H			Craig
	$(CH_3)_2N$ N N(CH_3) ₂ N N						

N(CH₃)₂

434

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1552	Amantadine	10.40	U	+H			Hoskey CF, personal communication, Endo Laboratories, Garden City, NY (1975).
1553	Amantadine	10.1	U	+H			Aoki FY and Long AD, Clinical pharmacokinetics of amantadine hydrochloride, <i>Clin. Pharmacokin.</i> , 14 (1), 35–41 (1988).
							"Amantadine (1-adamantanamine) is an aliphatic primary amine with a pK_a of 10.1"
1554	Amantadine	10.68	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004). Ref. not given: Potentiometric titration.
1555	Amantadine	10.8	U	+H	comp		Albert A, <i>Selective Toxicity</i> , 4th Edn., London, Methuen, p. 281 (1968). NB Stated that the pK _a value was calculated.
1556	Amdinocillin	3.4	U	-H			Craig
		8.9	U	+H			
1557	$\begin{array}{c} \text{Amikacin} (C_{22}H_{43}N_5O_{13}) \\ & \stackrel{\text{HOCH}_2}{\underset{H_2}{\overset{\text{HOCH}_2}{\underset{H_1}{\overset{\text{HO}}{\underset{H_2}{\underset{H_2}{\overset{\text{HO}}{\underset{H_2}{\overset{\text{HO}}{\underset{H_2}{\overset{\text{HO}}{\underset{H_2}{\overset{\text{HO}}{\underset{H_2}{\underset{H_2}{\overset{\text{HO}}{\underset{H_2}{\underset{H_2}{\overset{H_2}{\underset{H_2}}{\underset{H_2}{\underset{H_2}{\underset{H_2}{\underset{H_2}{\underset{H_2}{\underset{H_2}}{\underset{H_2}{\underset{H_2}}{\underset{H_2}{\underset{H_2}}{\underset{H_2}{\underset{H_2}}{\underset{H_2}}{\underset{H_2}{\underset{H_2}}{H_2$	8.1 NH ₂	U	+H	potentio	H ₂ O	Monteleone PM, Muhammed N, Brown RD, McGrory JP and Hanna SA, Amikacin sulfate, APDS, 12 , 37–71 (1983). NB: Ref. 17 illustrates with Gentamicin the same observation that was made here for amikacin, i.e., the pK _a values are all very closely overlapping.

"Amikacin (0.1 mmole) was dissolved in water, and 0.5 mmole of potassium hydroxide was added. The solution was titrated with 0.5-N hydrochloric acid using SCE/glass

1558 1559	Amiloride Aminacrine (9-aminoacridine) ($C_{13}H_{10}N_2$)	8.7 10.0	U U	+H +H		 electrodes. Instrumentation included a Radiometer recording titration system with PM-64 pH meter TTT60 titrator, REC-61 servograph and an ABU-13 autoburet (16). If the four amine groups in amikacin are considered to be equivalent, then an apparent pK_a value of 8.1 may be estimated from the half neutralization point (17). 16. Hull DA, Bristol Labs, <i>Syracuse</i>, NY, data on file. 17. Rosenkrantz BE, Greco JR, Hoogerheide JG and Oden EM, <i>APDS</i>, 9, 310 (1980)." Avery Craig
1560	Amino acids					See Perrin DD, <i>Dissociation Constants of</i> <i>Organic Bases in Aqueous Solution</i> , 1965, Butterworths, Lond. (1965), for detailed and extensive coverage of pK _a values for amino acids and small
4 - 44		2.40			но	peptides.
1561	4-Aminobenzoic acid	2.40 4.90	U A	+H _H	H_2O t = 25	El-Obeid HA and Al-Badr AA, Aminobenzoic acid, <i>APDS</i> , 22 , 33–106 (1993). NB: Merck 11, no. 434: 4.65, 4.80; see also Clarke; N&K Kortum (gives several earlier values).
1562	4-Aminobenzoic acid	4.83	U	-H	$H_2O t = 25 I = 0.00$	Palm VA, ed., <i>Tables of rate and</i> equilibrium constants of heterolytic organic reactions, Moscow, 1975. NB: Mentre I, Ann. Chim. Fr., 7, 333–341 (1972) gave 2.39 at 20.0 °C and I = 0.00.

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
563	ε-Aminocaproic acid (C ₆ H ₁₃ NO ₂) H ₂ N(CH ₂) ₅ COOH	4.4 10.8	U U	-H +H			Craig N&K: S&R.
564	4-Aminohippuric acid	3.8	U	-H			Craig
	H ₂ N CONHCH ₂ COOH						
565	4-Aminohippuric acid	3.64	U	-H			Hoover
566	6-Aminopenicillanic acid	2.3	U	-H			W&G: Rapson HDC and Bird AE,
		4.9	U	+H			Ionization constants of some penicillins and of their alkaline am penicillinase hydrolysis products, J. Pharm. Pharmacol., Suppl., 15 , 222–231T (1963).
.567	Aminophylline (C ₁₆ H ₂₄ N ₁₀ O ₄) $\begin{bmatrix} CH_3 & H_1 \\ H_2 & H_3 \\ H_2 & H_2 \end{bmatrix}$ $\begin{bmatrix} H_2 N \\ H_2 & H_2 \\ H_2 & H_2 \end{bmatrix}$	5.0	U	+H			Anon; N&K.
.568	Aminopterin (C ₁₉ H ₂₀ N ₈ O ₅) HOOCCH ₂ CH ₂ \rightarrow NH HOOC \rightarrow NHCH ₂ \rightarrow NH ₂ NHCH ₂ \rightarrow NH ₂	5.5	U	-Н	spectro		Craig; N&K. Baker BR and Jordaan JH, Analogue: of tetrahydrofolic acid XXVIII, <i>J. Pharm. Sci.</i> , 54 , 1740–1745 (1965); referred to: Zakrzewski and Sigmund F, Relation between basicity of certain folate analogs ar their affinities for folate reductase, <i>J. Biol. Chem.</i> , 238 , 4002–4004 (1963 This paper only gave pK _a data for the pterin nucleus.

	ninosalicyclic acid nothiadiazole (C ₂ H ₃ N ₃ S)	1.7	TI		Edn., NY, Interscience (1942).
1571 Amir	nothiadiazole ($C_2H_3N_3S$)		U	+H	Kortum. NB: N&K.
1571 Amir	nothiadiazole (C ₂ H ₃ N ₃ S)	3.9	U	-H	
N	,	3.2	U	+H	Craig
	S NH ₂				
	bdipine (C ₂₀ H ₂₅ ClN ₂ O ₅) H ₃ C $+$ $\stackrel{H}{\longrightarrow}$ $0 \\ - \\ 0 \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ $	8.6	U	+H	Kass RS and Arena JP, Influence of pHo on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor, <i>J. Gen.</i> <i>Physiol.</i> , 93 (6), 1109–1127 (1989). NB: Although the pK_a is repeatedly stated as 8.6, no experimental detail is given, nor any reference. The paper also claims an estimated pK_a value of <3.5 for nisoldipine (ref: Hugenholtz PG and Meyer J (eds.), Nisoldipine, Springer-Verlag, Berlin, 3–348 (1987).
1573 Amo	xapine (C ₁₇ H ₁₆ ClN ₃ O)	7.6	U	+H	Craig; McEvoy
	CHCH ₂ CH ₂ N(CH ₃) ₂				
1574 Amo	xicillin	2.4	U	-H	Rolinson GN, Laboratory evaluation of
2071 11110		9.6	U	-H,+H	amoxicillin, J. Infect. Dis., 129 , S139–
					S145 (1974); N&K.
1575 Amp	hetamine	10.0	U	+H	Craig

438

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1576	Amphotericin B (C ₄₇ H ₇₃ NO ₁₇) HO + HO +	~5.7 10.0	U U	-H +H	potentio	DMF/H ₂ O	Asher IM, Schwartzman G and the USASRG, Amphotericin B, <i>APDS</i> , 6 1–42 (1977). Etingov ED and Kholodova GV, Kul'bakh VO and Karnatushkina AJ Acid-base properties of amphotericin B, <i>Antibiotiki</i> , 17 , 301–305 (1972). "Titration of 66% aqueous dimethylformamide solutions of Amphotericin B with methanolic HC and KOH yields p <i>K</i> 's near 5.7 and 10.0. Comparison with N-acetyl-Amphotericin B (pK=6.5) and Amphotericin B-methyl ester (pK=8.8) assigns the two p <i>K</i> 's to carboxyl and amino groups respectively. Amphotericin B is found to be almost completely zwitterionic in this solution (tautomeric equilibrium constant $K_t = 1000$ with respect to the neutral molecule)."
1577	Amphotericin B	5.5 10.0	U U	-H +H			S&R
1578	Anileridine (C ₂₂ H ₂₈ N ₂ O ₂) NH ₂ CH ₂ CH ₂ N COOEt $C_{6}H_{5}$	3.7 7.5	U U U	+H +H +H			Craig; N&K
1579	Antazoline (C ₁₇ H ₁₉ N ₃) \xrightarrow{H} CH ₂ -N CH ₂ -N CH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅	2.5 10.1	U U	+H +H			Craig
1580	Antazoline	7.2	U	+H			N&K Ritschel; ref. Robson JM and Stacey RS, <i>Recent advances in</i> pharmacology, 4th Edn., Little Brown

pharmacology, 4th Edn., Little Brown and Co., Boston, p. 108 (1968).

1581	Antazoline	10.0	U	+H			Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J.</i>
1582	Antipyrine (C ₁₁ H ₁₂ N ₂ O) $\begin{pmatrix} C_{1}^{H_{5}} \\ N \\ CH_{3} \end{pmatrix}$	1.4	U	+H	spectro	H ₂ O	 Pharmacol., 10, 270–278 (1955). Mayer S, Maickel RP and Brodie BB, Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain, <i>IPET</i>, 127, 205–211 (1959). NB: Followed the method of Flexser <i>et al.</i> (1935). This value cited by Anton AH, A drug-induced change in the distribution and renal excretion of sulfonamides, <i>JPET</i>, 134, 291–303 (1961). Mayer <i>et al.</i> also reported values for thiopental (7.6), aniline (4.6), aminopyrine (5.1), 4-aminoantipyrine (1.1), acetanilide (1.0), barbital (7.8), N-acetyl-4- aminoantipyrine (NAAP; 0.5), salicylic acid (3.0). With the exceptions of acetanilide and NAAP, all additional pKa values were obtained by the potentiometric method. The barbital value is lower than the best value and suggests that carbon dioxide absorption interfered, however, the remaining values should not be affected by this factor.
1583	Antipyrine	1.5	U	+H			Craig; S&R N&K report 1.4.
1584	Antipyrine	2.2	U	+H			W&G: Evstratova KI, Goncharova NA and Solomko VY, <i>Farmatsiya</i> , 17 (4), 33–36 (1968).
1585	Ascorbic Acid	4.17 11.57	U U	-H -H			Al-Meshal IA and Hassan MMA, Ascorbic acid, <i>APDS</i> , 11 , 45–76. NB:
		11.3/	0	-11			Ref. Merck 9.

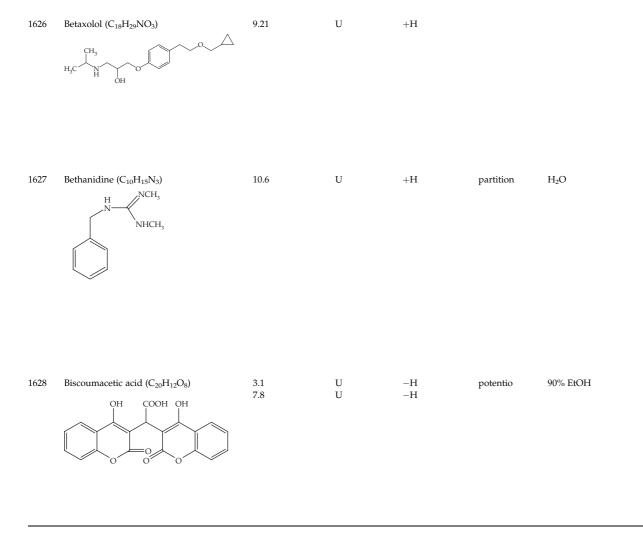
No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1586	Aspirin	3.55	U	-Н		H ₂ O <i>t</i> = 25	Florey K, Aspirin, APDS, 8, 1–46 (1979); quoted Merck value of 3.49. NB: See Springer A and Jones HC, Study of the conductivity and dissociation of certain organic acids at different temperatures, Am. Chen J., 48, 411–453 (1913).
1587	Aspirin	3.49	U	-H		$H_2O t = 25$	Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1, Dekker, New York, pp. 85–87 (1966); Martin
1588	Atenolol	9.55	А	+H			NB: See Acebutolol, no. 1524. Ref. Adam HK, Imperial Chemical Industries Ltd., Macclesfield, England. Personal communication.
1589	Atenolol	9.6	U	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. 275, 277.
1590	Atenolol	9.6	U	+H			Marmo E, On the pharmacology of atenolol, <i>Drugs Exptl. Clin. Res.</i> , 6 , 639–663 (1980); Cited in Caplar V, Mikotic-Mihun Z, Hofman H, Kuftinec J, Karijfez F, Nagl A and Blazevic N, Atenolol, <i>APDS</i> , 13 , 1–2: (1984).
1591	Atomoxetine CH ₃ O T N H CH ₃ CH ₃	10.1	U	+H	capillary electro- phoresis		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref. not given: capillary electrophoresis.

1592	Atrazine (C ₈ H ₁₄ ClN ₅)	1.64	U	+H	spectro (λ = 228 nm)	H ₂ O	Browne JE, Feldkamp JR, White JG and Hem SL, Potential of organic cation- saturated montmorillonite as
	(CH ₃) ₂ CHNH N Cl						treatment for poisoning by weak
							bases, J. Pharm. Sci., 69, 1393–1395 (1980).
	N N						"Atrazine (2-chloro-4-ethylamino-6-
							isopropylamino-s-triazine) was chosen as a model weak base
	NHCH ₂ CH ₃						because it was expected to be neutral
							in the pH range of the GI tract due to
							its pK of 1.64 [Weber JB, Spectrochim. Acta, 23A, 458–461 (1967)].''
							NB: The paper actually reported a
							value of 1.85.
1593	Atropine	9.84	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human
							volume of distribution values for
							neutral and basic drugs. 2. Extended
							data set and leave-class-out
							statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. not given:
							potentiometric titration.
1594	Atropine	9.25	U	+H			N&K cited Perrin DD, Dissociation
							<i>constants of bases,</i> Butterworths, London, Suppl. 1972.
1595	Atropine	9.7	U	+H			W&G: Kolthoff IM, The dissociation
							constants, solubility product and
							titration of alkaloids, <i>Biochem. Z.</i> ,
							162 , 289–353 (1925); cited in Christophers SR, <i>Trans. Farad. Soc.</i> ,
							39 , 333–338 (1943).
1596	Atropine	9.27	U	+H		t = 37	Ballard BE and Nelson E,
							Physicochemical properties of drugs
							that control absorption rate after subcutaneous implantation, <i>JPET</i> ,
							135, 120–127 (1962). NB: From
							$pK_{\rm b} = 4.35$, $pK_{\rm w} = 13.621$ at 37° C.

No.	Name	pKa value(s)	Data quality	Ionization type Method	Conditions t °C; I or c M	Comments and Reference(s)
1597	Azatadine (C ₂₀ H ₂₂ N ₂)	9.3	U	+H		Foye 3rd; cited McEvoy
1598	Azathioprine	8.2	U	-H	<i>t</i> = 25	Wilson WP and Benezra SA, Azathio- prine, <i>APDS</i> , 10 , 29–53 (1981); cited Griffith GR, Wellcome Foundation
1599	Azlocillin (C ₂₀ H ₂₃ N ₅ O ₆ S) HN HN H	2.8	U	-H		Ltd., personal communication, 1980 Craig
1600	Bacampicillin (C ₂₁ H ₂₇ N ₃ O ₇ S) $ \underbrace{ \bigcap_{CH-CO-HN} \bigoplus_{J} \bigoplus_{CH_{3}} \bigoplus_{J} \bigoplus_{CH_{3}} \bigoplus_{J} \bigoplus_{CH_{3}} \bigoplus_{J} \bigoplus_{J} \bigoplus_{CH_{2}CH} \bigoplus_{CH_{2}CH} \bigoplus_{J} \bigoplus_{CH_{2}CH} \bigoplus_{CH_{2}CH$	6.8	U	+H		Craig
1601	Baclofen (C ₁₀ H ₁₂ ClNO ₂) H ₂ NCH ₂ CH ₂ COOH	$\begin{array}{c} 3.87 \pm 0.1 \\ 9.62 \pm 0.1 \end{array}$	U U	-H +H	H ₂ O t = 20.0	Ahuja S, Baclofen <i>, APDS</i> , 14, 527–54 (1985). NB: No reference to method, but probably potentiometric.

1602	Barbituric acid, 5,5-diethyl (barbital)	7.82	U	+H	t = 37	Ballard BE and Nelson E, Physicochemical properties of drugs that control absorption rate after subcutaneous implantation, <i>JPET</i> ,
1603	Barbituric acid, 5,5-diethyl-1-methyl (metharbital)	8.2	U	-Н		135 , 120–127 (1962). Craig; this value is from Butler TC, the effects of N-methylation in 5,5- disubstituted derivatives of barbituric acid, hydantoin and 2,4- oxazolidinedione, J. Am. Pharm. Assoc., 44 , 367–370 (1955).
1604	Barbituric acid, 5,5-diethyl-1-methyl (metharbital)	8.17	U	-H		Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, <i>J. Pharm. Sci.</i> , 59 , 651–659 (1970). N&K.
1605	Barbituric acid, 5-ethyl-5-iso-butyl (butabarbital)	7.9	U	-Н		Avery
1606	Barbituric acid, 5-ethyl-5-(1-methylbutyl)- 2-thio (thiopentone) (C ₁₁ H ₁₈ N ₂ O ₂ S) CH ₃ CH ₂ CH ₂ CH(CH ₃) CH ₃ CH ₂ CH(CH ₃) CH ₃ CH ₂ NH	7.45	U	—Н		 Newton DW and Kluza RB, pK_a values of medicinal compounds in pharmacy practice, Drug Intelligence and Clinical Pharmacy, 12, 546–554 (1978). Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract. II, <i>J. Pharm. Sci.</i>, 59, 651–659 (1970). Other values: 7.6 (Remington 17th ed. p. 1047; BPC 11th ed., 1979, p. 941).
1607	Barbituric acid, 5-ethyl-5-(1-methylbutyl)- 2-thio (thiopentone)	7.3	U	—Н		Anton AH, A drug-induced change in the distribution and renal excretion of sulfonamides, <i>JPET</i> , 134 , 291–303 (1961). NB: The value was obtained from Waddell WJ and Butler TC, Distribution and excretion of phenobarbital, <i>J. Clin. Invest.</i> , 36 , 1217–1226 (1957).

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1608	Barbituric acid, 5-allyl-5-(1-methylbutyl) (secobarbital) (C ₁₂ H ₁₈ N ₂ O ₃) $CH_2=CHCH_2 \longrightarrow NH \\ CH_3CH_2CH_2 \longrightarrow NH \\ H_3C O$	7.92	U	-H	potentio	H ₂ O t = 20 I = 0.7	Krahl ME, The effect of variation in ionic strength and temperature on the apparent dissociation constants of thirty substituted barbituric acids, <i>J. Phys. Chem.</i> , 44 , 449–463 (1940). NB: See Barbital, no. 129, for comment. Clowes GHA, Keltch AK and Krahl ME, Extracellular and intracellular hydrogen ion concentration in rela- tion to anesthetic effects of barbituric acid derivatives, <i>JPET</i> , 68 , 312–329 (1940).
		12.60	U	-H	spectro	H ₂ O t = 38	Butler TC, Ruth JM and Tucker GF, The second ionization of 5,5-disubstituted derivatives of barbituric acid, <i>JACS</i> , 1486–1488 (1955). NB: pK_2 value. Mean of nine values.
1609	Barbituric acid, 5-allyl-5-(1-methylpent-2- ynyl)-N-methyl (methohexital) (C ₁₄ H ₁₈ N ₂ O ₃)	8.3	U	-H			Craig; N&K S&R
	$CH_2=CHCH_2$ CH_3CH_2C H_3C O						
1610	Barbituric acid, 5-allyl-5-(1-methylbutyl)- 2-thio, (Thiamylal) (C ₁₂ H ₁₈ N ₂ O ₂ S)	7.48	U	-H			Craig NB: See also Barbituric acid, 5-allyl-5-
	$\begin{array}{c} CH_2=CHCH_2 \\ CH_3CH_2CH_2 \\ CH_3 \end{array} \xrightarrow{O} \\ NH \\ S \\ O \\ NH \\ S \\ O \\ NH \\ S \\ $						(1-methylbutyl)-2-thio.

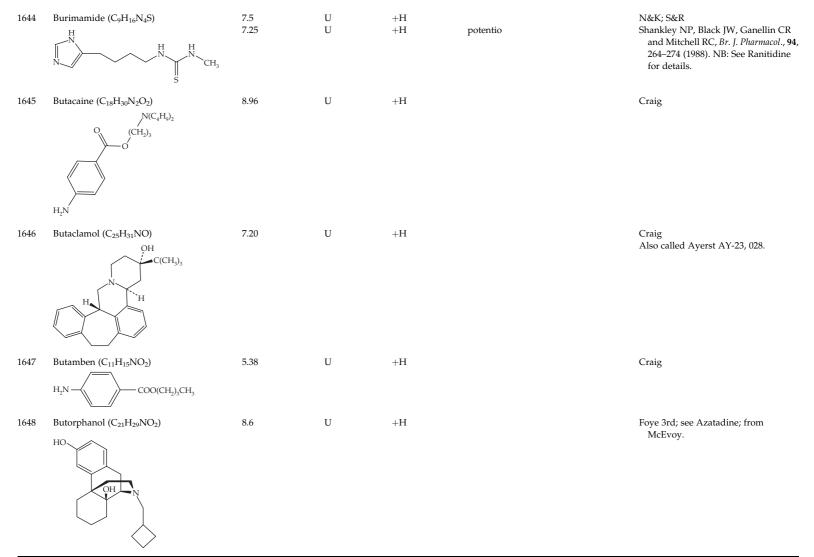

1611	Barbituric acid, 5-allyl-5-(1- methylpropyl), (Talbutal) ($C_{11}H_{16}N_2O_3$) $CH_2=CHCH_2$ CH_3CH_2 CH_3CH_2 O	7.91	U	-Н			Craig NB: See also Barbituric acid, 5-allyl-5- (1-methylpropyl).
1612	Barbituric acid, 5-ethyl-5-phenyl	7.3	U	-H	spectro		Chao MKC, Albert KS and Fusari SA,
1012	baronunc acia, 5-entyr-5-phenyr	11.8	U	-11 -H	spectro		Phenobarbital, <i>APDS</i> , 7, 359–399 (1978).
1613	Barbituric acid, 5-ethyl-5-phenyl	7.52	U	-H	spectro	H ₂ O	Mulding HV and Zoglio MA, pK _a determinations utilizing solutions of 7-(2-hydroxypropyl) theophylline, J. Pharm. Sci., 60 , 309–311 (1971).
1614	Barbituric acid, 1-methyl-5-ethyl-5-phenyl (C ₁₃ H ₁₄ N ₂ O ₃)	7.8	U	-H			Craig NB: Also called mephobarbital; N-methylphenobarbital.
	CH ₃ CH ₂ O CH ₃ CH ₂						
1615	Bemegride (C ₈ H ₁₃ NO ₂) O + H + O + O + O + O + O + O + O + O +	11.7	U	-H	potentio		Peinhardt G, Acidity and acidimetric titration of medically used glutaric acid imide, <i>Pharmazie</i> , 32 , 726–727 (1977) cited in CA 88:141587; also W&G.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1616	Ben(e)peridol (C ₂₂ H ₂₄ FN ₃ O ₂) F ($)$ $($	7.90	U	+H			Janssen Pharmaceutical, Internal reports. Cited in Takla PG, James KC and Gassim AEH, Beneperidol, <i>APDS</i> , 14 , 245–270 (1985). "Beneperidol has a pK _a of 7.90, and is a sufficiently weak base to be extracted by organic solvents from aqueous acid solution. It has been found in the present work that, due to the presence of the benzimidazolone ring system, beneperidol can also act as a weak acid when dissolved in strong alkali (pH11). Evidence of salt formation is seen in the bathochromic shift, from 279nm to 288nm, which occurs in the ultraviolet absorption spectrum of beneperidol when its aqueous solution is made alkaline."
1617	Benzocaine	2.5 2.38	U U	+H +H	spectro spectro		 Ali SL, Benzocaine, <i>APDS</i>, 12, 73–104 (1983). "The acid dissociation constant of benzocaine has been given as pK_a 2.5 (12). Estimation of microequilibrium constant of ethyl

p-aminobenzoate was done spectrophotometrically and a K value of 0.00417 (NB: $pK_a = 2.38$) was obtained. Spectrophotometric method applied for estimating microequilibrium constants is simpler, faster, and more accurate than the conventional method employing the dissociation constant of the alkylated derivative (13)."

					 Europäisches Arzneibuch, Kommentar, p. 570, Wissenschaftliche Verlagsgesellschaft, Stuttgart (1976). Schulman SG, Rosenberg LS and Sturgeon RJ, J. Pharm. Sci., 67, 334–337 (1978). NB: This reference actually took the data from Johnson J and Cummings AC, Z. Phys. Chem., 57, 557, 574 (1907). NB: The APDS reviewer did not seem to realize that only a single macro-
					equilibrium constant is relevant for benzocaine. Ref. 13 deals with determination of microconstants for
					aminobenzoic acids, which required the pK _a values for the corresponding esters. As noted above, Ref. 13 did
					not measure the benzocaine pK_{a} , as
1/10	Pouro coin c	2.79	TT	. 11	the reviewer appeared to suggest.
1618	Benzocaine	2.78	U	+H	N&K Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1,
					Dekker, New York pp. 85–87 (1966);
					Martin; Craig.
1619	Benzocaine	2.8	U	+H	W&G: Kolthoff IM, The dissociation
1017	benzoeune	2.0	e	111	constants, solubility product and
					titration of alkaloids, <i>Biochem.</i> Z.,
					162 , 289–353 (1925).
1620	Benzphetamine (C ₁₇ H ₂₁ N)	6.55	U	+H	Vree TB, Muskens AT and van Rossum
	-				JM, Some physicochemical
	H ₃ C , CH ₃				properties of amphetamine and
					related drugs, J. Pharm. Pharmacol.,
					21 , 774–775 (1969).

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1621	Benzquinamide ($C_{22}H_{32}N_2O_5$) OCOCH ₃ CH ₃ O CH ₃ O CH ₃ O	5.9	U	+H			Foye; Craig; N&K: Anon. Craig cited Koe BK and Pinson R, Isolation and characterization of urinary metabolites of benzquinamide and benzquinamide alcohol, <i>J. Med. Chem.</i> , 7 , 635–640 (1964). This paper has no pK _a data.
1622	Benztropine (C ₂₁ H ₂₅ NO) CH_3 N H_3 H_5C_6 CH_5	10.0	U	+H			Foye 3rd; see Azatadine. NB: From Benet LZ, Massoud N and Gambertoglio JG, <i>Pharmacokinetic</i> <i>basis for drug treatment</i> , New York, Raven Press, pp. 12–13 (1984).
1623	Benzylamphetamine (C ₁₆ H ₁₉ N) CH ₃ NH	7.50	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21, 774–775 (1969).
1624	Betahistine (C ₈ H ₁₂ N ₂)	3.46 9.78	U U	+H +H			Craig; Walter LA, Hunt WH and Fos- binder RJ, β-(2- and 4-pyridylalkyl)- amines, <i>JACS</i> , 63 , 2771–2773 (1941). NB: This paper has only synthetic and structural details. N&K S&R.
1625	Betaprodine (C ₁₆ H ₂₃ NO ₂) CH_3 CH_3 CH_3 C_6H_5 OCCH ₂ CH ₃	8.7	U	+H			Beckett AH, Casy AF, Kirk G and Walker J, α - and β -Prodine type compounds. Configurational studies, <i>JPP</i> , 9 , 939–948 (1957). NB: This paper has no pK _a data, only synthesis. See Craig.



Bree F, El Tayar N, van de Waterbeemd H, Testa B and Tillement JP, The binding of agonists and antagonists to rat lung beta-adrenergic receptors as investigated by thermodynamics and structure-activity relationships, J. Recept. Res., 6, 381-409 (1986). NB: in Lombardo F, Obach RS, Shalaeva MY and Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242-1250 (2004); ref. 281. Hengstmann JH, Falkner FC, Watson JT and Oates J, Quantitative determination of guanethidine and other guanido-containing drugs in biological fluids by gas chromatography with flame ionization detection and multiple ion detection, Anal. Chem., 46, 34-39 (1974). NB: Bethanidine was partitioned between aqueous buffers and ethylene chloride, then the aqueous phase pH increased to >13.5 and extracted again with organic solvent. The dried extracts were analysed by GLC and the pK_a determined by inspection of the plot of peak height versus pH. No further details were presented; cited in N&K. W&G; Anton AH, A drug-induced change in the distribution and renal excretion of sulfonamides, IPET, 134, 291-303 (1961). NB: The value was obtained from Dayton PG, personal communication. Originally measured by Burns JJ, Wexler S and Brodie BB, The isolation and characterization of a metabolic product of 3,3'-carboxymethylene-bis-(4-hydroxycoumarin) ethyl ester (Tromexan) from human urine, JACS, 75, 2345-2346 (1953).

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1629	Bromazepam (C ₁₄ H ₁₀ BrN ₃ O) H O Br H O N O N O N O	2.5 5.2 11.8	U U U	+H +H -H		spectro, polarographic	 Smyth MR, Beng TS and Smyth WF, A spectral and polarographic study of the acid-base and complexing behavior of bromazepam, <i>Anal.</i> <i>Chem. Acta</i>, 92, 129–138 (1977). Cited in Hassan MMA and Abounassif MA, Bromazepam, <i>APDS</i>, 16, 1–51 (1987). "Bromazepam has three pK_a values of 2.5, 5.2, and 11.8, corresponding to protonation at the azomethine and pyridine nitrogen atoms and deprotonation at the nitrogen in position 1, respectively. Three values were determined by spectral
1630	Bromazepam	2.9 11.0	U U	+H -H			and polarographic analysis." N&K Kaplan SA, Jack ML, Weinfeld RE, Glover W, Weissman L and Cotler S, Biopharmaceutical and clinical pharmacokinetic profile of bromazepam, J. Pharmacokinet.
1631	Bromocriptine (C ₃₂ H ₄₀ BrN ₅ O ₅) H, H ,	4.90±0.05	U	+H	potentio	80% MCS <i>t</i> = RT	 Biopharm., 4, 1–16 (1976). Giron-Forest DA and Schönleber WD, Bromocriptine, APDS, 8, 47–81 (1979). "Due to the low solubility of bromocriptine mesylate in water, the pK_a value had to be determined in methyl cellosolve/water 8:2 (w/w). Titration at ambient temperature yielded pK_a as 4.90 ± 0.05 for a 0.0078 M solution." NB: No references were given.

1632	Bromocriptine	9.8	U	+H	potentio	80% MCS	Foye. NB: This value is close to the pK_b value from no. 1631
1633	Bromodiphenhydramine (C ₁₇ H ₂₀ BrNO) Br H OCH ₂ CH ₂ N(CH ₃) ₂	8.64	U	+H	potentio	H_2O t = 25 c = 0.002 to 0.01	Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistamines, <i>J. Am.</i> <i>Pharm. Assoc., Sci. Edn.</i> , 45 , 300–305 (1956). See Chlorpheniramine (no. 1704) for details. Also N&K.
1634	Bromothen (C ₁₄ H ₁₈ BrN ₃ S) N S Br H ₃ C N S C N C C S C C S C C S C S C S C S	8.63	U	+H	potentio	H_2O t = 20 c = 0.0025	Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J.</i> <i>Pharmacol.</i> , 10 , 270–278 (1955). Cited in Perrin Bases 1068 ref. M14. Used glass electrode in cell with liquid junction potentials. NB: See also W&G.
1635	Brompheniramine	3.59 9.12	U U	$^{+\mathrm{H}}_{+\mathrm{H}}$			Foye 3rd; see Azatadine; from McEvoy.
1636	D-Brompheniramine	9.3	U	+H			Fove
1637	Brucine	2.5	U	+H			Craig; Merck 12 reported $pK_1 = 6.04$,
		8.2	U	+H			$pK_2 = 11.7$. These values are approximately the Foye values subtracted from 14. ACD/ pK_a calculated values are -1.09 ± 0.2 (protonation of amide); 8.27 ± 0.2 (protonation of alicyclic 3° amine). This confirms that the Merck values are pK_b values.

No.	Name	pK _a value(s)	Data quality	Ionization type Method	Conditions t °C; I or c M	Comments and Reference(s)
1638	Bufuralol (C ₁₆ H ₂₃ NO ₂) CH_3 $C(CH_3)_3$ $C(CH_$	8.97	U	+H		Craig; Magometschnigg D, Bonelli J, Hitzenberger G, Kaik G and Korn A, Decrease of peripheral resistance after acute intravenous application of a new beta-receptor blocking agent, bufuralol hydrochloride, <i>Int. J. Clin.</i> <i>Pharm. Biopharm.</i> , 16 , 54–58 (1978).
1639	Bufuralol	9.2	U	+H		Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man J. Pharmacokin. Biopharm., 12, 263–287 (1984): ref. Eckert M, Hoffman- LaRoche Inc., Basle, Switzerland. Personal communication.
1640	Bumetanide	5.2	U	-H		Craig
1641	Bunolol (levobunolol) (C ₁₇ H ₂₅ NO ₃)	10.0 9.32	U U	-H +H		Craig
	O O H O H					
1642	Bunolol	9.32	U	+H		Craig
1643	Bupropion (C ₁₃ H ₁₈ CINO)	7.0	U	+H		Foye; cited Florey K, <i>APDS</i> , 9 , (1980). NB: This reference appears to be incorrect. ACD/p K_a predicted p $K_a = 7.16$.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1649	Butorphanol	8.19	VU	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); NB: ref. not given: "estimated to be similar to codeine and morphine."
1650	Butylated hydroxytoluene (C ₁₅ H ₂₄ O)	17.5	VU	-H			Craig. NB: ACD/p K_a estimate is 12.76 \pm 0.4.
	(CH ₃) ₃ C C(CH ₃) ₃ C C(CH ₃) ₃	14	VU	-H	potentio	H ₂ O t = 25	 Steigman J and Sussman D, Acid-base reactions in concentrated aqueous quaternary ammonium salt solutions. II., <i>JACS</i>, 89, 6406–6410 (1967). NB: This study had to dissolve the analyte in 10 molal tetrabutylammonium bromide, and resulted in data with an indistinct endpoint.
1651	Butylparaben ($C_{11}H_{14}O_3$) CO ₂ (CH ₂) ₃ CH ₃	8.5 8.47	U U	-H -H			Merck 11 Craig; cited Merck 10
	OH						
1652	Butylparaben	8.4	U	-H			W&G: Tammilehto S and Buchi J, p-Hydroxybenzoic acid esters (Nipagins). I. Physicochemical properties, <i>Pharm. Acta Helv.</i> , 43 , 726–738 (1968).
1653	Caffeine	0.6 3.6	U U	+H +H			N&K Martin
		3.6 14.0	U	+π -Η			

1654 1655	Camptothecin Cannabidiol (C ₂₁ H ₃₀ O ₂) $\downarrow \qquad \qquad$	10.83	U U	-H -H	spectro		Craig El-Darawy ZI, Abu-Eitah R and Mobarak ZM, Studies on hashish. Part 5. Identification of cannabidiol and cannabidiolic acid by UV spec- trophotometry, <i>Pharmazie</i> , 28 , 129– 133 (1973); CA 78:144062. "The identification of cannabidiol (I) and cannabidiolic acid (II) by UV spectrometry was investigated. The absorption spectra of II in different solvents and at different pH values was investigated and the value of pK _a for I was calculated. The effect of heat on the spectra of I and II was noted."
1656	Capreomycin $H_2N \xrightarrow{OH/H} O NH_2$ $H_1N \xrightarrow{H} H \xrightarrow{H} NH_2$ $H_1N \xrightarrow{H} H \xrightarrow{H} NH_2$ $H_2N \xrightarrow{H} H \xrightarrow{H} NH_2$ $H \xrightarrow{H} NH_2$	6.2 8.2 10.1 13.3	บ บ บ บ	+H +H +H +H	potentio	66% DMF	N&K Merck 9 NB: Mixture including Capreomycin IA, OH/H = OH (25%) $(C_{25}H_{44}N_{14}O_8)$; Capreomycin IB, OH/H = H (67%) $(C_{25}H_{44}N_{14}O_7)$.
1657	Carbachol (C ₆ H ₁₅ ClN ₂ O ₂) [NH ₂ COOCH ₂ CH ₂ N(CH ₃) ₃]+Cl ⁻	4.8	U	+H			Craig; N&K Ritschel gave 4.8; ref. Robson JM and Stacey RS, <i>Recent</i> <i>advances in pharmacology</i> , 4th Edn., Little Brown and Co., Boston, p. 108 (1968).
1658	Carbenicillin (C ₁₇ H ₁₈ N ₂ O ₆ S) $\downarrow \downarrow $	$\begin{array}{c} 2.22 \pm 0.05 \\ 3.25 \pm 0.02 \end{array}$	U U	-H -H	potentio	H ₂ O t = 25.0 I = 0.15 (KCl)	Sirius Technical Application Notes, vol. 2 , p. 109 (1995). Sirius Analytical Instruments Ltd., Forest Row East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 0.54 mM.
	Ö O OCH3	2.7	U	-Н			Craig; N&K cited a 2nd pK_a value of 2.6, as well as 2.7; S&R.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1659	Carbenoxolone	6.7 7.1	U U	-H -H			N&K Foye. NB: These values are high for carboxylic acid groups, and are from Downer HD, Galloway RW, Horwich L and Parke DV, J. Pharm. Pharmacol., 22 , 479–487 (1970).
1660	Carbinoxamine	8.1	U	+H	potentio		Craig; N&K Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-exchange resin, <i>J. Pharm. Sci.</i> , 59 , 481–486 (1970). NB: See also Rotoxamine (levo-isomer).
1661	Carbonic acid H ₂ CO ₃	6.37 10.25	บ บ	-H -H		H ₂ O t = 18	W&G: Kolthoff IM and Bosch W, The influence of neutral salts on acid-salt equilibria. III. The second dissociation constant of carbonic acid and the influence of salts on the activity of the hydrogen ions in a bicarbonate-carbonate mixture, <i>Rec.</i> <i>Trav. Chim. Pays-Bas Belg.</i> , 47, 819– 825 (1928).
1662	Carisoprodol (C ₁₂ H ₂₄ N ₂ O ₄) $CH_2CH_2CH_3$ $H_2NCOOCH_2 \longrightarrow CH_2OOCNHCH(CH_3)_2$ CH_3	4.2	U	+H			McEvoy
1663	Carpindolol (C ₁₉ H ₂₈ N ₂ O ₄) $O \rightarrow O^{-iPr}$	8.75	U	+H			Craig
	(CH ₃) ₃ C NH NH HO						

1664	Cefaclor (C ₁₅ H ₁₄ ClN ₃ O ₄ S)	1.5±0.2	U	-H	potentio H ₂ O	Lorenz LJ, Ce (1980). NB:	faclor, APDS No reference	
	NH ₂ H H H S	7.17	U	+H			pK	a
				Solvent	Carboxyl	Amino		
	Соон					H ₂ O DMF	$\begin{array}{c} 1.5\pm0.2\\ 4.33\end{array}$	7.17 7.34
1665	Cefamandole (C ₁₈ H ₁₈ N ₆ O ₅ S ₂) $\downarrow \qquad \qquad$	2.6-2.9 3.0	U U	-H -H	potentio spectro	cephalospo J. Pharm. Sc Cited in Bis Cefamando 125–154 (19 references,	nical analysi rin cefamano <i>i.</i> , 66 , 379–38 hara RH and ole nafate, <i>Al</i> 80). NB: No experimenta	s of the dole nafate, 34 (1977). 1 Rickard EC, PDS, 9 , supporting
1666	Cefazolin	2.15	U	-H	spectro	Cited in Za and Post A (1975). "The pK _a is 2 spectropho 2.05 determ	onal commu ppala AF, W . Cefazolin, A .15 determin tometrically. ined titrime	nication. Valter WH A <i>PDS</i> , 4 , 1–20 ned . A pK _a of
1667	Cefazolin	2.10	U	-Н		been report N&K Zappal Post A, Cef (1975).		
1668	Cefazolin	2.3	U	-H		Nightingale C Quintiliani clinical use antibiotics, 1899–1927 (R, Pharmaco of cephalosp J. Pharm. Sci	okinetics and porin ., 64 , 'he only pK _a

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1669 1670	Cefazolin Cefixime (C ₁₆ H ₁₅ N ₅ O ₇ S ₂) $N \rightarrow OCH_2COOH$ $H_2N \rightarrow OCH_2COOH$ $H_2N \rightarrow OCH_2COOH$	2.10 2.69 3.73	U U U	H +H H			See Cephazolin Okeke CC, Srinavasan VS and Brittain HG, Cefixime, <i>APDS</i> , 25 , 39–83 (1997). NB: No reference given. " pK_{a1} : 2.10 (cephem -COOH); pK_{a2} : 2.69 (-NH ₂); pK_{a3} : 3.73 (sidechain -COOH)."
1671	Cefoperazone (C ₂₅ H ₂₇ N ₉ O ₈ S ₂) $C_{2}^{2H_{5}}$ O H	2.6	U	-H			McEvoy
1672	Cefoxitin (C ₁₆ H ₁₇ N ₃ O ₇ S ₂) $\xrightarrow{CH_3O}_{H_1}$ H $\xrightarrow{H_1}_{H_2}$ H $\xrightarrow{CH_2OCONH_2}_{COOH}$	2.2	U	-Н	potentio		 Brenner GS, Cefoxitin sodium, APDS, 11, 162–195 (1982). Cited Bicker G, Merck Sharp and Dohme Research Laboratories, personal communication; McCauley JA, Shah A, Merck Sharp and Dohme Research Laboratories, personal communication. NB: Also stated a similar value attributed to solubility data.

1673	Ceftazidime (C ₂₂ H ₂₂ N ₆ O ₇ S ₂) HOOC CH ₃ H H H H S H H CH ₃ H H CH ₃ H H CH ₃ CH ₃ H H CH ₃ CH ₃ H H CH ₃ CH	1.8 2.7 4.1	บ บ บ	-H -H +H			Abounassif M, Mian NAA, Mian MS, Ceftazidime, <i>APDS</i> , 19 , 95–121 (1990). NB: See also McEvoy.
1674	Ceftizoxime (C ₁₃ H ₁₃ N ₅ O ₅ S ₂) CH_3O H_3O H_1 H_2N CH_3O H_1 H_2 H_1 H_2 H_1	2.1 2.7	U U	+H -H			McEvoy
1675	Ceftriaxone (C ₁₈ H ₁₈ N ₈ O ₇ S ₃) $ \begin{array}{c} CH_{3}O_{1}\\ \downarrow\\ \downarrow\\ \downarrow\\ \downarrow\\ \downarrow\\ H_{2}N\\ \end{array} $ $ \begin{array}{c} H \\ \downarrow\\ H \\ \downarrow\\ \downarrow$	$\begin{array}{c} -3.2 \pm 0.6 \\ -1.8 \pm 0.2 \\ 2.57 \pm 0.50 \\ 2.90 \pm 0.50 \\ 8.03 \pm 0.40 \\ 10.0 \pm 0.20 \end{array}$	บ บ บ	+H -H -H	comp		ACD/pK _a estimate
1676	Ceftriaxone	3.2 3.2 4.1	U U U	+H -H -H			Craig
1677	Cefuroxime (C ₁₆ H ₁₆ N ₄ O ₈ S)	2.5	U	-H		H ₂ O	Wozniak TJ, Hicks JR, Cefuroxime Sodium, APDS, 20 , 209–236 (1991).
	CH ₃ O H H H H H H H H CH ₂ O CONH ₂	5.1	U			DMF	Sodium, <i>APDS</i> , 20, 209–236 (1991). NB: Gave no references. See also McEvoy.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1678	Celiprolol (C ₂₀ H ₃₃ N ₃ O ₄) HN $N(C_2H_3)_2$ HN CH_3 HN $C(CH_2)_2$	~9.7	U	+H	potentio	H ₂ O t = 25	 Mazzo DJ, Obetz CL and Shuster JE, Celiprolol hydrochloride, <i>APDS</i>, 20, 237–301 (1991). "The pK_a of celiprolol base obtained by potentiometric titration in water at 25 °C is approximately 9.7 (36)." 36. O'Hare MJ and Zarembo JE, Revlor Health Care, Tuckahoe NY, personal communication.
1679	Cellulose acetate phthalate $\downarrow \qquad \qquad$						 Spitael J, Kinget R and Naessens K, Dissolution rate of cellulose acetate phthalate and the Bronsted catalysis law, <i>Pharm. Ind.</i>, 42(8), 846–849 (1980). "The rate constants for the dissolution of cellulose acetate phthalate in solutions of different basic salts were determined using an automatic pH- stat method. A linear relationship between the logarithm of the rate constants and the pK_a of the basic salts was observed. Evidence was given that the rate of proton transfer which leads to the dissociation and, consequently, to the dissolution of the polymer, is the rate determining step and is governed by the Bronsted catalysis law."

1680	Cephacetrile (C ₁₃ H ₁₃ N ₃ O ₆ S)	1.97	U	-H			Merck 10; Merck 11
	NC H H H S $COOH$ $COOH$						
1681	Cephalexin	5.25	U	-H		66% DMF	N&K APDS 4
1682	Cephalexin	7.1 7.1	U U	$^{+H}_{+H}$		H ₂ O H ₂ O	Marelli LP, Cephalexin, APDS,
1683 1684 1685	Cephalothin Cephapirin Cephradine ($C_{16}H_{15}N_5O_7S_2$)	2.5 2.15 2.63 7.27	U U U U	-H -H +H	potentio		4, 21–46 (1975). Avery; NB: See APDS, 1, 319. Craig; McEvoy; N&K Hoover Florey K, Cephradine, APDS, 5, 21–59 (1976).
	NH ₂ H H H H COOH						H. Jacobson, The Squibb Institute, personal communication.
1686	Chenodiol	4.34	U	-H			Craig; McEvoy. NB: Same compound as chenodeoxycholic acid.
1687	Chlorambucil (C ₁₄ H ₁₉ Cl ₂ NO ₂)	~1.3	U	+H	spectro	H ₂ O	Linford JH, The influence of pH on the
	(ClCH ₂ CH ₂) ₂ N — CH ₂ CH ₂ CH ₂ COOH	5.8 I	U	-Н	potentio	<i>I</i> ~ 0.05	reactivity of chlorambucil, <i>Biochem.</i> <i>Pharmacol.</i> , 12 , 317–324 (1963). Cited in Tariq M and Abdullah AA, Chlorambucil, <i>APDS</i> , 16 , 85–118 (1987).
1688	Chlorambucil	5.8	U	-H			W&G cited Linford JH, Biochem. Pharmacol., 12 , 317–324 (1963).
1689	Chlorcyclizine	2.43 7.81	A U	+H +H	potentio	H ₂ O t = 25 c = 0.002 to 0.01	 W&G Lordi NG and Christian JE, Physical properties and pharmacological activity: antihistaminics, J. Am. Pharm. Assn., Sci. Edn., 45, 300–305 (1956). See Chlorpheniramine (no. 1704) for details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1690	Chlordiazepoxide	4.76±0.05	U	+H	spectro		MacDonald A, Michaelis AF and Senkowski BZ, Chlordiazepoxide hydrochloride, <i>APDS</i> , 1 , p. 26 (1972). Toome V, Hoffman-La Roche Inc., personal communication.
		4.9	U	+H	potentio		Yao C, Lau E, Hoffman-La Roche Inc., personal communication.
1691	Chlordiazepoxide	4.8	U	+H			 Van der Kleijn E, Protein binding and lipophilic nature of ataractics of the meprobamate and diazepine group, <i>Arch. Int. Pharmacodyn.</i>, 179, 225–250 (1969). NB: No references or experimental details given; cited in: Van der Kleijn E, Kinetics of distribution and metabolism of diazepam and chlordiazepoxide in mice, <i>Arch. Int. Pharmacodyn.</i>, 178, 193–215 (1969).
1692	Chlorhexidine (C ₂₂ H ₃₀ Cl ₂ N ₁₀)	10.78	U	+H			Craig
	$\begin{bmatrix} H & H & H \\ H & H & H \\ H & H & H \\ CI & H & NH \end{bmatrix}_2$						
1693	4-Chloroamphetamine (C ₉ H ₁₂ ClN)	9.80	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969).

1694	Chlorocresol (C ₇ H ₇ ClO) OH CH_3	9.55	U	-H		<i>t</i> = 25	Craig
1695	Cl (S)-6-Chloro-4-(cyclo-propylethynyl)-1,4- dihydro-4-(trifluoro-methyl)-2H-3,1- benz-oxazin-2-one (Efavirenz; DMP- 266) (C ₁₄ H ₉ ClF ₃ NO ₂)	10.1-10.2	U	-Н	spectro	H ₂ O	Rabel SR, Maurin MB, Rowe SM and Hussain M, Determination of the pK_a and pH-solubility behavior of an ion- izable cyclic carbamate, (S)-6-chloro- 4-(cyclopropylethynyl)-1, 4-dihydro- 4-(trifluoromethyl)-2H-3,1-benzoxa- zin-2-one (DMP-266), <i>Pharm. Dev.</i> <i>Technol.</i> , 1(1), 91–95 (1996). "The solubility of a nonnucleoside reverse transcriptase inhibitor, L-743726 ((S)-6-chloro-4- (cyclopropylethynyl)-1,4-dihydro-4- (trifluoromethyl)-2H-3,1- benzoxazin-2-one; DMP-266) was investigated as a function of pH. A dramatic increase in the aqueous solubility was observed at pH >= 10, which was consistent with going from a neutral to a charged species. The ionization of the proton positioned on the carbamate functionality was confirmed spectrophotometrically ($pK_a = 10.1$). The spectropho- tometric result was in excellent agreement with that obtained from the solubility studies ($pK_a = 10.2$). The ionization behavior of L-743726 represents a unique case in which the pK_a for a carbamate functional group is quite low. It was concluded that the anomalous pK_a value may be attributed to stabilization of the negatively charged species through inductive effects, which originate

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
							from the surrounding substituents and delocalization of the negative charge via resonance effects."
1696	Chloroquine	8.4	U	+H		H ₂ O	Tariq M and Al-Badr AA,
		10.8	U	+H		<i>t</i> = 20	Chloroquine, APDS, 13 , 95–123 (1984). NB: Values appear to be rounded from Schill, 1965. NB: See also BPC, p. 176.
1697	Chloroquine phosphate	8.10 9.94	U U	+H +H	potentio		Hong DD, Chloroquine phosphate, APDS, 5, 61–85 (1976). Cited Dederick P, Sterling-Winthrop Research Institute, unpublished data.
1698	Chlorothen (C ₁₄ H ₁₈ ClN ₃ S)	8.4	U	+H	potentio	H_2O t = 20 c = 0.0025	Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J.</i> <i>Pharmacol.</i> , 10 , 270–278 (1955). Citec in Perrin Bases 1088 ref. M14. Used glass electrode in cell with liquid junction potentials.
	H ₃ C H ₃ C CH ₃	8.42	U	+H		H_2O t = 25 c = 0.002 to 0.01	Lordi NG and Christian JE, Physical properties and pharmacological activity: antihistaminics, <i>J. Am.</i> <i>Pharm. Assn., Sci. Edn.</i> , 45 , 300–305 (1956). See Chlorpheniramine (no. 1704) for details.
1699	8-Chlorotheophylline 8-Nitrotheophylline (C ₇ H ₇ N ₅ O ₄)	5.28 2.07	U	-H			 Mayer MC and Guttman DE, Interactions of xanthine derivatives with bovine serum albumin III. Inhibition of binding, <i>J. Pharm. Sci.</i>, 57, 245–249 (1968). NB: The pK_a value was quoted without experimental details. Refs.: Eichma ML, Guttman DE, van Winkle Q an Guth EP, Interactions of xanthine

1700 1701	8-Chlorotheophylline 8-Chlorotheophylline	4.6 ± 0.7 8.2	U U	-H -H	comp		molecules with bovine serum albumin. I., J. Pharm. Sci., 51 , 66–71 (1962); Guttman DE and Gadzala AE, Interactions of xanthine molecules with bovine serum albumin. II., J. Pharm. Sci., 54 , 742–746 (1965). ACD/pK _a estimate N&L Charles RL, Searle Laboratories, Chicago, IL. Personal communication. NB: Based on the computed pK _a value above and the other measured values, this value appears more likely to be a pK _b for
1702	Chlorothiazide	6.7 9.5	U U	-H -H			appears information interview of the appears information interview of the appears in the appears of the appe
1703	Chlorothiazide	6.0 ± 0.4	U	-H	comp		ACD/pKa estimate
1704	Chlomhonimomino	9.7 ± 0.2 9.16 ± 0.02	U A	-H +H	motontio	H ₂ O	Lordi NG and Christian JE, Physical
1704	Chlorpheniramine	5.10 ± 0.02	Α	÷π	potentio	H_2O t = 25 c = 0.002 to 0.01	broth NG and Christian JE, Physical properties and pharmacological activity: antihistaminics, <i>J. Am.</i> <i>Pharm. Ass., Sci. Edn.,</i> 45 , 300–305 (1956). Cited in Perrin Bases 1083 ref. L54. NB: Used glass electrode in cell with liquid junction potentials; electrode calibrated at pH = $3.75 \pm$ 0.02 and 7.00 before every run. Titrant added with microsyringe until cloudiness from precipitated free base occurred. Where comparisons with Tolstoouhov (1955) (see Pheniramine, no. 2081) were possible, there were discrepancies of up to 2 log units.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1705	Chlorpheniramine	9.2	U	+H			Eckhart CG and McCorkle T, Chlorpheniramine maleate, APDS, 7, 53 (1978). NB: See Perrin DD, Dissociation constants of organic bases in aqueous solutions, Butterworths, London (1965).
1706	Chlorpheniramine	9.16	U	+H	potentio	H_2O t = 20 c = 0.0025	Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J.</i> <i>Pharmacol.</i> , 10 , 270–278 (1955). Cited in Perrin Bases 1083 ref. M14. NB: Used glass electrode in cell with liquid junction potentials. See also Craig.
1707	Chlorpheniramine	8.99	U	+H			Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1, Dekker, New York, pp. 85–87 (1966).
1708	Chlorpheniramine	9.26	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref. not given: potentiometric titration.
1709	Chlorphentermine (C ₁₀ H ₁₄ ClN) Cl Cl Cl Cl Cl Cl Cl Cl	9.60	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969).
1710	Chlorpromazine	9.24±0.02	U	+H	potentio	H ₂ O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Sirius Technical Application Notes, 1994, vol. 1, Sirius Analytical Instruments Ltd., Forest Row, East
		9.02±0.04 U +H poter	potentio	H_2O $t = 25 \pm 0.5$ I = 0.15 (KCl)	Sussex, RH18 5DW, UK. NB: First result extrapolated to 0% MeOH by Yasuda-Shedlovsky procedure from data obtained in 35–50 wt% MeOH. Second result extrapolated to 0%		

1711	Chlorpromazine sulfoxide (C ₁₇ H ₁₉ ClN ₂ OS)	9.0	U	+H			 dioxane by Y-S method from data obtained in 23–52 wt% dioxane. W&G. NB: The reference given in this source (Nightingale CH, <i>et al.</i>, <i>J. Pharm. Sci.</i>, 64, 1907 (1975)) is
	$CH_2CH_2CH_2N(CH_3)_2$						incorrect. The source of this data is not known.
1712	Chlorpropamide (C ₁₀ H ₁₃ ClN ₂ O ₃ S) Cl	4.8	U	-H			Avery
1713	Chlorpropamide	4.95±0.04	U	—Н	potentio	H ₂ O t undefined I undefined	Crooks MJ and Brown KF, The binding of sulphonylureas to serum albumin, <i>J. Pharm. Pharmacol.</i> , 26 , 305–311 (1974). NB: Chlorpropamide was recrystallized from 95% EtOH, m.p. 127–129 °C.
1714	Chlorprothixene (C ₁₈ H ₁₈ ClNS) CHCH ₂ CH ₂ N(CH ₃) ₂	8.4	U	+H	spectro	H ₂ O	Rudy BC and Senkowski BZ, Chloroprothixene, APDS, 2 , 63–84 (1973).
	Cl	7.5	U	+H	potentio	50% iPrOH	"The apparent pK_a for chloroprothixene has been determined spectrometrically to be 8.4 (Lau). The apparent pK_a has also been determined from the titration curve in an isopropanol: water (1:1) mixture and found to be 7.5 (Toome and Raymond). In water, the trialkylamino type compounds are stronger bases, on the average, by 0.9 pK_a units (Lau, Toome and

No.	Name	pKa value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
							Raymond). Therefore, the estimated pK _a in water is 8.4 which is in good agreement with that found spectrophotometrically. Lau E, Hoffmann-La Roche Inc., unpublished data. Toome V, Raymond G, Hoffmann-La Roche Inc., unpublished data.''
1715	Chlortetracycline	3.3	U	-H			Avery
		7.4	U	-H			
1 - 1		9.3	U	+H			NB: See Demeclocycline for details.
1716 1717	Chlorthalidone Chlorzoxazone (C ₇ H ₄ ClNO ₂)	9.4 8.3	U U	–H –H			Anon Stewart JT and Janicki CA,
1717		6.5	U	-11			Chlorzoxazone, <i>APDS</i> , 16 , 119–144 (1987); NB: No reference. N&K Hoover
1718	Cholic acid (C ₂₄ H ₄₀ O ₅) HO ^{H₃C, COOH CH₃, H HO^{H₃C, COOH H}}	4.98±0.05	U	+H	potentio	H ₂ O t = 20 c < 0.014 (CMC)	Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine I: effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions, <i>J. Pharm.</i> <i>Sci.</i> , 58 , 179–183 (1969). NB: These values were quoted from Ekwall P, Rosendahl T and Lofman N, Bile salt solutions. I. The dissociation constants of the cholic and deoxycholic acids. <i>Acta Chem. Scand.</i> , 11 , 590–598 (1957). They were measured at concentrations below the critical micellar concentration range. At concentrations above 0.05 M, the pK _a reaches a stable value.

1719	Chromonar (C ₂₀ H ₂₇ NO ₅) CH ₃ \bigcirc	8.3	U	+H	potentio	Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-exchange resin, <i>J. Pharm. Sci.</i> , 59 , 481–486 (1970).
1720	Cimetidine	6.80	U	+H		 Brimblecombe RW, Duncan WAM, Durant GJ <i>et al.</i>, Cimetidine – a non- thiourea H2-receptor antagonist, <i>J. Int. Med. Res.</i>, 3, 86–92 (1975). Also see Shankley NP, Black JW, Ganellin CR and Mitchell RC, <i>Br. J.</i> <i>Pharmacol.</i>, 94, 264–274 (1988). NB: See Ranitidine for details.
1721	Cimetidine	6.97	U	+H	potentio	Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. not given: potentiometic titration.
1722	Cinchonine	4.0 8.2	U U	+H +H		 W&G: Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i>, 162, 289–353 (1925); Christophers SR, <i>Trans. Farad. Soc.</i>, 39, 333–338 (1943).
1723	Cinchonine	4.04 8.15	U U	+H +H		Dragulescu C and Policec S, Acad Rep Populare Romine, Baza Cercetari Stiint Timisoara, <i>Studii Cercetari</i> <i>Chim.</i> 9, 33–40, (1962); CA 58:5085f. Cited in Perrin Bases supplement no. 7465. NB: From $pK_{b2} = 5.85$ and $pK_{b1} = 9.96$.
1724	Ciprofloxacin	6.0 8.8	U U	-H +H		Foye

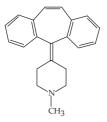
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1725	Citalopram (C ₂₀ H ₂₁ FN ₂ O) NC \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	9.38	U	+H	CZE/pH	H ₂ O	Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extende data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref. not given: capillary electrophoresis.
1726	Clomethiazole (chlormethiazole) (C ₆ H ₈ ClNS)	3.4	U	+H			 Upton RN, Runciman WB and Matha LE, Relationship between some physico-chemical properties of ionizable drugs and their sorption into medical plastics, Aust. <i>J. Hosp. Pharm.</i>, 17, 267–270 (1987). NB: no references or experimental details were given to support the stated value. "The sorption of drugs into medicatic plastics encountered in drug administration systems was examined for ionizable drugs Only I was subject to sorption, the greatest total decrease in concentration occurring with polyvinyl chloride (85%), then rubber (44%), polyethylene (21%) and polypropylene (6%). When sorption was compared with <i>pK</i>_a and lipophilicity, I was not the molipophilic drug, but by virtue of its low <i>pK</i>_a, was concluded that a higl degree of un-ionization, even of

						relatively unlipophilic drugs, is a situation which is likely to result in the sorptive loss of the drug into medical plastics."
1727	Clomethiazole	3.2	U	+H		Avery
1728	Clomethiazole	3.2	U	+H		N&K Avery
1729	Clomipramine (C ₁₉ H ₂₃ ClN ₂)	9.38	U	+H	H ₂ O	Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47, 1242– 1250 (2004); ref. 279: Seiler P, Simultaneous determination of partition coefficient and acidity constant of a substance, <i>Eur. J. Med.</i> <i>Chem.</i> , 9, 663–665 (1974).
1730	Clonazepam (C ₁₅ H ₁₀ ClN ₃ O ₃)	1.5	U	+H		Kaplan SA, Alexander K, Jack ML,
	$O_2N \qquad \qquad$	10.5	U	-н		 Puglisi CV, DeSilva JAF, Lee TL and Wenfeld RE, Pharmacokinetic profiles of clonazepam in dog and human and of flunitrazepam in dog, <i>J. Pharm. Sci.</i>, 63, 527–532 (1974). NB: See Winslow WC, Clonazepam, <i>APDS</i>, 6, 61–81 (1977). NB: no supporting references or experimental details
1731	Clonidine	8.2	U	+H		Abounassif MA, Mian MS and Mian NAA, Clonidine Hydrochloride, APDS, 21 , 109–147. NB: Clarke, pp. 481–482. See also Gennaro A, et al., (eds.), Remington's Pharmaceutical Sciences, 16th edn., Mack Publishing Co., Easton PA 785 (1985).
1732	Clonidine	8.25	U	+H		Avery
1733	Clonidine	8.0	U	+H		W&G: Timmermans PBMWM and van Zweiten PA, Dissociation constants of clonidine and structurally related imidazolidines, <i>ArzneimForsch.</i> , 28 , 1676–1681 (1978).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1734	Clonidine	8.05	U	+H		H ₂ O	Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. 283: Timmermans PBMWM, Brands A and van Zwieten PA, Lipophilicity and brain disposition of clonidine and structurally related imidazolidines, Naunyn-Schiedeberg Arch. Pharmacol., 300, 217–226 (1977)
1735	Clopenthixol	6.69	U	+H			Craig
736		7.60	U U	+H -H	potentio	H ₂ O	Raihle JA and Papendick VE,
	Clorazepate (C ₁₆ H ₁₁ ClN ₂ O ₃) H C C C C C C C C					-	 Clorazepate dipotassium, APDS, 4 91–112 (1975). "Attempts to measure the pK_a of the carboxyl group by titration (of chlorazepate dipotassium) in wate with hydrochloric acid were unsuccessful. Only the KOH which is liberated on dissolving chlorazepate dipotassium in H₂O i titrated (Wimer DC, Abbott Laboratories, personal communication)." NB: The description of chlorazepate dipotassium salt with a KOH adduct is odd. A solid isolated from a solution of chlorazepate in potassium hydroxide solution could also be the dipotassium salt, formed through ionization of both the –COOH and the cyclic amide groups. The latter

4/2

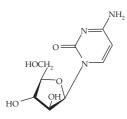
1737	Clozapine	3.70 7.60	U U	+H +H			 these would be expected to have a very high pK_a value, similar to KOH in solution. Further study is needed, preferably spectroscopic. McLeish MJ, Capuano B and Lloyd EJ, Clozapine, <i>APDS</i>, 22, 145–184 (1993). pK₁ = 3.70 (3); pK₂ = 7.60 (4) Schmutz J, Eichenberger E, <i>in</i> Bindra JS, Lednicer D, (eds.), <i>Chronicles of Drug Discovery</i>, vol. 1, Wiley, NY
1738	Clozapine	7.63	U	+H	potentio	H ₂ O	 39–59 (1982). 4. Richter K, J. Chromatogr., 434, 465–468 (1988). Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004) ; ref. not given: potentiometric titration. NB: Craig,
1739	Cocaine	8.76	U	+H		H_2O t = 15.0	8.0. Muhtadi FJ and Al-Badr AA, Cocaine hydrochloride, <i>APDS</i> , 15 , 151–231 (1986). NB: No reference to data source. This reference gave only the $pK_b = 5.59$, that is $pK_a = 8.76$ (pK_w =14.35 at 15 °C). Craig gave 8.7.
1740 1741	Cocaine Cocaine	8.5 8.7	U U	+H +H			 N&K Tencheva J, Velinov, G and Budevsky O, New approach of the extrapolation procedure in the determination of acid-base constants of poorly soluble pharmaceuticals. ArzneimForsch., 29, 1331–1334 (1979). Cited in Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. 284.


474	
4	Appendix B (continued)

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1742	Codeine	8.22	U	+H	potentio	50% aq. EtOH	Beckett AH, Analgesics and their antagonists. I., J. Pharm. Pharmacol., 8, 848–859 (1956); cited from Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, UN Dept. Social Affairs (1954) vol. 6, pp. 7–19; also cited in Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971). NB: See Alphaprodine for details.
1743	Codeine	8.2	U	+H		<i>t</i> = 20	Muhtadi FJ and Hassan MMA, Codeine phosphate, <i>APDS</i> , 10 , 93–134 (1982). BPC 11th Edn., The Pharmaceutical
1744	Codeine	8.22±0.01	А	+H	potentio	H_2O t = 25.0 I = 0.15 (KCl)	Press, London (1979). Sirius Technical Application Notes, vol. 1, pp. 99b–99c (1994). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration of analyte, 1.0–1.7 mM.
1745	Colchicine	12.35 (pK _b)	U	-H		<i>t</i> = 20.0	Wyatt DK, Grady LT and Sun S, Colchicine, <i>APDS</i> , 10 , 139–177 (1981). NB: Merck 9, p. 318 Gennaro <i>et al.</i> , Remington's Pharmaceutical Sciences p. 1049 (1975).
1746	Colchicine	1.65	U	+H			N&K Merck 9, p. 318

1747	Cromolyn (C ₂₃ H ₁₆ O ₁₁) HOOC $(C_{23}H_{16}O_{11})$ $(C_{23}H_{16}O_{11})$ $(C_{23}H_{16}O_{11})$ $(C_{23}H_{16}O_{11})$ $(C_{23}H_{16}O_{11})$	2.0	U	-Н	Avery. NB: Probably an average value for the two groups.
1748	Cyanopromazine (C ₁₈ H ₁₉ N ₃ S) $(H_3 \rightarrow H_3 \rightarrow$	9.3	U	+H	W&G: Hulshoff A and Perrin J, Dissociation constants in water and methanol-water mixtures of some 10-(3-dimethylaminopropyl) phenothiazines, <i>Pharm. Acta Helv.</i> , 51, 65–71 (1976).
1749	Cyclacillin	2.7	U	-H	McEvoy
1750	Cyclazocine (C ₁₈ H ₂₅ NO)	7.5 9.38	U U	+H +H	Craig
	HO H ₂ CH ₃ N-C-H ₂ HO H ₃ C				
1751	Cyclizine	8.16	U	+H	W&G: Barlow RB, Introduction to Chemical Pharmacology, 2nd Edn., Wiley, New York, pp. 124, 357 (1964).
1752	Cyclobenzaprine (C ₂₀ H ₂₁ N)	8.47	U	-Н	 (1904). Cotton ML and Down GRB, Cyclobenzaprine hydrochloride, <i>APDS</i>, 17, 41–72 (1988). Downing GV, Merck Sharp and Dohme Research Labs, Rahway, NJ, unpublished data.
	CHCH ₂ CH ₂ N(CH ₃) ₂				(

No.	Name	pKa value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1753	Cyclopentamine	11.47	U	+H			Craig; also cited in: N&K Chatten LG (ed.), <i>Pharmaceutical Chemistry</i> , vol. 1 , Dekker, New York pp. 85–87 (1966).
1754	D-Cycloserine	4.5 7.4	U U	-H +H			N&K Ritschel gave 4.5 and 7.4; ref. Brunner R and Machek G, Die Antibiotica, Band II, <i>Die Mittleren</i> <i>Antibiotica</i> , p. 132 (1965).
1755	Cyclothiazide	9.1	U	-H		30% EtOH	N&K APDS 1
1756	Cyproheptadine (C ₂₁ H ₂₁ N)	10.5 8.87	U U	-H +H			McEvoy; Craig


+H

1757 Cytarabine (C₉H₁₃ClN₃O₅) U

4.3

Avery

1758	Dacarbazine (C ₆ H ₁₀ N ₆ O) HN CONH ₂ $N=N-N(CH_3)_2$	4.42	U	+H			Craig N&K Anon
1759	Dantrolene (C ₁₄ H ₁₀ N ₄ O ₅) $O_{2}N$ $O_{2}N$ $O_{2}N$ $O_{3}N$ O_{3	7.5	U	-Н			Craig N&K Anon
1760	Dantrolene	7.5	U	-Н			Vallner JJ, Sternson LA and Parsons DL, Interaction of dantrolene sodium with human serum albumin, <i>J. Pharm. Sci.</i> , 65 , 873–877 (1976). NB: The pK _a value was quoted from Eaton Labs product information literature.
1761	Dapsone ($C_{12}H_{12}N_2O_2S$)	1.30	U	+H			Craig; N&K Chatten LG (ed.),
	H ₂ N - S - NH ₂	2.49	U	+H			Pharmaceutical Chemistry, vol. 1, Dekker, New York, pp. 85–87 (1966); Bell, Roblin, 1942.
1762	Debrisoquin (C ₁₀ H ₁₃ N ₃) NH NH NH ₂	11.9	U	+H			Craig; N&K W&G: Hengstmann JH, Falkner FC, Watson JT and Oates J, Quantitative determination of guanethidine and other guanido- containing drugs in biological fluids by gas chromatography with flame ionization detection and multiple ion detection, <i>Anal. Chem.</i> , 46 , 34–39 (1974).
1763	Debrisoquin	13.01±0.04	U	+H	potentio	H_2O t = 25.0 I = 0.15 (KCl)	Sirius Technical Application Notes, vol. 2 , p. 119 (1995). Sirius Analytical Instruments Ltd., Forest Row, East

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1764	Dehydrocholic acid (C ₂₄ H ₃₄ O ₅) H_3C , COOH	5.12	U	-Н		H_2O t = 20 c > CMC	 Sussex, RH18 5DW, UK. NB: Concentration of analyte, 13.3–14.0 mM. NB: Same value reported in ACD Labs database; Cited in Wan H, Holmen AG, War Y, Lindberg W, Englund M, Nagar MB and Thompson RA, High- throughput screening of pK_a value of pharmaceuticals by pressure- assisted capillary electrophoresis and mass spectrometry, <i>Rapid</i> <i>Commun. Mass Spectrom.</i>, 17, 2639–2648 (2003). NB: Also gave a calculated value of 13.27. Craig; N&K Johns WH and Bates TF Quantification of the binding tendencies of cholestyramine II,
							J. Pharm. Sci., 59 , 329–333 (1970).
1765	Dehydrocholic acid	4.91	U	-H		H ₂ O t = 20 c < CMC	Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine II, J. Pharm. Sci., 59 , 329–333 (1970). NI See Cholic acid.
1766	Demeclocycline	3.3	U	-H			Avery. NB: Assignment of pK_a values
		7.2	U	-H			from Stephens CR, Murai K,
		9.4	U	+H			Brunings KJ and Woodward RB, Acidity constants of the tetracyclin antibiotics, <i>JACS</i> , 78 , 4155–4158 (1956), but see refs. 1 and 11 therei See also Chlortetracycline.

		10.6	U	+H			
1768	Deoxycholic acid ($C_{24}H_{40}O_4$) H_3C , O H_3C	5.15±0.04	U	-Н	potentio	H ₂ O t = 20 c < 0.0045 (CMC)	Johns WH and Bates TR., Quantification of the binding tendencies of cholestyramine I: effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions, <i>J. Pharm.</i> <i>Sci.</i> , 58 , 179–183 (1969). NB: These values were quoted from Ekwall P, Rosendahl T and Lofman N, Bile salt solutions. I. The dissociation constants of the cholic and deoxycholic acids, <i>Acta Chem. Scand.</i> , 11 , 590–598 (1957). The pK _a value becomes stable above 0.01 M.
1769 479	2'-Deoxyuridine (C ₉ H ₁₂ N ₂ O ₅)	9.3	U	-Н	spectro	H ₂ O t = 25	Nestler HJ and Garrett ER, Prediction of stability in pharmaceutical preparations XV, Kinetics of hydrolysis of 5-trifluoromethyl-2'- deoxyuridine, <i>J. Pharm. Sci.</i> , 1117–1125 (1968). Cited in Ritschel. NB: No further details reported. Also reported the following values (spectro unless noted): 5-trifluoromethyl-2'-deoxyuridine, 7.85; 5-carboxy-2'-deoxyuridine, 4.0 and 9.8; 5-trifluoromethyluracil, 7.4 and 12.6 (kinetic); 5-carboxyuracil, 4.20 and 9.10; 5-carboxyuracil, 4.25 (potentio) and 8.90 (potentio); uracil, 9.0 and >13.0.

+H+H

4.5

U

Craig

1767

Demoxepam (C₁₅H₁₂N₂O₂)

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1770	Deserpidine (C ₃₂ H ₃₈ N ₂ O ₈) (H_3O)	6.68	U	+H			Craig
1771 1772	Deserpidine Desipramine	6.68 10.23	U U	+H +H	potentio	40% MeOH	N&K Merck 9 Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. not given:
1773	Desoxyephedrine (methamphetamine) (C ₁₀ H ₁₅ N) H CH ₃	9.5	U	+H			potentiometric titration. Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-exchange resin, <i>J. Pharm. Sci.</i> , 59 , 481–486 (1970). NB: This value was cited from unidentified literature.
1774	Dexamphetamine (C ₉ H ₁₃ N) \sim CH ₂ $-$ CH ₂ $-$ CH ₃ \sim CH ₂ $-$ CH ₃ \sim CH ₂ $-$ CH ₃	9.90	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969).

1775	Dextromethorphan (C ₁₈ H ₂₅ NO)	8.3	U	+H	 Other sources: Kisbye J, <i>Pharm. Weekblad</i>, 93, 206–215 (1958). Lewis GP, The importance of ionization in the activity of sympathomimetic amines, <i>Br. J. Pharmacol.</i>, 9, 488–493 (1954). Craig N&K Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-exchange resin, <i>J. Pharm. Sci.</i>, 59, 481–486 (1970). Ritschel gave 8.25: ref. Garrett ER and Chemburkar PB. Evaluation, control and prediction of drug diffusion through polymeric membranes III, <i>J. Pharm. Sci.</i>, 57, 1401–1409 (1968).
1776	Dextromoramide ($C_{25}H_{32}N_2O_2$)	7.0	U	+H	Craig N&K S&R
1777	Dextrose	12.1	U	-H	Sinko P (ed.), <i>Martin's Physical</i> <i>Pharmacy and Pharmaceutical Sciences</i> , 5th Edn., Lippincott, Williams and Wilkins, Baltimore MD (2006) Table 7–2.
1778	Diamorphine	7.83	U	+H	Beckett AH, Analgesics and their antagonists: Some steric and chemical considerations, <i>J. Pharm</i> .

Append	lix B ((continued)	
--------	---------	-------------	--

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
							<i>Pharmacol.</i> , 8 , 848–859 (1956); also cited in Clouet DH (ed.), <i>Narcotic</i> <i>Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53 (1971). NB: Quoted from Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotic and related compounds, <i>Bull.</i> <i>Narcotics</i> , UN Dept. Social Affairs vol. 6 , pp. 7–19 (1954).
1779	Diamorphine	7.83	U	+H			Barrett DA, Rutter N, Davis SS, An <i>in vitro</i> study of diamorphine permeation through premature human neonatal skin, <i>Pharm. Res.</i> , 10 (4), 583–587 (1993). NB: Value quoted without reference – probably the Farmilo value.
1780	Diatrizoic acid (C ₁₁ H ₉ I ₃ N ₂ O ₄) COOH $I \rightarrow I \rightarrow I$ CH ₃ CONH $I \rightarrow I \rightarrow I$ NHCOCH ₃	3.4	U	-Н			 Lerner HH, Diatrizoic acid, APDS, 4, 137–167 (1975). NB: Cited Langecker H, Harwart A and Junkmann K, 3,5-Diacetamido- 2,4,6-triiodobenzoic acid as an x-ray contrast medium, Arch. Exp. Pathol. Pharmakol., 222, 584–590 (1954).

	Diazepam	3.4	U	+H	spectro		MacDonald A, Michaelis AF and Senkowski BZ, Diazepam, <i>APDS</i> , 1 , 90 (1972). NB: Cited Toome V, Hoffman-La Roche, personal communication.
1782	Diazepam	3.3	U	+H			Van der Kleijn E, Protein binding and lipophilic nature of ataractics of the meprobamate and diazepine group, <i>Arch. Int. Pharmacodyn.</i> , 179 , 225–250 (1969). NB: See Chlordiazepoxide for details.
1783	Diazoxide	8.5	U	-H			Craig; N&K Anon.
1784	Dibucaine	-5.3	U	+H	spectro	aq. H ₂ SO ₄	Padmanabhan GR, Dibucaine and Dibucaine Hydrochloride, <i>APDS</i> , 12 , 105–133 (1983).
		1.6	U	+H	spectro	1% EtOH	"The following pK_a values have been
		8.31	U	+H	potentio		reported:
					1		$pK_{BH+} = 8.31$ (potentiometric titration)
							$pK_{BH2+} = 1.6$ (absorption
							spectrophotometry)
							$pK_{BH3+} = -5.3$ (absorption
							spectrophotometry)
							BH3+, BH2+, and BH+ are
							respectively triply protonated,
							doubly protonated and mono
							protonated species. See Martucci JD,
							Schulman SG, Anal. Chem. Acta, 77,
							317–319 (1975)."
							NB: Martucci and Schulman also
							reported a value for $pK_{a2} = 2.1$ from
							fluorometric data. This value
							represents ionization in the first excited state.
1785	Dibucaine	8.5	U	+H			W&G: Truant AP and Takman B,
1705	Dibucante	0.0	0	111			Differential physical-chemical and
							neuropharmacologic properties of
							local anesthetic agents, Anesth.
							Analg., 38 , 478–484 (1959). NB: Craig
							has 8.9 (+H).

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1786	Dichlorphenamide (C ₆ H ₆ Cl ₂ N ₂ O ₄ S ₂) SO_2NH_2 Cl SO_2NH_2 Cl SO_2NH_2	7.4 8.6	U U	-H -H			Craig N&K Anon
1787	Diclofenac	4	U	-H			 Adeyeye CM and Li P-K, Diclofenac sodium, APDS, 19, 123–144 (1990). NB: See also: Moser P, Jakel K, Krupp P, Menasse R and Sallman A, Structure-activity relations of analogs of phenylbutazone, Eur. J. Med. Chem., 10, 613–617 (1975).
1788	Dicloxacillin	2.76	U	-H	potentio	H ₂ O t = 37 I = 0.15 (KCl)	Tsuji A, Kubo O, Miyamoto E and Yamana T, Physicochemical properties of β -lactam antibiotics: oil-water distribution, <i>J. Pharm. Sci.</i> , 66 , 1675–1679 (1977). NB: From extrapolation of pK_a' values (3.55–3.98) in EtOH-water mixtures (32.8–51.4%). Also reported in Craig; N&K.
1789	Dicumarol (bishydroxycoumarin) (C ₁₉ H ₁₂ O ₆) (C + H + H + H + H + H + H + H + H + H +	4.4 8.0	U U	-H -H	spectro	H ₂ O (extrap)	 Cho MJ, Mitchell AG and Pernarowski M, Interaction of bishydroxycoumarin with human serum albumin, <i>J. Pharm. Sci.</i>, 60, 196–200 (1971). NB: These apparent pK_a values were extrapolated from values in DMF- water mixtures. Cited MJ Cho, MSc Thesis, Univ. Br. Columbia, Vancouver, Canada (1970).

1790	Diethazine (C ₁₈ H ₂₂ N ₂ S)	9.1	U	+H			Craig
	CH ₂ CH ₂ N(Et) ₂						
1791	Diethylcarbamazine (C ₁₀ H ₂₁ N ₃ O)	7.7	U	+H			Craig
	$H_3C - N $ $N - N O$						
1792	Dihydrocodeinone	6.61	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull.</i> <i>Narcotics</i> , UN Dept. Social Affairs vol. 6 , pp. 7–19 (1954). Cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53 (1971).
1793	Dihydroergotamine	8.0	U	+H			Ritschel gave 6.75 ± 0.03 ; this is the apparent value in 10% 7HPT. Ref. Maulding HV and Zoglio MA, Physical chemistry of ergot alkaloids and derivatives. I. Ionization constants of several medicinally active bases, J. Pharm. Sci.,

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
							59 , 700–701 (1970). Notes the 8.0 value with a secondary reference to Robson JM and Stacey RS, <i>Recent advances in pharmacology</i> , 4th Edn., Little Brown and Co., Boston, p. 108 (1968).
1794	Dihydromorphine	8.55	U	+H	potentio	50% aq EtOH	 Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull.</i> <i>Narcotics</i>, UN Dept. Social Affairs vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i>, Plenum Press, New York, 52–53 (1971).
1795	Dihydromorphinone	8.15	U	+H			 Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull.</i> <i>Narcotics</i>, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954). Cited in Beckett AH, Analgesics and their antagonists. L, <i>J. Pharm. Pharmacol.</i>, 8, 848–859 (1956); also cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i>, Plenum Press, New York, 52–53, (1971). NB: See Alphaprodine for details.

7.8

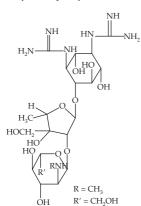
7.70

8.06

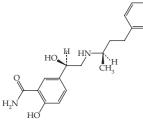
U

U

+H


+H+H

+H


+H

potentio

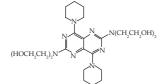
Craig NB: This value is most likely to be for the 2° amino group. There should be higher values for the guanidine residues.

1797	Dihydrostreptomycin	7.75	U
1798	Dilevolol (C ₁₉ H ₂₄ N ₂ O ₃)	9.45	U

1799 Diltiazem 1800 Diltiazem

N&K; Hoover

Craig


Craig Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242-1250 (2004); ref. not given: potentiometric titration.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1801	Dimethadione (C ₅ H ₇ NO ₃) H_3C H_3C H_3C H_3C O	6.1	U	-Н			Butler TC, The effects of N-methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin and 2,4-oxazolidinedione J. Am. Pharm. Assoc., 44, 367–370 (1955). See also Craig.
1802	Dimethisoquin (C ₁₇ H ₂₄ N ₂ O)	6.30	U	+H			Craig
	OCH ₂ CH ₂ N(CH ₃) ₂						
1803	Dimethylhydantoin (C ₃ H ₈ N ₂ O ₂) HN CH_3 CH_3 O O NH O O O O O O O O	8.1	U	-Н			Butler TC, The effects of N-methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin and 2,4-oxazolidinedione <i>J. Am. Pharm. Assoc.</i> , 44 , 367–370 (1955). See also W&G.
1804	Dinoprostone (prostaglandin E_2) ($C_{20}H_{32}O_4$)	4.6	U	-H			Foye 3rd; see Azatadine; from McEvoy.
	о соон но он						

1805	Diperodon ($C_{22}H_{27}N_3O_4$)	8.44	VU	+H		H ₂ O	 Cohen JL, Diperodon, <i>APDS</i>, 6, 99–112 (1977). NB: See also US Dispensatory, 27th Edn., (1973) p. 439. "Diperodon is a tertiary amine and is weakly basic. Aqueous solution of 1% diperodon hydrochloride have a pH of 5.1. Although the dissociation constant is not specifically reported in the literature a pK_a of 8.44 can be estimated from this information."
1806	Diphenhydramine	9.1	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref. not given: potentiometric titration.
1807	Diphenoxylate	7.1	U	+H	potentio		 Hong DD, Diphenoxylate hydrochloride, <i>APDS</i>, 7, 149–169 (1978). Cited Mead I, GD Searle & Co. (High Wycombe), personal communication. "The pK_a of diphenoxylate by the titrimetric method was found to be 7.1."
1808	Diphenoxylate	4.4	U	+H			N&K Charles RL, Searle Labs, Chicago, personal communication. ACD gave an estimated value = 7.63±0.40; also mentions the N&K value of 4.4, but queries that value. Possibly this value was obtained in a mixed aqueous-organic solvent.
1809	Diphenylpyraline	8.9	U	+H			Craig. NB: This appears to be the Testa value (see no. 459).

490

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1810	DL-Dipipanone (C ₂₄ H ₃₁ NO)	8.70	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull.</i> <i>Narcotics</i> , UN Dept. Social Affairs (1954) vol. 6, pp. 7–19; cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i> , Plenum Press, New York, 52–53, (1971).
1811	DL-Dipipanone	9.08	U	+H			Taylor JF, Ph.D. Thesis, Univ. London (1968).
1812 1813	Dipipanone Dipivefrine (C ₁₉ H ₂₉ NO ₅)	8.5 8.40	U U	+H +H		RT	Craig Wall GM and Fan TY, Dipivefrine
1015	HO NHCH ₃	0.10	U	711		KI	hydrochloride, <i>APDS</i> , 22 , 229–262 (1993). NB: Alcon Laboratories, Inc., unpublished data on file.
	O C(CH ₃) ₃						
1814	Dipyridamole (C ₂₄ H ₄₀ N ₈ O ₄)	6.4	U	+H			Craig N&K Ritschel gave 6.4; ref. Geigy Pharmaceuticals, Ardsley,

Pharmaceuticals, Ardsley, New York 10502.

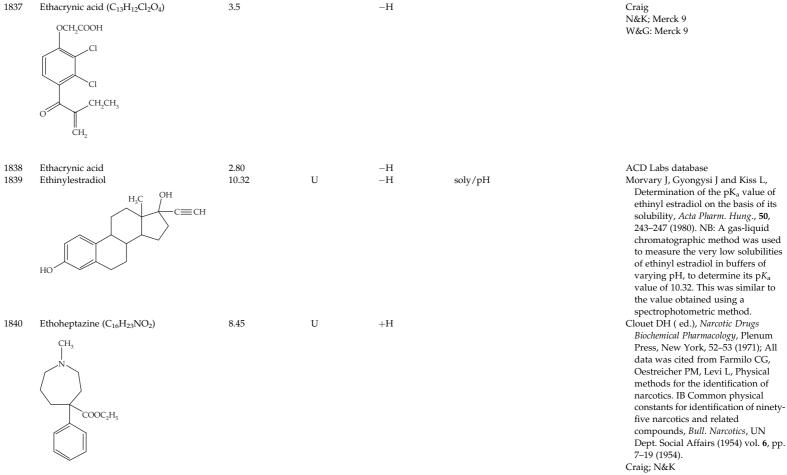
1815	Dobutamine (C ₁₈ H ₂₃ NO ₃) HN - + + + + + + + + + + + + + + + + + +	9.45	U	+H	DMF	Bishara RH and Long HB, Dobutamine hydrochloride, APDS, 8, 139–158 (1979).NB: No reference, but probably by the potentiometric method.
1816	Domperidone (C ₂₂ H ₂₄ ClN ₅ O ₂) $\begin{pmatrix} O \\ + \\ N \\ + \\ O \\ + \\ N \\ + \\ - \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	7.90	U	+H		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004). Ref. 286: Oliviera CR, Lima MCP, Carvalho CAM, Leysen JE and Carvalho AP, Partition coefficients of dopamine antagonists in brain membranes and liposomes, <i>Biochem. Pharmacol.</i> , 38 , 2113–2120 (1989). This reference states that the pK _a value was provided by Dr. JE Leysen, with no further details given.
1817	DOPA, L- (Levodopa) (C9H11NO4)	2.3 9.0 10.2	ប ប ប	-H -H, +H +H, -H		 Lippold BC and Jæger I, Stability and dissociation constants of L-dopa and alpha-L-methyldopa, <i>Arch. Pharm. Weinheim.</i>, 306, 106–117 (1973). "A discussion of the oxidation of levodopa and methyldopa in alkaline solution is presented. The reaction rate increases with increasing supply of oxygen, increasing pH, but decreasing concentration of starting material. The pK_a values of levodopa are: 2.3, 9.0, 10.2, and 12.5, and of methyldopa: methyldopa 2.25, 9.0, 10.35, and 12.6."

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1818	DOPA, L- (Levodopa)	2.31 8.71 9.74 13.40	บ บ บ บ	-H -H, +H +H, -H -H	potentio		Gomez R, Hagel RB and MacMullan EA, Levodopa, <i>APDS</i> , 5 , 189–223 (1976). NB: Cited Gorton JE and Jameson RF, Complexes of doubly chelating ligands. I. Proton and copper(II) complexes of L-β-(3,4- dihydroxyphenyl)alanine (DOPA), J. Chem. Soc (A), 2615–2618 (1968).
1819	Dorzolamide (C ₁₀ H ₁₆ N ₂ O ₄ S ₃)	6.35 8.50	U U	+H -H	potentio		Quint MP, Grove J and Thomas SM, Dorzolamide Hydrochloride, <i>APDS</i> 26 , 294–299 (1999). NB: No references given; data presumably obtained in house (Merck Sharp and Dohme, Riom, France; and Merck Research Labs, Rahway, NJ, USA), but see Brinzolamide. The assignments can be confirmed in part from the temperature dependence of the amine pK_a value = 0.019/K, which is higher than for typical anionic functional groups. See also Kamel K, Ogashiwa M, Ohsima A, Ohki Y, Takahashi M and Ishimaru S, <i>Iyakhun Kenkyu</i> , 25 , 6, 438 (1994) (ref. 13 in APDS 26 article on Brinzolamide. Assignments as claimed for

Brinzolamide)

Appendix B (continued)

								рн deper I dorzolan		e of the ec	Juilibri	um solubility
						-	pН	Solubility (mg∕mL)	рН	Solubility (mg∕mL)	pН	Solubility (mg/mL)
								29.79		30.06	8.00	3.59
							5.18 5.35	33.35 35.92	6.09 7.00	13.21 3.74	8.50	5.33 11.71
								40.00		3.74 3.19		40.10
1820 1821	Doxepin Doxorubicin	8.0 8.2	U U	+H -H		-			gaard	T and Ni		
								Dan See I also	. <i>Med</i> Foye,	. Bull., 22 , gave 8.2 a orubicin (l	62–73 and 10	or antibiotic, (1975). NB: .2 (+H). See and nos.
1822	Doxorubicin (Adriamycin)	8.25 ± 0.60	U	-H	comp			ACD/	pK_a	estimate		
		$8.43 {\pm} 0.70$	U	+H	•							
		$11.9{\pm}0.4$	U	-H								
		12.95 ± 0.1	U	-H								
		$13.8 {\pm} 0.70$	U	-H								
1823	Doxycycline	3.5	U	-H				Craig;	N&K	; Jaffe JM	, Cola	izzi JL and
		7.7	U	-H				Pou	st RI,	Effect of a	altered	d urinary
		9.5	U	+H				excr	etion macoi	in humar	ns, J.	loxycycline 1, 267–282
1824	Doxylamine (C ₁₇ H ₂₂ N ₂ O) CH ₃ OCH ₂ CH ₂ N(Me) ₂	9.20	U	+H	potentio	H_2O t = 25 c = 0.002-0.01		prop activ Phar	oertie vity: a m. As	nd Christ s and pha antihistam ss., Sci. Ed e Chlorph	rmaco inics, n., 45 ,	J. Am. 300–305
) for detai	ls.	
		4.4	U	+H				Craig;	N&K	C		
	~	9.2	U	+H								

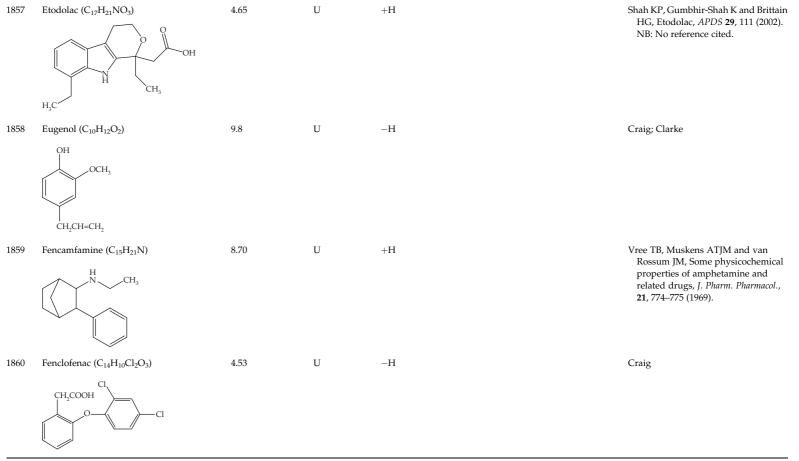

 TABLE
 pH dependence of the equilibrium solubility

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1825	Droperidol (C ₂₂ H ₂₂ FN ₃ O ₂) $\downarrow \qquad \qquad$	7.64	U	+H	potentio		Janicki CA and Gilpin RK, Droperidol, <i>APDS</i> , 7, 171–192 (1978). NB: Ref. Demoen P, Janssen Pharmaceutica, Beerse, Belgium, unpublished data. N&K S&R
1826	Enalaprilat (C ₁₈ H ₂₄ N ₂ O ₅) H COOH H CH ₃ N COOH H COOH COOH	2.30 3.39	U U	H H			Craig
1827	Ephedrine	8.02 9.5	U U	+H +H			Ritschel; Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-exchange resin, J. Pharm. Sci., 59 , 481–486
1828	Ephedrine	9.6	U	+H			 (1970). W&G: Schanker LS, Shore PA, Brodie BB and Hogben CAM, Absorption of drugs from the stomach. I. The rat, JPET, 120, 528–539 (1957).
1829	Ephedrine	9.60	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and

1830	Ergometrine (C ₁₉ H ₂₃ N ₃ O ₂) $HOCH_2 \xrightarrow{CH_3} O \xrightarrow{V} V$ $HOCH_2 \xrightarrow{V} H$ $HOCH_2 \xrightarrow{V} H$ $HOCH_3 \xrightarrow{V} V$ $HOCH_3 \xrightarrow{V} V$ H	7.3	U	+H			drug action, <i>J. Pharm. Pharmacol.</i> , 9 , 345–380 (1957); Lewis GP, The importance of ionization in the activity of sympathomimetic amines <i>Br. J. Pharmacol.</i> , 9 , 488–493 (1954). Foye 3rd; see Azatadine; from N&K. N&K S&R
1831	Ergonovine	6.8	U	+H			Craig; N&K According to Merck 12, ergometrine = ergonovine.
1832	Ergotamine	6.40±0.09	U	+H	potentio	H ₂ O <i>t</i> = 24.0	Maulding HV and Zoglio MA, <i>J.</i> <i>Pharm. Sci.</i> , 59 , 700–701 (1970). Cited in Kreilgård B, Ergotamine Tartrate, <i>APDS</i> , 6 , 113–159 (1977). NB: The pK _a value was measured as a function of 7-hydroxypropyltheophylline concentration and extrapolated to zero [7HPT] (6.25 ± 0.04). The value was further corrected by addition of 0.15 ± 0.05 log unit, from comparison of the extrapolated pK _a value for methysergide and the corresponding value in the absence of 7HPT. It is not the apparent pK _a ' = 6.4 at 24° in 2% aqueous caffeine, as

related drugs, *J. Pharm. Pharmacol.*, **21**, 774–775 (1969). Other sources: Kisbye J, *Pharm. Weekblad.*, **93**, 206–215 (1958); Brodie BB and Hogben CAM, Some physicochemical factors in

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1833	Ergotamine	6.3	U	+H	soly	H ₂ O	suggested by Kreilgård. NB: pKa' = 5.6 in 80% aqueous methylcellosolve has also been reported. (Hofmann A, Die Mutterkornalkaloide, F. Enke Verlag, Stuttgart, 1964) Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended
1834	Erythromycin	8.8	U	+H			data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004). Ref. 287: Kreilgård B, Ergotamine Tartrate, APDS, 6, 113–159 (1977). Craig; N&K Merck 9; Garrett ER, Heman-Ackah SM and Perry GL, Kinetics and mechanisms of action of drugs on microorganisms XI, J. Pharm. Sci., 59, 1449–1456 (1970) NB: No references or experimental details were cited.
1835	Erythromycin estolate (C ₅₂ H ₉₇ NO ₁₈ S) H ₃ C $(H_3 - CH_3 - $	6.9	U	+H		66% aqueous DMF	Mann JM, Erythromycin estolate, APDS, 1 , 101–117 (1972). NB: Estolate = dodecyl sulfate salt.
1836	Erythromycin lactobionate (salt with lactobiono-ô-lactone) (C ₃₇ H ₆₇ NO ₁₃)	8.8	U	+H	potentio	H ₂ O	McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM and Smith JW, <i>Antibiot. Chemother.</i> , 2 , 281–283 (1952).


3.5

-H

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1841	Ethopropazine	9.6	U	+H			Craig; N&K Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J. Pharmacol.</i> , 10 , 270–278 (1955).
1842	Ethosuximide (C ₇ H ₁₁ NO ₂)	9.5	U	-H			Craig
	CH ₃ CH ₃ CH ₂ O						
1843 1844	Ethosuximide Ethylamphetamine (C ₁₁ H ₁₇ N)	9.3 10.23	U U	-H +H			N&K Avery Vree TB, Muskens ATJM and van
1845	Ethyl biscoumacetate ($C_{10}H_{24}O_8$)	7.5	U	-H			Rossum JM, Some physicochemic properties of amphetamine and related drugs, J. Pharm. Pharmacol 21, 774–775 (1969). Craig
	(10^{-24+6})		-				8
1846	Ethyl biscoumacetate	3.1	U	-H			N&K Avery
1847	Ethyl biscoumacetate	3.1	U	-Н			W&G: Anton AH, A drug-induced change in the distribution and ren excretion of sulfonamides, <i>JPET</i> , 1 291–303 (1961). NB: The value wa obtained from Dayton PG, persor communication.

1848	Ethylenediamine (C ₂ H ₈ N ₂)	6.985 10.075	R R	+H +H	potentio	H ₂ O t = 20.0 $I = 0.07-0.30 (pK_{a2});$ $0.10-0.25 (pK_{a1})$	Everett DH and Pinsent BRW, The dissociation constants of ethylenediammonium and hexamethylenediammonium ions from 0° to 60°, <i>Proc. Roy. Soc.</i> , Lond., 215A , 416–429 (1952). Cited in Perrin Bases no. 104, ref. E36. NB: Used symmetrical hydrogen half cells with junction potentials. Raw data was extrapolated to zero ionic strength to give the thermodynamic values reported here. Numerous other values were reported. See also Bates RG, Amine buffers for pH control, <i>Ann. NY Acad. Sci.</i> , 92 , 341–356 (1961).
1849	2-Ethylmercapto-4-hydroxypyrimidine	7.01	U	-H?			Garrett ER and Weber DJ, Metal complexes of thiouracils I. Stability constants by potentiometric titration studies and structures of complexes, J. Pharm. Sci., 59 , 1383–1398 (1970).
1850	Ethylmorphine	8.20	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull.</i> <i>Narcotics</i> , UN Dept. Social Affairs (1954) vol. 6, pp. 7–19 cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i> , Plenum Press, New York, 52–53 (1971).
1851	Ethylmorphine	7.88	U	+H			New York, 52–53 (1971). N&K Ritschel gave 7.88; ref, Parrott EL, Pharmaceutical Technology, Fundamental Pharmaceutics, Burgess Pub. Co, Minneaoplis, MN, p. 219 (1970).

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1852	Ethylnorepinephrine (C ₁₀ H ₁₅ NO ₃) HO HO HO HO HO HO HO HO	8.4	U	+H			Craig
1853	α -Ethylphenethylamine (C ₁₀ H ₁₅ N)	9.30	U	+H			Garrett ER and Chemburkar PB. Evaluation, control and prediction of drug diffusion through polymeric membranes III, <i>J. Pharm. Sci.</i> , 57 , 1401–1409 (1968).
1854	Ethylphenylhydantoin (C ₁₁ H ₁₂ N ₂ O ₂) H ₃ C $\stackrel{O}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{O}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{O}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{O}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}$ $\stackrel{H}{\underset{H}{\longrightarrow}}$	8.5	U	-Н	spectro	H2O RT I undefined	 W&G: Butler TC, The effects of N-methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin, and 2,4- oxazolidinedione, <i>J. Am. Pharm.</i> <i>Assoc., Sci. Edn.</i>, 44, 367–370 (1955). See Norparamethadione for additional details.
1855 1856	Etidocaine Etidocaine	7.9 7.7	U U	+H +H			Craig de Jong RH, Neural blockade by local anesthetics, <i>JAMA</i> , 238 , 1383–1385 (1977); cited in W&G.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1861	Fenfluramine (C ₁₂ H ₁₆ F ₃ N) $CH_2 - CH_2 - CH_3$ HC_2H_5	9.10	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969).
1862	Fenoprofen	4.5	U	-H		H ₂ O	Ward CK and Schirmer RE, Fenoprofen Calcium, <i>APDS</i> , 6 ,
		7.6	U	-Н		66% aq. DMF	161–182 (1977). NB: No supporting reference. See also N&K Anon.
1863	Fenoterol (C ₁₇ H ₂₁ NO ₄)	8.5	U	+H			Craig
	HO HO HO HO H ₃ C	10.0	U	-Н			
1864	Fenoterol	8.5	U	+H			Al-Majed AA, Fenoterol
		10.0	U	-Н			Hydrobromide, <i>APDS</i> 27 , 43 (2000) Cited Clarke as source.
1865	Fentanyl	8.43	U	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extende data set and leave-class-out

HOCH,

ÒН

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1868	Flucloxacillin (C ₁₉ H ₁₇ ClFN ₂ O ₅ S) $F \rightarrow Cl$ $H \rightarrow H$ $H \rightarrow $	2.7	U	-Н			Craig N&K Avery NB: Also called Floxacillin.
1869	Flucytosine (C ₄ H ₄ FN ₃ O)	$\begin{array}{c} 2.90 \pm 0.05 \\ 10.71 \pm 0.05 \end{array}$	U U	+H -H	spectro	H ₂ O	Waysek EH and Johnson JH, Flucytosine, <i>APDS</i> , 5 , 115–138 (1976). Toome V, Hoffmann-La Roche Inc., unpublished data. N&K
1870	Flufenamic acid	3.9	U	-H	potentio		Abignente E and de Caprariis P,
		3.85	U	-Н	soly/pH		 Flufenamic acid, APDS, 11, 313–343 (1982). "The pK_a of flufenamic acid was reported to be 3.9 by Aguiar and Fifelski (20) and 4.5 by Frey and El-Sayed (30). Terada <i>et al.</i> (24) have found a value of 3.85 using the pH-dependent solubility method this value is considerably different from the corresponding value obtained by potentiometric titration

in 5–10% aqueous acetone (32)."

pK_a values of flufenamic acid obtained by

potentiometric titration

Solvent	р <i>К</i> а	References
water 50% aqueous ethanol 80% aqueous 2- methoxyethanol	7.5 5.94 6.0	Jahn U, Wagner- Jauregg T, Wirkungsvergleich saurer Antiphlogistika im Bradykinin-, UV-Erythem- und Rattenpfotenödem- Test <i>Arzneim.</i> -
		Forsch., 24 , 494–499 (1974). NB: See separate entry, no. 554.
75% aqueous methanol	5.75	Unterhalt B, Arch. Pharm., 303 , 445–456 (1970).
Dioxane:water (2:1)	6.8	Lombardino JG, Otterness IG and Wiseman EH, ArzneimForsch., 25 , 1629–1635 (1975).

 Aguiar AJ and Fifelski RJ, Effect of pH on the *in vitro* absorption of flufenamic acid, *J. Pharm. Sci.*, **55**, 1387–1391 (1966).
 Terada H, Muraoka S and Fujita T, Structure-activity relationships of fenamic acids, *J. Med. Chem.*, **17**, 330–334 (1974). NB: See separate entry, no. 553.


Append	lix B ((continued)
--------	---------	-------------

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
							 Frey HH and El-Sayed MA, Concentrations of acidic antiinflammatory drugs in gastric mucosa, Arch. Int. Pharmacodyn. Ther., 230, 300–308 (1977). Terada H and Muraoka S, Physicochemical properties and uncoupling activity of 3'-substituted analogues of N-phenylanthranilic acid, Mol. Pharmacol., 8, 95–103 (1972). NB: See separate entry no.
871	Flumizole (C ₁₈ H ₁₅ F ₃ N ₂ O ₂) CF_3 HN HN H_3CO OCH_3	10.7	U	-Н			 552. Wiseman EH, McIlkenny HM and Bettis JW, Flumizole, a new non- steroidal antiinflammatory agent, <i>J.</i> <i>Pharm. Sci.</i>, 64, 1469–1475 (1975). NB: Value quoted without references or experimental details. Craig
1872	Flunitrazepam	1.8	U	+H			Kaplan SA, Alexander K, Jack ML, Puglisi CV, DeSilva JAF, Lee TL and Wenfeld RE, Pharmacokinetic profiles of clonazepam in dog and

1873 2-(4-(p-Fluorobenzoyl)-piperidin-1-yl)-2'acetonaphthone (C₂₄H₂₂FNO₂)

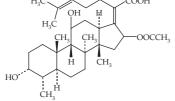
+H

U

1874	Flupent(h)ixol	7.80	U	+H	
1875	Fluphenazine enanthate ($C_{29}H_{38}F_3N_3O_2S$)	3.50 or 3.29 8.2 or 7.7	U VU	+H +H	potentio
	OOCC ₆ H ₁₃	0.2 01 7.7	vo	\pm 11	
	N				
	CF ₃				

5.9

human and of flunitrazepam in dog, J. Pharm. Sci., 63, 527-532 (1974). NB: Values given without reference or experimental support. See Clonazepam. Tokumura T, Tanaka T and Karibe N, Physicochemical properties of 2-(4-(p-fluoro-benzoyl)piperidin-1-yl)-2'-acetonaphthone hydrochloride and its gastrointestinal absorption in beagle dogs, J. Pharm. Sci. Tech. Yakuzaigaku, 54, 95-102 (1994). "The physicochemical properties ... of E-2001 (2-(4-(p-fluorobenzoyl)piperidin-1-yl)-2'-acetonaphthone hydrochloride) were studied The pK_a and log P' at pH 8 were 5.9 and 4.1, respectively. The solubility of the drug (0.1mcg/ml at pH 5) increased gradually with a decrease in pH and reached a value of 5 mg/ml at pH 3...." Craig Florey K, Fluphenazine Enanthate, APDS, 2, 245-262 (1973). Cited Jacobson H, private communication. "The pK_{a1} value was determined by titration; the pK_{a2} value was estimated from the pH of the first equivalent point because fluphenazine enanthate precipitated at pH values slightly above this point." NB: The pK_{a2} value must be quite


uncertain.

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1876	Fluphenazine decanoate $(C_{32}H_{44}F_3N_3O_2S)$						Clarke G, Fluphenazine Decanoate, <i>APDS</i> , 9 , 275–294 (1980). NB: The pK_a values were not actually reported in this source. They would be expected to be very similar to those reported for fluphenazine enanthate (3.4; 8.0).
1877	Flurazepam (C ₂₁ H ₂₃ ClFN ₃ O)	$\begin{array}{c} 1.90 \pm 0.05 \\ 8.16 \pm 0.05 \end{array}$	U U	+H -H	spectro	H ₂ O	Rudy BC and Senkowski BZ, Flurazepam hydrochloride, <i>APDS</i> , 3 , 307–331 (1974). Cited Toome V, Raymond G, Hoffman-La Roche Inc., unpublished data. NB: Apparent $pK_{a2} = 7.0 \pm 0.1$ in 2-propanol:water (1:1) "In water, the trialkylamino type compounds are stronger bases, on the average, by 0.9 pK units. Therefore, the estimated pK_{a2} in water would be 7.9 which are in good agreement with that found spectrophotometrically."
1878 1879	Flurazepam Flurbiprofen	3.80	U	+H -H		H ₂ O	NB: See Flunitrazepam ACDLabs database

1880	Fluvoxamine ($C_{15}H_{21}F_3N_2O_2$) F_3C $(CH_2)_4OCH_3$ N $OCH_2CH_2NH_2$	8.7	U	+H			 Foda NH, Radwan MA and Al Deeb OA, Fluvoxamine Maleate, APDS, 24, 165–208 (1996). NB: No pK_a reference was given.
1881	Folic acid	2.5	U	-H			Baker BR and Jordaan JH, Analogues of tetrahydrofolic acid XXVIII, <i>J. Pharm. Sci.</i> , 54 , 1740–1745 (1965). NB: Refers to Zakrzewski, Sigmund F, Relation between basicity of certain folate analogs and their affinities for folate reductase, <i>J. Biol.</i> <i>Chem.</i> , 238 , 4002–4004 (1963). This paper only gave data for the pterin nucleus.
1882	Fumaric acid (C ₄ H ₄ O ₄) HOOC COOH	3.019 4.384	A A	-H -H	potentio	H_2O $t = 25.0 \pm 0.01$ N_2 atmos	 German WL, Vogel AI, Jeffery GH, Thermodynamic primary and secondary dissociation constants of fumaric and maleic acids, <i>Phil. Mag.</i>, 22, 790–800 (1936). NB: Used the quinhydrone electrode in cells with liquid junction potential. This electrode was necessary to avoid the reduction of the double bond that would otherwise have occurred if a hydrogen electrochemical cell had been used. See also W&G: Martin.
1883	Furaltadone (C ₁₃ H ₁₆ F ₃ N ₄ O ₆) O_2N O_2N N N N N N N N N N	5.0	U	+H			W&G: Buzard JA, Conklin, JD and Buller RH, Lymphatic transport of selected nitrofuran derivatives in the dog, <i>Am. J. Physiol.</i> , 201 , 492–494 (1961).

Append	ix B (continued)
--------	--------	------------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1884	Furosemide (frusemide)	3.8	U	-Н			 Cruz JE, Maness DD and Yakatan GJ, Kinetics and mechanism of hydrolysis of furosemide, <i>Int. J. Pharm.</i>, 2, 275–281 (1979). NB: Value given without references or experimental support. "An <i>in vitro</i> … study was performed to elucidate the … hydrolysis … of furosemide (I) as a function of pH and temperature below the reported pK_a of 3.8, the log K-pH profile indicated specific hydrogen ion catalysis on the undissociated species"
1885	Furosemide (frusemide)	4.7	U	-H			 McCallister JB, Chin T-F and Lach JL, Diffuse reflectance studies of solid- solid interactions IV, <i>J. Pharm. Sci.</i>, 59, 1286–1289 (1970). NB: The value was given without citation or experimental support.
1886	Fusidic acid ($C_{31}H_{48}O_6$) H ₃ C \sim COOH	5.35	U	-H			Craig N&K Merck 9

1887	Galanthamine (C ₁₇ H ₂₁ NO ₃)	8.32	U	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004); ref. 289: Dictionary of Organic Compounds, CD-ROM, Version 10.1. Chapman and Hall/ CRC, 2002.
1888	Gentamicin (C1: $C_{21}H_{43}N_5O_7$) (C2: $C_{20}H_{41}N_5O_7$) (C1a: $C_{19}H_{39}N_5O_7$) R_1 NHR ₂ H_3N NH ₂	8.2	U	+H	potentio	66% DMF	Rosenkrantz B, Greco JR, Hoogerheide JG and Oden EM, Gentamicin Sulfate, <i>APDS</i> , 9 , 295–340. Cited Greco J, Rosenkrantz B, Schering- Plough Corp., unpublished results. N&K Baldini JT, Schering Corp. Kenilworth NJ, Personal Communication, 1975.
	$\begin{array}{c} 2 \\ HO \\ HO \\ C_1 R_1 = R_2 = CH_3 \\ C_2 R_1 = CH_3 ; R_2 = H \\ C_{1a} R_1 = R_2 = H \\ HO \\ CH_3HN \\ OH \end{array}$	7.9	U	+H		H ₂ O	Craig; Done AK, <i>Emergency Med.</i>, 8, 197–202 (1976).NB: Average values for 5 amino groups.
1889	Glibenclamide	6.5 ± 0.03	U	-H	soly/pH	H ₂ O	Crooks MJ and Brown KF, The binding of sulphonylureas to serum albumin, <i>J. Pharm. Pharmacol.</i> , 26 , 305–311 (1974). NB: Result stated to be identical to that of Hadju <i>et al.</i> (see no. 591).

Appendix B (continued)

 D

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1890	Clipizide (C ₂₁ H ₂₇ N ₅ O ₄ S) $H_{3}C \xrightarrow{N}_{N} \xrightarrow{O}_{HN} \xrightarrow{O}_{NH} \xrightarrow{O}_{NH}$	5.9	U	-Н			Foye 3rd; see Azatadine; from McEvoy.
1891	D-Glucuronic acid ($C_6H_{10}O_7$) HOOC OH OH HO OH	3.18	U	-H	potentio	H ₂ O t = 20.0	Hirsch P, The acid strength of glucuronic acid in comparison with that of oxycelluloses, <i>Rec. Trav. Chim Belge.</i> , 71 , 999–1006 (1952). Cited in Kortum, ref. H36. Cited also in W&G, but with an incorrect reference.
1892	Glutarimide (C ₃ H ₇ NO ₂) $O \longrightarrow H$ $V \longrightarrow O$	11.4	U	-Н			W&G: Albert, Selective Toxicity, p. 281, (1968) reference is not correct
1893	Glutethimide	9.2	U	-Н			Agarwal SP and Blake MI, Determination of glutethimide, aminoglutethimide and bemegride by non-aqueous titration, <i>J. Pharm.</i> <i>Sci.</i> , 54 , 1668–1670 (1965). NB: The value was given without reference of supporting experimental data. See
		11.2	U	-H	soly/pH	H ₂ O	also Foye. Peinhardt G, Acidity and acidimetric titration of medically used glutaric acid imide, <i>Pharmazie</i> , 32 , 726–727 (1977) cited in CA 88:141587.

1894	Glutethimide	4.518	U	-H	H ₂ O t = 20.0 I = 0.1	Aboul-Enein HY, Glutethimide, <i>APDS</i> , 5 , 139–187 (1976). "Doornbos DA and deZeeuw RA, <i>Pharm. Weekblad</i> , 104, 233–251 (1969). Doornbos and DeZeeuw measured the "proton lost" dissociation constant K ₂ H and the "proton gained" K ₃ H dissociation constant for glutethimide by a previously described potentiometric titration method at 20°. K ₂ H and K ₃ H for glutethimide at ionic strength of $\mu = 0.10$ was found to be 4.518." NB: This value is inconsistent with other reported values for this compound (see no. 597) and is more likely to be the corresponding pK _b .
1895	Glyburide (C ₂₃ H ₂₈ ClN ₃ O ₅ S) $Cl \rightarrow Cl \rightarrow H$ H $Cl \rightarrow H$ H H H H H H H	5.3	U	-H		N&K Avery NB: See Glibenclamide
1896	Glycocholic acid	2.78	U	-Н	H ₂ O	Johns WH and Bates TR,
		4.35	U	—Н	<i>c</i> < CMC H ₂ O <i>c</i> > CMC	Quantification of the binding tendencies of cholestyramine I: Effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions, <i>J. Pharm. Sci.</i> , 58 , 179–183 (1969). NB: These values were quoted from Ekwall P, Rosendahl T and Lofman N, Bile salt solutions. I. The dissociation constants of the cholic and deoxycholic acids, <i>Acta Chem. Scand.</i> , 11 , 590–598 (1957). They were measured at concentrations both above and below the critical micellar concentration range.

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1897	Glycodeoxycholic acid	2.46 3.98	U U	-H -H		H ₂ O c < CMC H ₂ O c > CMC	Johns WH and Bates TR, Quantification of the binding tendencies of cholestyramine I: Effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions, J. Pharm. Sci., 58 , 179–18 (1969). NB: These values were quoted from Ekwall P, Rosendah T and Lofman N, Bile salt solutions. I The dissociation constants of the cholic and deoxycholic acids, Acta Chem. Scand., 11 , 590–598 (1957). They were measured at concentrations both above and below the critical micellar concentration range.
1898	Glycyclamide (C ₁₄ H ₂₀ N ₂ O ₃ S)	5.50	U	+H			Craig
1899	Guanabenz (C ₈ H ₈ Cl ₂ N ₄)	8.1	U	+H	spectro	40% EtOH	 Shearer CM, Guanabenz Acetate, <i>APDS</i>, 15, 319–336 (1986). Shearer CM, Wyeth Laboratories Inc. unpublished work. "By potentiometric titration [method of Parke TV, Davis WW, Use of apparent dissociation constants in qualitative organic analysis, <i>Anal. Chem.</i>, 26, 642–645 (1954)] in 40% ethanol/water, pK_a = 8.1"

1900	Guanethidine (C ₁₀ H ₂₂ N ₄)	11.4	U	+H			Craig; N&K Hengstmann JH, Falkner FC, Watson JT and Oates J, Quantitative determination of guanethidine and other guanido- containing drugs in biological fluids by gas chromatography with flame ionization detection and multiple ion detection, <i>Anal. Chem.</i> , 46 , 34–39 (1974). NB: See Bethanidine for further details.
1901	Guanethidine	8.3 11.4	U U	+H +H			W&G: Hengstmann JH, Falkner FC, Watson JT and Oates J, Quantitative determination of guanethidine and other guanido-containing drugs in biological fluids by gas chromatography with flame ionization detection and multiple ion detection, <i>Anal. Chem.</i> , 46 , 34–39 (1974). NB: See Bethanidine for further details.
1902	Guanidine (CH ₅ N ₃) H ₂ N \downarrow NH NH ₂	13.59 ± 0.05	U	+H	potentio	H ₂ O t = 24.2 I = 2	Hall NF, Sprinkle MR, <i>JACS</i> , 54 , 3469 (1932). Cited in Perrin Bases no. 3720, ref. H16. Used hydrogen/ calomel electrodes in an unsymmetrical cell to measure buffer solutions of fixed concentration ratios. Ref. A69 (Angyal SJ and Warburton WK, Basic strengths of methylated guanidines, <i>JCS</i> , 2492–2494 (1951)). Used a glass electrode in an unsymmetrical cell, and gave $pK_a = 13.4$.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1903	Guanoxan (C ₁₀ H ₁₃ N ₃ O ₂) NH H NH_2	12.3	U	+H			Craig: N&K Hengstmann JH, Falkner FC, Watson JT and Oates J, Quantitative determination of guanethidine and other guanido- containing drugs in biological fluids by gas chromatography with flame ionization detection and multiple ion detection, <i>Anal. Chem.</i> , 46 , 34–39 (1974). NB: See Bethanidine for further details.
1904	Haloperidol	8.3	U	+H	potentio	H ₂ O	 Janicki CA and Ko CY, Haloperidol, <i>APDS</i>, 9, 341–369 (1980). "The pK_a of haloperidol is 8.3 calculated by linear extrapolation using potentiometric titration in 15%, 25%, 35%, 45% methanol-water (v/v) with 0.005-N NaOH as titrant." N&K Janssen PAJ, Westeringhe C van de, Jageneau AHM, <i>et al.</i>, Chemistry and pharmacology of CNS depressants related to 4-(4-hydroxy-4-phenylpiperidino)-butyrophenone. Part I, <i>J. Med. Pharm. Chem.</i>, 1, 281–297 (1959).
1905	Haloperidol	8.3	U	+H			W&G: Janssen PAJ <i>et al.</i> , <i>J. Med. Pharm.</i> <i>Chem.</i> , 1 , 282–297 (1959).
1906	Haloperidol	8.65	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out

							er init, Eegsen jE und eur vanie rin ,
							Partition coefficients of dopamine
							antagonists in brain membranes and
							liposomes, Biochem. Pharmacol., 38,
							2113–2120 (1989); gave a value of
							8.66; refered to Leysen JE,
							Gommeren W, J. Neurochem., 36,
							201–219 (1981); also Pauwels PJ,
							Leysen JE and Laduron PM, Eur. J.
							Pharmacol., 124, 291-298 (1986). Also
							referred to spiperone, pimozide, and
							domperidone.
1907	Harmol ($C_{12}H_{10}N_2O$)	7.90	U	+H	spectro	H_2O	Balon-Almeida M, Munoz-Perez MA,
		9.47	U	-H			Carmona-Guzman MC and
		15.75	U	-H			Hidalgo-Toledo J, Ionization
							equilibria of harmol and harmalol in
	но						concentrated hydroxide solutions,
	N N						JCS Perk. II, 1165–1167 (1988);
	H CH ₃						Methodology is described in:
							Munoz-Perez MA, Carmona-
							Curren MC Hidalga Talada I

ns, Guzman MC, Hidalgo-Toledo J, Balon-Almeida M, Ionization equilibria of β-carbolines in concentrated hydroxide solutions,

statistics, J. Med. Chem., 47, 1242-1250 (2004); ref. not given: potentiometric titration. NB: Oliviera CR, Lima MCP, Carvalho CAM, Leysen JE and Carvalho AP,

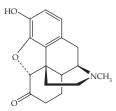
Related cpds:

harmalol	8.62;	harmaline	9.55;
	11.30;		15.39
	16.01		
harmine	7.45;	2,3-dimethy-	15.57
	14.35	lindole	

JCS Perk. II, 1573-1575 (1986).

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1908	Hexylcaine (C ₁₆ H ₂₃ NO ₂)	9.1	U	+H			 NB: The pK_{al} values (phenolic) were reported by Tomas F, Zabala I and Olba A, Acid-base and tautomeric equilibria of harmol in the ground and first excited singlet states, <i>J. Photochem.</i>, 31, 253–263 (1985); <i>ib</i>. 26, 285–294 (1984); Douglas KT, Sharma RK, Walmsley JF and Hider RC, Ionization processes of some harmala alkaloids, <i>Mol. Pharmacol.</i>, 23, 614–618 (1983). W&G: Truant AP and Takman B, Differential physical-chemical and neuropharmacologic properties of local anesthetic agents, <i>Anesth. Analg.</i>, 38, 478–484 (1959).
1909 1910	Hexylcaine Hexylresorcinol (C ₁₂ H ₁₈ O ₂) OH OH	9.1 9.54	บ บ	+H -H			Craig Craig

CH₂(CH₂)₄CH₃


1911	Hippuric acid (C ₉ H ₉ NO ₃)	3.64	U	-Н			N&K Ritschel gave 3.64; ref. Parrott EL, Pharmaceutical Technology. W&G: Parrott EL and Saski W, <i>Exp.</i> <i>Pharm. Technol.</i> , Burgess, Minneapolis, MN, p. 255 (1965).
1912	Homatropine (C ₁₆ H ₂₁ NO ₃)	9.9	U	+H		<i>t</i> = 20.0	Muhtadi FJ, Hassan MMA and Afify AFA, Homatropine hydrobromide, <i>APDS</i> , 16 , 245–290 (1987); cited Clarke, p. 660—This reference is incorrect—the entry for homatropine has no pK_a data. The reported value is given by: BPC, p. 414, although there is no primary reference.
1913	Homatropine	9.7	U	+H	spectro	<i>t</i> = 23	Schoorl N, Dissociation constants and titration exponents of several less common alkaloids, <i>Pharm. Weekblad</i> , 76 , 1497–1501 (1939); CA 34:1900. The study used the indicator spectrophotometric (colorimetric) method of Kolthoff. Also see N&K.

Appendix B (continued)

No.	Name	pK _a value(s)	Data quality	Ionization type Method	Conditions t °C; I or c M	Comments and Reference(s)
1914	Hycanthone ($C_{20}H_{24}N_2O_2S$)	3.40	U	+H		Craig
	NHCH ₂ CH ₂ N(Et) ₂					
1915	Hydantoin (C ₃ H ₄ N ₂ O ₂)	9.1	U	+H		W&G: Kortum et al., 1961.
	HN O NH					
1916	Hydrochlorothiazide	7.0	U	-H		N&K Merck 9
1917	Hydrocodone (C ₁₈ H ₂₁ NO ₃)	9.2 8.3	U U	-H +H		Craig
	CH ₃ O O O NCH ₃					N&K Ritschel gave 8.3; ref. Hager's Handbuch der Pharmazeutischen Praxis, vol. I, Allgemeiner Teil, Wirkstoffgruppen I, Springer- Verlag, p. 815 (1967).

1918	Hydromorphone (C ₁₇ H ₁₉ NO ₃)	
------	--	--

8.15

Craig; N&K Clouet DH (ed.), Narcot.
Drugs Biochem. Pharmacol., Plenum
Press, New York, 52-53, (1971).

1919	Hydromorphone	7.8	U	+H	W&G cited Perrin Bases; this compound is not listed in either the 1965 initial publication or the 1972 supplement. Source not known.
1920	Hydroquinone	9.91	U	-H	Craig
		12.04	U	-H	
1921	4-Hydroxyamphetamine	9.6	U	+H	W&G quoted Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951). NB: The real source of this value is not clear.
1922	4-Hydroxyamphetamine	8.25	U	+H	Beckett AH and Al-Sarraj S, The identification, properties and analysis of N-hydroxyamphetamine, a metabolite of amphetamine, <i>J. Pharm. Pharmacol.</i> , 25 , 328–334 (1973). NB: Value determined according to (method of) Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951).

+H

No.	Name	pK _a value(s)	Data quality	Ionization type	Method	Conditions t °C; I or c M	Comments and Reference(s)
1923	Hydroxyzine	2.13 7.13	U U	+H +H			N&K Pardo A, Vivas S, Espana F and Fernandez-Alonso JI, Studies on the structure-activity relationship of tricyclic psychodrugs. III. Dissociation constants, <i>Afinidad</i> , 29 , 640–642 (1972); Persson B-A, Extraction of amines as complexes with inorganic anions, <i>Acta Pharm.</i> <i>Suecica</i> , 5 , 335–342 (1968).
1924	Hydroxyzine	1.8	U	+H			W&G: Tsau J and DeAngelis N, Hydroxyzine dihydrochloride, APDS, 7, 319–341 (1978).
1925	Hyoscyamine	9.7	U	+H			Craig; Clarke, p. 676
1926	Hyoscyamine	9.3	U	+H			N&L Ritschel gave 9.3 (apparent); ref. Robson JM and Stacey RS, <i>Recent</i> <i>advances in pharmacology</i> , 4th Edn., Little Brown and Co., Boston, p. 108 (1968).

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1927	Idoxuridine (C9H11IN2O5)	8.3	U	-H			Craig
	HOCH ₂ OH						
1928	Idoxuridine	8.25	U	-H			N&K Merck 9
1929	D-Indoprofen (C ₁₇ H ₁₅ NO ₃) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	4.39 5.8	U U	-H -H	Comp		ACD/pKa Labs estimate Craig
1930	Indoprofen	5.8	U	-H			Craig
1931	Indoprofen	5.8	U	-Н			Fuccella LM, Conti F, Corvi G, Mandelli V, Randelli M and Stefanelli G, Double-blind stuc of the analgesic effect of indoprofen (K 4277), Clin. Pharmacol. Ther., 17, 277–283 (1975); cited in W&G
1932	Indoramin (C ₂₂ H ₂₅ N ₃ O) H N N N	7.7	U	+H			Craig N&K S&R

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; l or c M	Comments and Reference(s)
1933	Iocetamic acid ($C_{12}H_{13}I_3N_2O_3$) H ₃ C CH ₃ CO N	4.1 or 4.3	U	-Н			McEvoy NB: Foye states that the value depends on optical isomer.
	I NH ₂						
1934	Iodipamide	3.5	U	H			Neudert W and Röpke H, The physico-chemical properties of the disodium salt of adipic acid bis(2,4,6-triiodo-3-carboxyani- lide) and other triiodobenzene derivatives, <i>Chem. Ber.</i> , 87 ,
1935	Iodoquinol (C ₃ H ₅ I ₂ NO) OH I \downarrow	8.0	U	-Н			659-667 (1954); cited in W&G. Craig
1936	Iprindole (C ₁₉ H ₂₈ N ₂) $(C_{19}H_{28}N_{2})$	8.2	U	+H			Craig; N&K S&R

1937	Ipronidazole (C ₇ H ₁₁ N ₃ O ₂) CH ₃	2.73	U	+H		Craig
	O ₂ N CH(CH ₃) ₂					
1938	Isopropylamphetamine (C ₁₂ H ₁₉ N) H CH_3 CH_3 CH_3	10.14	U	+H		Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21 , 774–775 (1969).
1939	Isoxsuprine (C ₁₈ H ₂₃ NO ₃) HO $(C_{18}H_{23}NO_{3})$ HO $(H_{13}C)$ $(H_{1$	8.0 9.8	U U	+H -H		Belal F, Al-Badr A, Al-Majed AA and El-Subbagh HI, Isoxsuprine Hydrochloride, <i>APDS</i> , 26 , 370 (1999). NB: Cited Clarke as source.
1940	Isoxsuprine	8.0 9.8	U U	+H -H		Foye; N&K Avery
1941		9.8		-H		
1941	Lansoprazole (C ₁₆ H ₁₄ F ₃ N ₃ O ₂ S) H H H H H H H H	$\begin{array}{c} 2.34 \pm 0.37 \\ 3.53 \pm 0.37 \\ 8.48 \pm 0.30 \end{array}$	VU VU VU	+H +H +H	comp	 Al-Zehouri J, El-Subbagh HI and Al-Badr AA, Lansoprazole, APDS, 28, 123 (2001). NB: Estimated using ACD PhysChem (Advanced Chemistry Development, Toronto, Canada).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1943	Levomoramide (C ₂₅ H ₃₂ N ₂ O ₂)	7.0	U	+H			Craig
1944	Levomoramide	6.60	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, U.N. Dept. Social Affairs, vol. 6, pp 7–19 (1954); cited in Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971).
1945	Liothyronine (C ₁₅ H ₁₂ I ₃ NO ₄)	8.5 8.4 8.45	U U U	-H -H			Craig W&G: Cited Smith RL, <i>Med. Chem</i> 2 , 477 (1964). This reference could not be identified. N&K Ritschel gave 8.45; ref, Smit
1946	Lithium Carbonate Li2CO3	6.38 10.25		H H			Kline and French, Philadelphia, PA, 19101. Stober HC, Lithium Carbonate, <i>APDS</i> , 15 , 367–391 (1986). NB: Cited Handbook of Chemistry and Physics, 66th Edn., CRC,

1947	Loxapine (C ₁₈ H ₁₈ ClN ₃ O)	6.6	U	+H			Craig N&K Anon
1948	Lysergide (C ₂₀ H ₂₅ N ₃ O)	7.5	U	+H			Craig
	CH ₃ O H H H CH ₃ H H CH ₃						
1949	Mandelhydroxamic acid ($C_8H_9NO_3$)	9.02	U	-H	potentio	t = 25	Jelikic M, Stankovic B and Dugandzic M,
	OH OH	9.04	U	-Н	spectro		Spectrophotometric and potentiometric determination of the ionization constant of mandelhydroxamic acid, <i>Arch.</i> <i>Farm.</i> , 30 , 59–63 (1980).
1950	Mandelic acid	3.37	U	-H			N&K Merck 9
1951	Mandelic acid	3.8	U	-H			W&G: Parrott EL and Saski W, <i>Exp.</i> <i>Pharm. Technol.</i> , Burgess, Minneapolis, MN, p. 255 (1965).
1952	Maprotiline (C ₂₀ H ₂₃ N)	10.5 ± 0.2	U	+H		$H_2O t = 25.0$	Suh SK and Smith JB, Maprotiline hydrochloride, <i>APDS</i> , 15 , 393–426 (1986). Cited Jäkel K, Moser P, Stahl P, Ciba-Geigy Ltd., personal communication. Apparent $pK_a = 9.0 \pm 0.1$ and
							 9.4 ± 0.1 (80% ethylene glycol monomethyl ether in water) (1, 6). 1. Stahl P, Ciba-Geigy Ltd., personal communication.

527

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1953	Mazindol (C ₁₆ H ₁₃ ClN ₂ O)	8.6	U	+H			 Smith J, Hagman H, Mollica J, Ciba-Geigy Ltd., personal communication. NB: See also: Lombardo F, Obach RS, Shalaeva MY, Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004); ref. 290: Suh SK, Smith JB, APDS, 15, 393–426 (1986). Craig
1954	Mechlorethamine (C ₅ H ₁₁ Cl ₂ N) CH ₃ N(CH ₂ CH ₂ Cl) ₂	6.43	U	+H			Craig; McEvoy
1955	Meclofenamic acid (C ₁₄ H ₁₁ Cl ₂ NO ₂)	4.0	U	-H			McEvoy
	COOH CI-CH ₃						

1956	Mefloquine (C ₁₇ H ₁₆ F ₆ N ₂ O) $\downarrow \downarrow $	8.6	U	+H		H ₂ O	 Mu JY, Israili ZH and Dayton PG, Disposition and metabolism of mefloquine hydrochloride (WR 142,490), a quinolinemethanol antimalarial, in the rat, <i>Drug Metab. Disp.</i>, 3, 198–210 (1975). Cited in Lim P, Mefloquine hydrochloride, <i>APDS</i>, 14, 157–179 (1985). NB: Value extrapolated from apparent pK_a values in aqueous EtOH:
1957	Melphalan	2.5	U	-Н		H ₂ O	8.54 (30% EtOH) 8.50 (50% EtOH) 8.42 (70% EtOH) Feyns LV, Melphalan, <i>APDS</i> , 13 , 265–297 (1984). NB: Evstratova
							KI, Goncharova NA and Solomko VY, <i>Farmatsiya</i> (Moscow), 17(4) , 33–36 (1968); CA 69:99338a also gave an apparent $pK_a = 5.9$ in 90% v/v acetone.
1958	Meperidine	8.72	U	+H	potentio	50% EłOH	 Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i>, U.N. Dept. Social Affairs, vol. 6, pp. 7–19 (1954). CA 48:69490. NB: Cited in Beckett AH, Analgesics and their antagonists. I., <i>J. Pharm. Pharmacol.</i>, 8, 848–859 (1956); also cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical Pharmacology</i>, Plenum Press, New York, 52–53 (1971).
1959	Mephentermine	10.25	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochem- ical properties of amphetamine and related drugs, J. Pharm. Phar- macol., 21, 774–775 (1969). NB: See Dexamphetamine for details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1960	Mephenytoin ($C_{12}H_{14}N_2O_2$)	8.1	U	-H			W&G: Sandoz Pharmaceuticals product literature.
	N H						
1961	Mepindolol (C1 ₅ H ₂₂ N ₂ O ₂) H CH ₃ HO CH ₂ NHCH(CH ₃) ₂	8.90	U	+H			Craig; Gugler R, Kreis L and Dengler HJ, Pharmacokinetics of a new β-adrenoceptor blocking agent, LF 17–895, in man, ArzneimForsch., 25, 1067–1072 (1975).
1962	Mepivacaine	7.6	U	+H			de Jong RH, Neural blockade by local anesthetics, <i>JAMA</i> , 238 , 1383–1385 (1977); cited in W&G.
1963	Mercaptomerin (C ₁₆ H ₂₇ HgNO ₆ S) H_3C COOH CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄ CH ₄	3.7 5.1	U U	H H			1385–1385 (1977); cited in W&G. Craig; N&K Anon

1964	Mesalamine (C ₇ H ₇ NO ₃) $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ OH H ₂ N	$2.30 \pm 0.09 \\ 5.69 \pm 0.04$	U U U	-H +H	soly/pH H_2O spectro ($\lambda = t = 25$ 298 nm)	Dash AK and Brittain HG, Mesalamine, <i>APDS</i> , 25 , 209–242 (1998). "Following trends in the pH dependence of its ultraviolet spectrum, the dissociation con- stant of the amino group (F_{k_2}) in 5-aminosalicylic acid was deter- mined to be 5.69. The dissociation constant of the carboxyl group pK_{a1} was obtained through stud- ies of the compound solubility at pH values between 1.0 and 2.5, and was reported to be 2.30 [15] The three dissociation con- stants have been reported to be $pK_{a1} = 3.0$ (carboxylate group), $pK_{a2} = 6.0$ (amino group), and $pK_{a3} = 13.9$ (hydroxyl group) [13]." 13. Lund W (ed.), <i>The</i>
		6.0	U	-11 +H		Pharmaceutical Codex, 25th Edn.,
		13.9	U	-H		 Pharmaceutical Press, London, 946–947 (1994). 15. French DL and Mauger JW, Evaluation of the physicochemical properties and dissolution characteristics of mesalamine, <i>Pharm. Res.</i>, 10,
1965	Mesna (2-mercapto-ethanesulfonic acid)	9.1	U	-H	H ₂ O	1285–1290 (1993). Craig
	$(C_2H_6O_3S_2)$				t = 20	
1966	HSCH ₂ CH ₂ SO ₃ H Metaproterenolol (orciprenaline)	8.8	U	+H		N&K Avery
1966	wietaproterenoioi (orciprenaline)	8.8 11.8	U U	+H –H		IN&K Avery
1967	Metaraminol (C ₉ H ₁₃ NO ₂)	8.6	U	-H +H		Craig
1907	$\begin{array}{c} OH \\ HO \end{array} \xrightarrow{H} H \\ HO \end{array} \begin{array}{c} OH \\ H $	0.0	U	+11		Craig N&K S&R

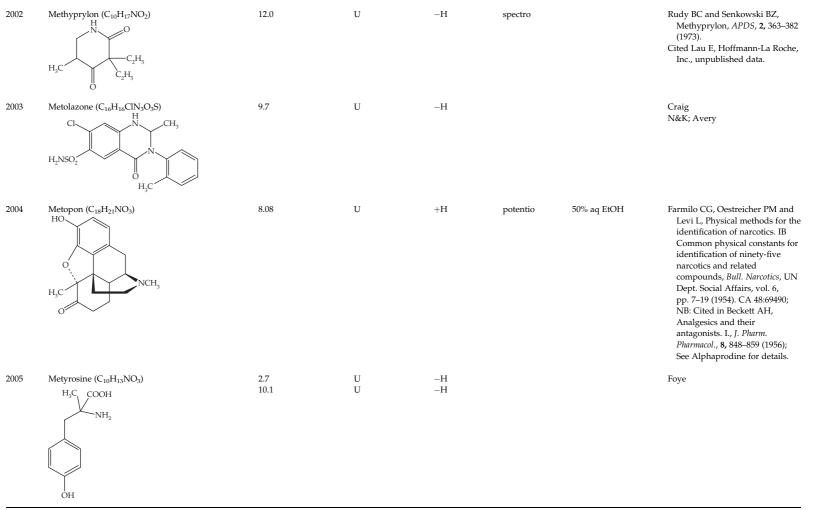
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1968	Methacycline (C ₂₂ H ₂₂ N ₂ O ₈)	3.5	U	-H			Craig
	CH ₂ H OH N(CH ₃) ₂ OH NH ₂	7.6 9.5	U U	-H +H			N&K Avery
1969	о́н о́ о́н о́ о́	8.25	U	$+\mathrm{H}$	potentio	EtOH/H ₂ O	Bishara, RH, Methadone
1505	CH ₃ CH ₂ O CH ₃ CH ₂ O CH ₃ CH ₃	020	U		potento	t = 20.0	 bishati, y, Hennicette, APDS, 3, 365–43 (1974); see also APDS, 4, 520; APDS, 9, 601. "Levi et al. reported the pK_a of methadone, in water at 20 ° C, 1 be 8.25 (Levi L, Oestreicher PM Farmilo CG, Nonaqueous titration of narcotics and alkaloids, Bull. Narcotics, 5, 15–25 (1953))."
	Ŷ	8.3	U	+H			Persson BA and Schill G, Extrac- tion of amines as complexes with inorganic anions, Acta Pharm. Suecica, 3 , 291–302 (196 NB: No details are given for t measurement of what are described as "approximate aci dissociation constants."
1970	Methadone	10.12	U	+H	potentio	H ₂ O <i>t</i> = 20.0 <i>I</i> undefined	Marshall PB, Some chemical and physical properties associated with histamine antagonism, <i>Br. J. Pharmacol.</i> , 10 , 270–278 (1955). NB: Care taken to exclude CO ₂ . Corrections mad for [OH ⁻] concentrations in th Henderson-Hasselbalch equation. Values reported for numerous antihistamines.

1971	DL-Methadone	8.25	U	+H	potentio	50% aq EtOH	 Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i>, UN Dept. Social Affairs, vol. 6, pp. 7-19 (1954). CA 48:69490; NB: Cited in Beckett AH, Analgesics and their antagonists. I., <i>J.</i> <i>Pharm. Pharmacol.</i>, 8, 848–859 (1956); also cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i>, Plenum Press, New York, 52–53 (1971). See Alphaprodine (no. 1549) for details.
1972	DL-Methadone	8.99	U	+H			Taylor JF, Ph.D. thesis, University
1973	Methamphetamine	10.1	U	+H			of London (1968). Craig
1973	Methamphetamine	9.5	U	+11 +H			Borodkin S and Yunker MH,
1774	weutaniphetantine	7.0	U	+11			Interaction of amine drugs with a polycarboxylic acid ion- exchange resin, <i>J. Pharm. Sci.</i> , 59 , 481–486 (1970); cited in W&G.
1975	Methamphetamine	10.20	U	+H			Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495– 1501 (1962). NB: The value was quoted from Kisbye J, <i>Pharm.</i> <i>Weekblad.</i> , 93 , 206–215 (1958).
1976	Methapyrilene (C ₁₄ H ₁₉ N ₃ S)	3.66 8.91	A U	$^{+\mathrm{H}}_{+\mathrm{H}}$	potentio	$H_2O t = 25$	Lordi NG and Christian JE, Physical
	S N CH ₂ CH ₂ N(CH ₃) ₂	8.91	U	+H			properties and pharmacological activity: antihistaminics, <i>J. Am.</i> <i>Pharm. Assn., Sci. Edn.</i> , 45 , 300–305 (1956). NB: See Chlorpheniramine (no. 1704) for details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1977	Methapyrilene	8.8	U	+H			Ritschel; Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion- exchange resin, J. Pharm. Sci., 59 , 481–486 (1970).
1978	Methazolamide (C ₅ H ₈ N ₄ O ₃ S ₂) CH ₃ CON SO ₂ NH ₂ H ₃ C N N	7.30	U	-Н			Craig N&K Merck 9 W&G Merck 9
1979	Methdilazine (C ₁₈ H ₂₀ N ₂ S)	7.45	U	+H			Foye 3rd; see Azatadine. From N&K also Hoover NB: See Pyrathiazine.
1980	Methenamine (C ₆ H ₁₂ N ₄)	4.8	U	+H			McEvoy
1981	Methenamine	4.9	U	+H			W&G: Evstratova KI and Ivanova AI, Dissociation constants and methods for analysis of some organic bases, <i>Farmalsiya</i> (Moscow), 17(2) , 41–45 (1968).
1982	Methenamine	6.2	U	+H			Perrin DD, Dempsey B and Serjeant E, pK_a prediction for organic acids and bases, Chapman and Hall, London, p. 34 (1981). NB: Also reported a predicted value for Methenamine of 6.0.

1983 1984	Methicillin L-Methionine (C ₅ H ₁₁ NO ₂ S) $H_{3}C$ S O	2.8 2.28 9.21	บ บ บ	H H +H			Craig N&K Merck 9
1985	Methopromazine (methoxypromazine) $(C_{18}H_{22}N_2OS)$ CH_3O CH_3O $N(CH_3)_2$ $N(CH_3)_2$	9.4	U	+H			W&G: Hulshoff and Perrin, 1976 NB: See Cyanopromazine for details.
1986	Methotrexate	$\begin{array}{c} 3.76 \\ 4.83 \\ 5.60 \pm 0.03 \end{array}$	บ บ บ	-H +H +H	spectro		Chamberlin AR, Cheung APK and Lim P, Methotrexate, <i>APDS</i> , 5 , 283–306, 1976. NB: Assigned to the diaminopteridinyl moiety by comparison with <i>p</i> -aminobenzoylglutamic acid (4.83 and 3.76) and 2.4-
1987	Methotrexate	4.8 5.5	U U	+H +H			diaminopteridine (<0.5 and 5.32). Liegler DG, Henderson ES, Hahn MA and Oliverio VT, Effect of organic acids on renal clearance of methotrexate in man, Clin. Pharmacol. Ther., 10, 849–857 (1969). Cited in W&G.
1988	<i>N</i> -Methyl-1-benzoyl ecgonine (NB: see comment).	8.65	U	+H	potentio	H ₂ O t = 25 l < 0.002	Krahl ME, Keltch AK and Clowes GHA, The role of changes in extracellular and intracellular hydrogen ion concentration in the action of local anesthetic bases, <i>JPET</i> , 68 , 330–350 (1940). Cited in Perrin Bases no. 2927 Ref. K58. This value is based on an apparent value for $pK_b' = 5.33$ at 25 °C with $pK_w = 14.00$ at $I = 0.00$ and $pK_w = 13.90$ at $I = 0.04$. NB: The name of the compound given here is the same as in the original reference and repeated by Perrin.

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1989	Methylcaffeine (C ₉ H ₁₂ N ₄ O ₂) H_3C N CH_3 CH_3 CH_3 CH_3	11.4 (p $K_{\rm b}$) (p $K_{\rm a} \sim 2.6$)	U	+H	potentio		However, this name is incorrect. Reference to the structural diagram in the original paper (Fig. 1, where there is also an error) shows that the structure intended is that of Cocaine, benzoyl methylecgonine $(C_{17}H_{21}NO_4)$. Evstratova KI and Ivanova AI, Dissociation constants and methods for analysis of some organic bases, <i>Farmatsiya</i> (Moscow), 17(2) , 41–45 (1968). NB: Cited in Perrin Bases Suppl no. 7481 Ref. E25.
1990	Methyldihydromorphinone (metopon)	8.08	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i> , UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53
1991	Methylephedrine (C ₁₁ H ₁₇ NO) OH CH ₃ \downarrow CH ₃ CH ₃	9.30	U	+H			(1971). Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs J. Pharm. Pharmacol., 21, 774–775 (1969).


						 Other sources: Kisbye J, Pharm. Weekblad., 93, 206–215 (1958). Leffler EB, Spencer HM, Burger A, Dissociation constants of adrenergic amines, <i>JACS</i>, 73, 2611–2613 (1951). NB: There does not appear to be a structure corresponding to this name in the Leffler paper, nor is there a pK_b value.
1992	Methylethylamphetamine ($C_{12}H_{19}N$)	9.80	U	+H		 Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21, 774–775 (1969). NB: See Dexamphetamine for details.
1993	N-Methylglucamine	9.2	U	+H		W&G: Balasz L and Pungor E, Standard methylglucamine for acid titrations with high frequency end-point indication, <i>Mikrochim. Acta</i> , 309–313 (1962); CA 56:13524g.
1994	Methylisopropylamphetamine (C ₁₂ H ₂₁ N) CH_3 CH	9.45	U	+H		Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Plarm. Pharmacol., 21 , 774–775 (1969). NB: See Dexamphetamine for details.
1995	Methyl nicotinate ($C_7H_7NO_2$)	3.1	U	+H		Craig
1996	Methylparaben	8.4	U	-H	H ₂ O <i>t</i> undefined	W&G Tammilehto S and Buchi J, p-Hydroxybenzoic acid esters (Nipagins). I. Physicochemical properties, <i>Pharm. Acta Helv.</i> , 43 , 726–738 (1968).

Other sources:

Appendix B (continued

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
1997	α -Methylphenethylamine (C ₉ H ₁₃ N) $\qquad \qquad $	9.07	U	+H			Ritschel; Garrett ER and Chemburkar PB, Evaluation, control and prediction of drug diffusion through polymeric membranes III, J. Pharm. Sci., 57 1401–1409 (1968).
1998	Methyl salicylate (C ₈ H ₈ O ₃)	9.90	U	-H			Craig
1999	5-Methyl-2-thiouracil ($C_5H_6N_2OS$)	7.71	U	-H			Ritschel; Garrett ER and Weber DJ Metal complexes of thiouracils I Stability constants by potentiometric titration studies and structures of complexes, J. <i>Pharm. Sci.</i> , 59 , 1383–1398 (1970)
2000	6-Methylthiouracil (C ₅ H ₆ N ₂ OS)	8.2	U	-H			Craig
2001	6-Methyl-2-thiouracil	7.73	U	—Н			Ritschel; Garrett ER and Weber D. Metal complexes of thiouracils Stability constants by potentiometric titration studies and structures of complexes, J. Pheme. Cai. 20, 1282–1298 (JOP)

Pharm. Sci., 59, 1383-1398 (1970).

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2006	Miconazole	6.5	U	+H			Beggs WH, Fungistatic activity of miconazole against Candida albicans in relation to pH and concentration of nonprotonated drug, Mycoses, 32(5) , 239–244 (1989).
2007	Midazolam	6.2	U	+H			Craig
2008	Minocycline (C23H27N3O7)	2.8	U	-H			Craig
N(CH ₃) ₂	N(CH ₃) ₂ N(CH ₃) ₂	5.0	U	-H			N&K Avery
	Н Н	7.8	U	-H			
	OH O OH O O	9.5	U	+H			
2009	Mitoxantrone ($C_{22}H_{28}N_4O_6$)	5.99	U	-H			Beijnen JH, Bult A and Underberg
	OH O NHCH,CH,NHCH,CH,OH	8.13	U	+H			WJM, Mitoxantrone hydrochlo
							ride, APDS, 17, 221–258, 1988.
							Cited Duchateau AMJA, Pharm
							Weekblad, 122, 286 (1987), how-
	$\Upsilon \Upsilon \Upsilon$						ever, this citation is unclear.
	OH O NHCH,CH,NHCH,CH,OH						"The mitoxantrone molecule con
							tains several prototropic func-
							tions. The 1,4-hydroquinone
							moiety possesses acidic proper

WJM, Mitoxantrone hydrochloride, APDS, **17**, 221–258, 1988. Cited Duchateau AMJA, Pharm. Weekblad, **122**, 286 (1987), however, this citation is unclear. The mitoxantrone molecule contains several prototropic functions. The 1,4-hydroquinone moiety possesses acidic properties. The two nitrogen atoms attached to the tricyclic aromatic skeleton and the secondary nitrogens in the side chains can accept protons. No full characterization of the prototropic functions in mitoxantrone has been reported, so far. Two pK_a values, of 5.99 and 8.13, have been mentioned in the literature but they were not assigned to specific functions in the mitoxantrone molecule."

2010	Morphine Morphine-N-oxide (C ₁₇ H ₁₉ NO ₄) HO \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	8.02-8.05	U	+H +H	potentio	50% aq EtOH 50% aq EtOH	 Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i>, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical Pharmacology</i>, Plenum Press, New York, 52–53 (1971). Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related
	HO NCH3						compounds, Bull. Narcotics, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971).
2012	Moxalactam (C ₂₀ H ₂₀ N ₆ O ₉ S) COOH CH O H H HO HO COOH CH O H H COOH CH O H COOH CH O H CH O H	2.4 3.5 9.95	U U U	H H H		H ₂ O	Lorenz LJ and Thomas PN, Moxalactam disodium, APDS, 13, 305–329 (1984); no reference cited. NB: Gave other pK _a values in 66% DMF: COOH 1 COOH 2 Phenol 4.9 6.1 12.9
2013	Nabilone (C ₂₄ H ₃₆ O ₃) H_3C^{-} H	13.5	U	-H		66% DMF	Souter RW, Nabilone, APDS, 10 , 499–512 (1981); no ref. NB: This compound is a partly hindered phenol, however, semi- empirical MO models (Prankerd R, unpublished, 2005) do not indicate a major steric effect on the phenolic OH. The models indicate restriction in rotation around the phenolic C–O bond,

542	Appendix B	(continued)
-----	------------	-------------

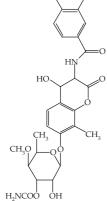
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2014	Nadolol (C ₁₇ H ₂₇ O ₄) $\downarrow \qquad \qquad$	9.67	U	+H			but this should only increase the pK_a by about 0.3, due to the statistical effect. The very high observed value is likely to be a simple consequence of the partially aqueous medium. A spectrophotometric value in aqueous buffer is expected to be significantly closer to values typical for phenols, i.e., ~10. Lombardo F, Obach RS, Shalaeva MY, Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004). Ref. 275: Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C, Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta-adrenoceptor blocking agents, <i>Farmaco</i> , 45 , 647–663 (1990). The same value was reported in Lien E, <i>US New</i>
2015	Nadolol	9.4	U	+H			 Drug Digest: 1980–86, Aurora, Nashville, 1987. Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man, J. Pharmacokin. Biopharm., 12, 263–287 (1984).

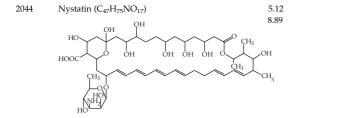
2016	Nalbuphine (C ₂₁ H ₂₇ NO ₄)	8.7 10.0	U U	+H -H			McEvoy
2017	HO OH Nalmefene ($C_{21}H_{25}NO_3$)	7.63	U	+H	potentio	H ₂ O	Brittain HG, Nalmefene
	HO O CH ₂						Hydrochloride, <i>APDS</i> , 24 , 351–395 (1996). "Nalmefene hydrochloride contains a single ionizable group. Using an aqueous titration method, the p <i>K</i> _a of the compound was determined to be 7.63."
2018	2 Nalorphine	7.83	U	+H	potentio	50% aq EtOH	NB: No reference was cited. Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five nar- cotics and related compounds, <i>Bull. Narcotics</i> , UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954). CA 48:69490; Beckett AH, Analgesics and their antagonists. I., <i>J. Pharm.</i> <i>Pharmacol.</i> , 8 , 848–859 (1956); also cited in Clouet DH (ed.), <i>Narcotic</i> <i>Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53 (1971). NB: See Alphaprodine for details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2019	Natamycin (C ₃₃ H ₄₇ NO ₁₃) HO HO HO HO HO HO HO HO HO HO	4.6 8.35	U U	-H +H		50% aq. MeOEtOH	Brik H, Natamycin, <i>APDS</i> , 10 , 513–557 (1981).
2020	Nefazodone ($C_{25}H_{32}CIN_5O_2$) $H_3C \rightarrow N$ O N O O O O O O O O	6.5	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004). Ref not given: potentiometric
2021	Neostigmine (C ₁₂ H ₁₉ N ₂ O ₂) +N(CH ₃) ₃ O O N(CH ₃) ₂	12.0	U	+H			titration. Craig; N&K Scott WE, Hoffman- LaRoche, personal communication, 1975. NB: This value appears to be either false (mirage) constant, or just possibly a pK _b value for the carbamate.
2022	Nicorandil (C ₈ H ₉ N ₃ O ₄)		U	+H			 Yanagisawa T and Hashimoto H and Taira N, Interaction of potassium channel openers and blockers in canine atrial muscle <i>Br. J. Pharmacol.</i>, 97(3), 753–762 (1989). NB: This paper reported 'pK_a values', but the context showed that the equilibrium data referre to dissociation of the compound from pharmacological receptors It should have a pK_a value simil to Nicotinamide (no. 887).

2023	Nicotine	8.5	U	+H			 Ivey K and Triggs EJ, Absorption of nicotine by the human stomach and its effects on gastric ion fluxes and potential difference, <i>Am. J. Dig. Dis.</i>, 23, 809-814 (1978). "Gastric absorption of nicotine (I), the effects of oral I intravenous I and cigarette smoking on ion fluxes and potential difference in the stomach of 13 healthy volunteers were studied It was concluded that I, a moderately strong [<i>sic</i>] base of pK_a 8.5, is best absorbed at alkaline pH in the undissociated unionized state"
2024	Nicotine	3.04	U	+H			Ritschel: Parrott EL, Pharm.
		7.85	U	+H			Technol., Fund. Pharmaceut. p. 220 (1970).
2025	Nicotine	3.10	U	+H	potentio	H ₂ O	Barlow RB and Hamilton JT,
		8.01	U	+H		$t = 25.0 \pm 0.1$	Effects of pH on the activity of nicotine and nicotine mon- methiodide on the rat
		7.75	U	+H	comp	H ₂ O t = 37	diaphragm preparation, Br. J. Pharmacol., 18 , 543–549 (1962). The method was essentially measurement of the half- neutralization pH; it was described in Br. J. Pharmacol., 18 , 543–549 (1962). The pK_a for the pyrrolidine nitrogen at 37 °C was estimated using a correction described by Albert (Pharmacol. Rev., 4 , 136–167 (1952)): 8.01– 12*0.022. NB: See nos. 878–879. Also reported pK_a values for numerous analogues
2026	Nicotine	8.07	U	+H			numerous analogues. Ritschel; cited Beckett AH and Taylor JF, Blood concentration of pethidine and pentazocine in mother and infant at time of birth, <i>J. Pharm. Pharmacol.</i> , 19 (Suppl.), 50–52 (1967). NB: Gave the pK _a value without reference.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2027	Nicotine methiodide $(C_{11}H_{17}IN_2)$	3.15	U	+H	potentio	H_2O $t = 25.0 \pm 0.1$	Barlow RB and Hamilton JT, Effects of pH on the activity nicotine and nicotine mon- methiodide on the rat diaphragm preparation, <i>Br.</i> <i>Pharmacol.</i> , 18 , 543–549 (1962 See no. 2025 for details.
2028	Nitrofurantoin (C ₈ H ₆ N ₄ O ₅) $(-)^{(-)} $	7.0	U	-Н	potentio	H ₂ O t = 25 I undefined	Cadwallader DE and Jun HW, Nitrofurantoin, <i>APDS</i> , 5 , 343 373 (1976). "Michels (Norwich Pharmacal personal communication) determined the pK _a of the fr acid to be 7.0 using the meth described by Stockton and Johnson (Stockton JR, Johnss CR, Dissociation constants of slightly soluble pharmaceuticals, <i>J. Am. Phan</i> <i>Assn.</i> , Sci. Edn., 33 , 383-384 (1944)). A pK _a of 7.2 is also reported for nitrofurantoin (<i>Merck Index</i> , 8th ed., Merck Co., Rahway, NJ, p. 738 (196 NB: The Stockton and Johnson method is similar to the measurement of pH at half- neutralization, including extrapolation from mixed aqueous organic cosolvents, giving results that are quite uncertain. N&K quotes pK _a 7.1, citing <i>APDS</i> , 5 . There sha also be a pK _a value (+H) for


2029	Nitrofurantoin	7.2	U	-Н			W&G: Buzard JA, Conklin, JD and Buller RH, Lymphatic transport of selected nitrofuran derivatives in the dog, <i>Am.</i>
2030	Nizatidine (C ₁₂ H ₂₁ N ₅ O ₂ S ₂) H ₃ C \sim_N	2.1 6.8	U U	+H +H		H ₂ O	<i>J. Physiol.</i> , 201 , 492–494 (1961). Wozniak TJ and Nizatidine, <i>APDS</i> , 19 , 397–427 (1990). NB: No references were given
	CH ₃	6.3	U	+H		DMF	
	HN-CH ₃ HN-NO ₂	8.4	Ū	+H			
2031	Nizatidine	6.59	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution
		2.44	U	+H	potentio	H ₂ O	values for neutral and basic
		6.75	U	+H	-	t = 37 I = 0.15 (KCl)	drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47, 1242–1250 (2004). Ref. not given: potentiometric titration See Aspirin no. 96.
2032	Nordefrin (isoadrenaline)	8.75	U	+H			Craig
	HO HO CHNH ₂ OH	9.75	U	-Н			
2033	L-Nordefrin (nordefrin) (C ₉ H ₁₃ NO ₃)	8.55	U	+H			Craig
		9.75	U	-H			0
2034	Norephedrine	9.55	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochem- ical properties of amphetamine and related drugs, <i>J. Pharm. Phar-</i> <i>macol.</i> , 21 , 774–775 (1969). NB: See Dexamphetamine for details.


٥.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
.035	Norepinephrine bitartrate (Levarterenol Bitartrate)	?	U	-H,+H			Wilson TD, Levarterenol
	$(C_8H_{11}NO_3.C_4H_6O_6)$	9.72	U	+H,-H			Bitartrate, APDS, 11, 554-581
		12	U	-H			(1982).
							"No general agreement has beer
		?	U	-H,+H			reached on the values of
		10.3	U	+Н,-Н			dissociation constants for
		13	U	-H			levarterenol While pK_{a3}
							results from the ionization of
		?	U	-H,+H			the second phenolic group,
		9.73	U	+H,-H			pK_{a1} and pK_{a2} as determined
		11.13	U	-H			by titration procedures are
							assigned to the first phenolic
							and the ammonium ion or vice
							versa. It has been pointed out
							that the ionization of these two
							groups does not occur
							independently I is the
							cationic form, II is the neutral
							III the zwitterionic, IV the
							monoanionic and V the
							dianionic form. The correct
							statements for the relation
							between the macro- and micro
							ionization constants are:
							$K_{a1} = K_1 + K_2$
							$1/K_{a2} = 1/K_3 + 1/K_4$
.036	Norketamine ($C_{12}H_{14}CINO$)	6.7	U	+H			W&G: Cohen ML and Trevor AJ,
							Cerebral accumulation of
	CI						ketamine and the relation
	° J						between metabolism of the
							drug and its pharmacological
							effects, JPET, 189, 351-358
	NH						(1974).
	11112						

2037	Normethadone (C ₂₀ H ₂₅ NO)	6.00	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i> , UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i> , Plenum Press, N. (ed. 75 C7 (1975))
2038	Normethadone	8.14	U	+H			New York, 52–53 (1971). Taylor JF, Ph.D. Thesis, Univ London (1968).
2039	Norpseudoephedrine	9.40	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21 , 774–775 (1969). NB: See Dexamphetamine for details.
2040	Nortriptyline	10.1	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. not given: potentiometric titration.
2041	Noscapine (narcotine) (C ₂₂ H ₂₃ NO ₇) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	7.8	U	+H		H ₂ O	 Al-Yahya MA and Hassan MMA, Noscapine, APDS, 11, 407–456 (1982). Cited Merck 9, p. 872. This value is actually the pK_b, and probably came from Kolthoff. NB: The APDS monograph also quotes pK_a' = 4.85 (80% methylcellosolve) (Manske RHF, <i>The Alkaloids</i>, vol XII, Academic Press, NY, London, p. 396. 1970).

			Ionization		Conditions		
e	pKa value(s)	Data quality	type	Method	t°C; I or c M	Comments and Reference(s)	
capine (narcotine)	6.2	U	+H		H ₂ O	W&G: Merck 9, p. 872. NB: This value is the pK_{ar} and has assumed measurement of the pK_{b} at 25 °C.	
obiocin (C ₃₁ H ₃₆ NO ₁₁)	4.3	U	-H			Craig	
(CH_)_C	9.1	U	-H			N&K Merck 9	
						W&G Merck 9	
Ci	apine (narcotine)	apine (narcotine) 6.2 biocin ($C_{31}H_{36}NO_{11}$) 4.3 ($CH_3)_2C$ 9.1	apine (narcotine) 6.2 U biocin ($C_{31}H_{36}NO_{11}$) 4.3 U ($CH_3)_2C$ 9.1 U	apine (narcotine) 6.2 U +H biocin (C ₃₁ H ₃₆ NO ₁₁) 4.3 U -H (CH ₃) ₂ C 9.1 U -H	apine (narcotine) 6.2 U +H biocin (C ₃₁ H ₃₆ NO ₁₁) 4.3 U -H (CH ₃) ₂ C 9.1 U -H	apine (narcotine) 6.2 U +H H ₂ O biocin (C ₃₁ H ₃₆ NO ₁₁) 4.3 U -H (CH ₃) ₂ C 9.1 U -H	

U

U

-H

+H

potentio 50% DMF

Michel GW, Nystatin, APDS, 6, 341–421 (1977). Ray-Johnson ML, Squibb International Dev. Lab., personal communication. Valenti V, The Squibb Institute for Medical Research, personal communication.

	5.72 8.64	U U	H +H	potentio	MeOH/2-methoxy- ethanol/H ₂ O	"Nystatin is an amphtoteric com- pound with a carboxyl and an amino function. Ray-Johnson determined the ionization con- stants of nystatin in a mixture of N,N-dimethylformamide/water (50:50) by direct titration and— following the general procedure of Albert and Serjeant—calcu- lated the following pK_a values from the respective equilibrium constants: pK_1 (proton gained) = 5.12; pK_2 (proton lost) = 8.89
	0.00					Valenti determined the ionization constants of nystatin in a solvent system composed of methanol, 2-methoxyethanol and water by potentiometric titration and established the following apparent pK_a values $pK_1 =$ 5.72; $pK_2 = 8.64$ The isoelectric point for nystatin in this system, calculated from the average of pK_1 and pK_2 , was found to be at pH 7.18There is, as yet, no experimental evidence to establish whether nystatin exists at the isoelectric point as a zwitterion or as an un- ionized molecule. Resolution of this question requires the examination of singly charged derivation of the antibiotic, such as an ester and/or suitable salt.
Octopamine ($C_8H_{11}NO_2$) HO CH ₂ NH ₂	8.88 9.53	U U	+H -H			Craig

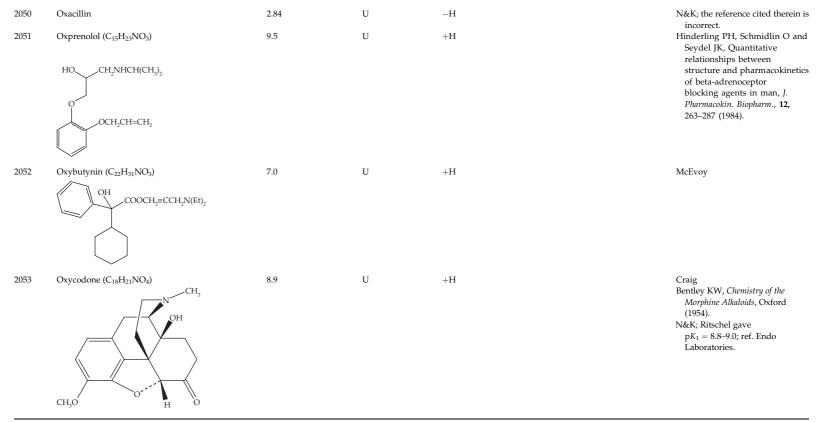
551

2045

óн

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2046	Ondansetron (C ₁₈ H ₉ N ₃ O)	7.4	U	+H			Salem II, Lopez KJMR and Galan AC, Ondansetron Hydrochloride, <i>APDS</i> , 27 , 315 (2000). NB: No references cited.
2047	Ornidazole (C ₇ H ₁₀ ClN ₃ O ₃) O_2N O_2N O_1 O_2N O_2N O_1 O_2N O_2N O_2N O_2N O_1 O_2N	2.3	U	+H			Senkowsky BZ, <i>et al.</i> , undated personal communication cited by Schwartz DE and Jeunet F, Comparative pharmacokinetic studies of ornidazole and metronidazole in man, <i>Chemotherapy</i> , 22 , 19–29 (1976).
2048	Orphenadrine (C ₁₈ H ₂₃ NO) $OCH_2CH_2N(CH_3)_2$ H_3C	8.4	U	+H			NB: See Metronidazole. Craig N&K Avery
2049	Oxacillin (C ₁₉ H ₁₉ N ₃ O ₅ S)	2.72	U	-Н			Craig

_


ó

сн₃ 0

CH2 ĊООН

CH₃

Appendix B (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2054	Oxymorphone (C ₁₇ H ₁₉ NO ₄) CH ₃ OH HO HO	8.50 9.33	U U	+H _H			Craig N&K Ritschel gave p K_1 = 8.50 and p K_2 = 9.33; ref. Endo Laboratories.
2055	Oxypurinol (C ₅ H ₄ N ₄ O ₂) $\stackrel{H}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{N}{\longrightarrow}$ N	7.7	U	-H			Craig N&K Avery
2056	Oxytocin (C ₄₃ H ₆₆ N ₁₂ O ₁₂ S ₂) OH $(V_{43}H_{66}N_{12}O_{12}S_{2})$ OH $(V_{43}H_{66}N_{12}O_{12}S_{2})$ $(V_{$	~ 6.1 ~ 10	VU VU	+H (-NH ₂) -H (tyr)	comp		 Nachtmann F, Krummen K, Maxl F and Riemer E, Oxytocin, APDS, 10, 563–596 (1981). "Oxytocin is an amphoteric compound. Accordingly, the isoelectric point reported in the literature is at pH 7.7, consistent with the presence in the molecule of a free amino group and a free phenol group." NB: free amino group (pK_a ~6.1) on Cys, free phenol (pK_a ~6.1) on Tyr, according to ACD/pK_a Labs. Approximately consistent with

Approximately consistent the suggested pK_{I} .

2057	Pamaquine (plasmoquin) (C ₁₉ H ₂₉ N ₃ O) H_3 $(CH_2)_3N(Et)_2$ CH_3O	-1.33 3.48 10.2	U U U	+H +H +H	spectro	H ₂ O <i>t</i> = 30 <i>I</i> = 0.1	Craig; NB: This data appears to be that of Irvin and Irvin, 1948. See Appendix A, Quinine (no. 1219) for details.
2058	Pamaquine (plasmoquin)	8.7	U	+H			N&K appears to be from Perrin Bases no. 1981. See also Perrin Bases nos. 1980 & 1982.
2059	Pamaquine (plasmoquin)	3.5 10.1	U U	+H +H			 W&G: Christophers SR, Dissociation constants and solubilities of bases of anti- malarial compounds. I. Quinine. II. Atebrin, Ann. Trop. Med. Parasitol., 31, 43–69 (1937). CA 31:58602. NB: Results were reported as pK_b values.
2060	Pantoprazole (C ₁₆ H ₁₅ F ₂ N ₃ O ₄ S) F_2 HC-O H_3 CO O CH ₃ H_3 CO O CH ₃ H_3 CO O CH ₃	3.92 8.19	U U	+H _H			Badean AA, Nabulsi LN, Al-Omari MM, Daraghmeh NH, Ashour MK, Abdoh AM and Jaber AMY, Pantoprazole, <i>APDS</i> , 29 , 224 (2002). NB: Cited <i>Merck Index</i> 12.
2061	Paraxanthine (C ₇ H ₈ N ₄ O ₂) H_3C N H_3C N N N N	8.5	U	+H			N&K Walther B, Carrupt P-A, El Tayar N and Testa B, 8-Substituted xanthines as phosphodiesterase inhibitors: Conformation-dependent lipophilicity and structure- activity relationships, <i>Helv.</i> <i>Chim. Acta</i> , 72 , 507–517 (1989). NB: See Xanthine Derivatives (no. 1513) for details.

Appendix B	(continued)
------------	-------------

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2062	Pargyline (C ₁₁ H ₁₃ N) CH ₃ CH	6.9	U	+H			Craig; N&K Hoover
2063	Paroxetine (C ₁₉ H ₂₀ FNO ₃)	9.51	U	+H	CZE/pH		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set am leave-class-out statistics, <i>J. Mea</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Re not given: Capillary electrophoresis.
2064	Pemoline (C ₉ H ₈ N ₂ O ₂) C ₆ H ₅ NH ₂ NH ₂	10.5	U	+H			Craig
2065	Pempidine (C ₁₀ H ₂₁ N)	11.25	U	+H		t = 30	Merck 13, no. 7207

2066	Penbutolol ($C_{18}H_{29}NO_2$)	9.92 ± 0.06	U	+H	potentio	H ₂ O t = 25.0 I = 0.15 (KCI)	Sirius Technical Application Notes, vol. 2, p. 151 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: From extrapolation to 0% MeOH of apparent pK_a (p_sK_a) data in 0–44 wt% MeOH by the Yasuda- Shedlovsky procedure. Concentration of analyte,
		9.26	U	+H		25–30% EtOH	0.26–0.51 mM. Craig; also Merck 10; Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man, J. Pharmacokin. Biopharm., 12, 263–287 (1984); Hadju and Damm
2067	Pentamidine (C ₁₉ H ₂₄ N ₄ O ₂) $ \begin{bmatrix} H_2N \\ H_2N \\ H_2N \\ H_2N \\ H_2N \\ CH_2 \\ 2 \end{bmatrix} $	11.4	U	+H			Damm Foye 3rd; see Azatadine from McEvoy.
2068	Pentazocine	8.76	U	+H			Clouet DH (ed.), <i>Narcotic drugs</i> <i>Biochemical Pharmacology</i> , Plenum, NY, 52–53 (1971); cited from Taylor JF, Ph.D. Thesis,
2069	Pentoxiphylline (C ₁₃ H ₁₈ N ₄ O ₃) CH ₃ CO(CH ₂) ₄ N CH_3 CH_3 CH_3 N N CH_3 N N CH_3 N	0.28	U	+H			University of London, (1968). Indrayanto G, Syahrani A, Moegihardjo, et al., Pentoxifylline, APDS, 25 , 295–339 (1997). Cited Dollery, C, <i>Therapeutic Drugs</i> , Churchill Livingstone, Edinburgh, 50–52 (1991).
2070	Pentoxiphylline	0.3	U	+H			Craig

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2071	Pergolide mesylate (C ₁₉ H ₂₆ N ₂ S.CH ₃ SO ₃ H) H ₁ H ₁	7.8	U	+H	potentio	DMF 66%	 Sprankle DJ and Jensen EC, Pergolide Mesylate, <i>APDS</i>, 21, 375-413 (1992). NB: No reference given. "The pK_a of pergolide mesylate in a 66% dimethylformamide solution was measured by potentiometric titration with 2 N potassium hydroxide. The pK_a of the secondary amine is 7.8."
2072	Perphenazine	3.70 7.8	U U	+H +H			Craig; N&K
2073	Phenacetin ($C_{10}H_{13}NO_2$)	2.2	U	+n +H		H ₂ O	Craig
	C ₂ H ₅ O NHCOCH ₃	3.5	U	+H		aqueous acetone	W&G: Evstratova KI, Goncharova NA and Solomko Vya, Dissociation constants of weak organic bases in acetone, <i>Farmatsiya</i> (Moscow), 17(4) , 33–36 (1968).
2074	Phenadoxone (C ₂₃ H ₂₉ NO ₂)	6.89	U	+H	potentio		Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, UN Dept. Social Affairs, vol. 6, pp. 7-19 (1954). CA 48:69490; cited in Beckett AH, Analgesics and their antagonists. I., J. Pharm Pharmacol., 8, 848–859 (1956). NB See Alphaprodine for details.
2075	DL-phenadoxone	6.89	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for th identification of narcotics. IB

							Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i> , U.N. Dept. Social Affairs, vol. 6, pp. 7–19 (1954). CA 48:69490; cited in Clouet DH (ed.), <i>Narcotic</i> <i>Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53 (1971).
2076	DL-phenadoxone	6.75	U	+H			Taylor JF, Ph.D. Thesis, University of London (1968).
2077	Phencyclidine (C ₁₇ H ₂₅ N)	8.5	U	+H			Craig
2078	Phendimetrazine (C ₁₂ H ₁₇ NO)	7.55	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some
	CH ₃						Nostin JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969). NB: see Dexamphetamine for details.
2079	Phenethicillin	2.7	U	-H			Craig; N&K
2080	Phenindamine	8.29	U	+H	potentio	H_2O t = 25 c = 0.002 to 0.01	Craig; N&K Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Ass., Sci. Edn., 45, 300–305 (1956). See Chlorpheniramine (no. 1704) for details.
2081	Pheniramine	4.2	U	+H			Craig
:		9.3	U	+H			Tolstoouhov AV, Ionic interpretation of drug action in
)		9.27	U	+H			chemotherapeutic research,
							(continue)

559

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2082	Pheniramine	9.3	U	+H	potentio	H ₂ O t = 25 c = 0.002 to 0.01	Chemical Rubber Publishing Co., NY, pp. 82–83 (1955); cited in Chatten LG (ed.), <i>Pharmaceutical Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966). NB: See Chlorpheniramine (no. 1704) for comments noted previously about accuracy. W&G: Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Ass., Sci. Edn., 45 , 300–305 (1956). See Chlorpheniramine (no. 1704) for details.
2083	Pheniramine	9.27	U	+H			Foye 3rd; see Azatadine from N&K.
2084	Phenmetrazine (C ₁₁ H ₁₅ NO) $O - C_6H_5$ $N - CH_3$	8.45	U	+H			 Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21, 774-775 (1969). NB: See Dexamphetamine for details.
2085	Phenmetrazine	8.4	U	+H			Craig
2086	Phenolsulphonphthalein (phenol red)	8.5	U	+H -H			N&K Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969); see Benzphetamine. Craig
2086	rnenoisulphonphthalein (phenol red)	8.08 7.9	U U	-H -H			Craig N&K Merck 9

2087	Phenomorphan (C ₂₄ H ₂₉ NO)	7.30	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i> , UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53 (1971).
2088	Phenoxybenzamine (C ₁₈ H ₂₂ ClNO)	4.4	U	+H			McEvoy
2089	Phenoxypropazine (C ₉ H ₁₄ N ₂ O)	6.9	U	+H			Craig N&K Ritschel gave 6.9; ref. Hager's Handbuch, vol. II, Wirkstoffgruppen II, p. 407.
2090	Phentermine (C ₁₀ H ₁₅ N)	10.11	U	+H			 Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i>, 21, 774-775 (1969). NB: See Dexamphetamine for details.
2091	Phentermine	10.1	U	+H			Craig; N&K Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21 , 774–775 (1969); see Benzphetamine.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2092	Phentolamine (C ₁₇ H ₁₉ N ₃ O)	7.7	U	+H			Craig N&K Ritschel gave 7.7 (apparent) ref., Robson JM and Stacey RS, <i>Recent advances in pharmacology</i> , 4th Edn., Little Brown and Co., Boston, p. 108 (1968).
2093	Phenylbutazone	4.89	U	-H		50% aqueous EtOH	 Ali SL, Phenylbutazone, APDS, 11 483–518 (1982). This value is from Wallenfels K and Sund H, The mechanism of action of 3,5- dioxo-1,2-diphenyl-4- butylpyrazolidine, Arzneim Forsch., 9, 81–89 (1959). "Phenylbutazone is considered a carbon acid and the pK_a value between 4.5–4.7 has also been given (7, 11). pK_a values ir pure methanol, ethanol and water are given as 5.42, 5.76, and 5.07 respectively (8)." Maulding HV and Zoglio MA, J Pharm. Sci., 60, 309–311 (1971). El-Fatatry HM, Sharafel-Deen MMK and Amer MM, Pharmazie 34, 155–157 (1979). Girod E, Delley R and Häfliger F, Helv. Chim. Acta, 40, 408–428 (1957) (see no. 1009).
2094	Phenylbutazone, isopropyl analogue	5.5	U	—Н			Dayton PG, Berger L, Yu TF, Sican LE, Landrau MA and Gutman AG, Relationship between pK _a and renal excretion of various phenylbutazone analogues, <i>Fed</i> <i>Proc.</i> , 18 , 382 (1959).

2095	Phenylephrine	8.9	U	-H, +H +H, -H			 NB: Conference abstract with no experimental details. Appears to largely repeat the data given under Phenylbutazone, no. 1018. Cited in W&G. Wagner J, Grill H and Henschler D, Prodrugs of etilefrine: Synthesis and evaluation of 3'-(O-acyl) derivatives, <i>J. Pharm. Sci.</i>, 69(12), 1423–1427 (1980). "Phenylethanolamines in solution represent a mixture of the uncharged form and ionic species (cation, anion, and zwitterion). At halfneutralization, these compounds are in apparent average pK_a value. The pK_a value is dependent on the substituent at the amino nitrogen and is increased from 8.67 (norfenefrine) to 8.9 (phenylephrine) or 9.0 (etilefrine) for the 3'- hydroxyphenylethanolamines
							when introducing a methyl or ethyl radical into the amino
2096	Phenylephrine	8.77	U	-H, +H			group." Gaglia CA Jr, Phenylephrine
2070		9.84	U	+H, -H			hydrochloride, APDS, 3 , 481–512, 1974. Cited Riegelman S, Strait LA and Fischer EZ, Acid dissociation constants of phenylalkanolamines, <i>J. Pharm.</i> <i>Sci.</i> , 51 , 129–133 (1962).
2097	Phenylethylamine	9.86	U	+H	potentio	$\begin{array}{l} H_2O\\ I=0.1 \end{array}$	Lewis GP, The importance of ionization in the activity of sympathomimetic amines, <i>Br. J.</i> <i>Pharmacol.</i> , 9 , 488–493 (1954).
2098	Phenylethylamine	9.88	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, J. Pharm. Pharmacol., 21, 774–775 (1969). NB: Cited

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2099	DL-Phenyllactic acid (C ₉ H ₁₀ O ₃)	3.80	U	-H	potentio	H ₂ O t = 25	Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 , 2611–2613 (1951); this value does not correspond. Randinitis EJ, Barr M, Wormser HC and Nagwekar JB, Kinetics of urinary excretion of D-(-)- mandelic acid and its homologs. I. Mutual inhibitory effect of D-(-)-mandelic acid and its certain homologs on their renal tubular secretion in rats, <i>J</i> .
2100	Phenylpropanolamine	9.4	U	+H			 Pharm. Sci., 59, 806–812 (1970). NB: See Mandelic acid (no. 762) for details. Ritschel; Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-
2101	Phenylpropanolamine	9.4	U	+H			exchange resin, J. Pharm. Sci., 59 , 481–486 (1970). W&G: Lewis GP, The importance of ionization in the activity of sympathomimetic amines, <i>Br</i> .
2102	Phenyltoloxamine (C ₁₇ H ₂₁ NO)	9.1	U	+H			J. Pharmacol., 9, 488–493 (1954). Craig N&K Ritschel gave 9.1; ref. Endo Laboratories, Garden City, NY, 11530.
	OCH ₂ CH ₂ N(CH ₃) ₂						

2103	Pholcodine (C ₂₃ H ₃₀ N ₂ O ₄)	5.30	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i> , UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical Pharmacology</i> , Plenum Press, New York, 52–53 (1971).
2104	Phthalimide (C ₈ H ₅ NO ₂)	7.4	VU	-Н	cond	H_2O t = 25 c = 0.0022-0.0018	 Kendall J, Electrical conductivity and ionization constants of weak electrolytes in aqueous solution, <i>in</i> Washburn EW, Editor-in- Chief, <i>International Critical</i> <i>Tables</i>, vol. 6, McGraw-Hill, NY, 259–304 (1929). NB: Other value: t = 18, 1.86.
2105	Physostigmine salicylate	6.12 12.24	U U	+H +H			Muhtadi FJ and El-Hawary SS, Physostigmine Salicylate, <i>APDS</i> , 18 , 289–350 (1989). NB: These are clearly ρ <i>K</i> _b values.
2106	Piminodine (C ₂₃ H ₃₀ N ₂ O ₂) H H O O CH_3	6.90	U	+H	potentio	50% aq EtOH	Cloued DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971) cited from Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2107	Pimozide (C ₂₈ H ₂₉ F ₂ N ₃ O) $\downarrow \qquad \qquad$	7.3 8.6	U U	+H +H			Craig
2108 2109	Pimozide Pinacidil (C ₁₃ H ₁₉ N ₅) $N \longrightarrow N \longrightarrow CN = CH_3$ $N \longrightarrow H = C(CH_3)_3$	7.32	U U	+H +H			N&K Merck 9 Yanagisawa T, Hashimoto H and Taira N, Interaction of potassium channel openers and blockers in canine atrial muscle <i>Br. J. Pharmacol.</i> , 97(3) , 753–762 (1989). NB: This paper reported 'pK _a values', but the context showed that the data referred t dissociation of the compound from receptors. It should have pK_a values similar to 4-aminopyridine ($pK_{a2} = 9.11$;
2110	Pinazepam (C ₁₈ H ₁₃ ClN ₂ O) HC=C V V V V V	2.34	U	+H	spectro (λ = 282 nm)	H ₂ O <i>t</i> undefined <i>I</i> undefined	Perrin Bases no. 1027). Filippi G and Trebbi A, Physicochemical profile of a net tranquilizer: Pinazepam, Boll. Chin. Farm., 118 , 105–114 (1979) "The physicochemical properties of pinazepam (Domar; I), are given. The compound has a pK_a of 2.34 an exhibits a UV absorption band a 238 and 288 nm" NB: The final measurements were made in buffer solutions that were separated by steps of 0.3 pH unit. No activity corrections were made.

2111	Pindolol (C ₁₄ H ₂₀ N ₂ O ₂) $ \begin{array}{c} H \\ H $	9.26	U	+H			 Taylor EA, Jefferson D and Carroll JD, Turner P, Cerebrospinal fluid concentrations of propranolol, pindolol, and atenolol in man: evidence for central actions of beta-adrenoceptor antagonists, <i>Br. J. Clin. Pharmacol.</i>, 12, 549–559 (1981). "The cerebrospinal fluid concentration of propranolol (lipid soluble) and pindolol (moderately lipid soluble) was proportional to the free plasma concentration It was confirmed that lipid solubility, pK_a, and the extent of plasma protein binding govern the extent and rate of penetration of a drug into cerebrospinal fluid." NB: No physicochemical data were measured in this study and the source of the pK_a values was not stated explicitly. However, log P values were reported from "ICI
2112	Pindolol	8.8	U	+H			internal data", so presumably the pK _a values were the same. Craig; N&K Avery; Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man, J. Pharmacokin. Biopharm.,
		9.54 ± 0.01	U	+H	potentio	H ₂ O t = 25.0 I = 0.15 (KCI)	12, 263–287 (1984). Sirius Technical Application Notes, vol. 2, pp. 79–80 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Analyte concentration, 0.54–0.56 mM.

Appendix B (cc	ontinued)
----------------	-----------

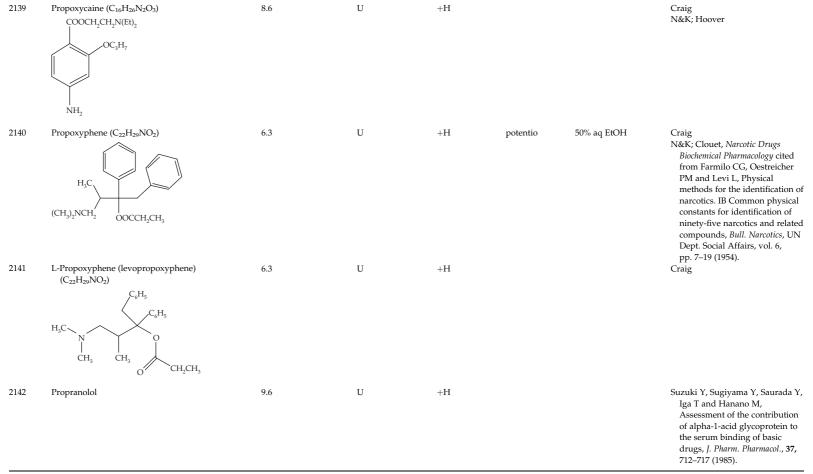
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2113	Pindolol	9.54	U	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. 275: Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C and Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta-adrenoceptor blocking agents, <i>Farmaco</i> , 45 , 647–663 (1990).
2114	Pipecuronium bromide (pipecurium bromide) $(C_{35}H_{62}Br_2N_4O_4)$ H_3C Br- H_3C H_4 H_3C H_5	2.86 3.65	U U	+H +H	polarimetry		Bertha-Somodi Z and Pap Sziklary Z, Determination of the protonation constants of pipecuronium bromide on the basis of optical rotation as function of pH values, <i>Acta</i> <i>Pharm. Hung.</i> , 62 (3), 111–114 (1992). NB: Values assigned based on comparisons with the monopiperazino model
2115	Piperazine	5.7 10.0	U U	+H +H			compounds. W&G: Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925).

2116	6-Piperidino-4,4-diphenylheptan-3-one (dipipanone) (C ₂₄ H ₃₁ NO)	6.8	U	+H	potentio		 Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i>, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954). CA 48:69490; Beckett AH, Analgesics and their antagonists. I., <i>J.</i> <i>Pharm. Pharmacol.</i>, 8, 848–859 (1956); See Alphaprodine for details. NB: See separate Dipipanone entry. This value is probably the pK_b value.
2117	Pipradol (C ₁₈ H ₂₁ NO)	9.71	U	+H			Craig
2118	Pirbuterol	3.0 7.0 10.3	U U U	+H _H +H	potentio	H ₂ O t = 21 c = 0.00025	Bansal PC and Monkhouse DC, Stability of aqueous solutions of pirbuterol, <i>J. Pharm. Sci.</i> , 66 , 819–823 (1977). NB: Low concentrations indicate limited ability of the pH meter to discriminate changes in pH, however, careful exclusion of CO ₂ should minimize this problem. The pK _a values were assigned by comparison with model compounds. Also reported values at 90 °C: 2.8, 7.1, 9.2. See also N&K Craig.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2119	Pivampicillin (C ₂₂ H ₂₉ N ₃ O ₆ S) H_2 H_3 H_4 H_5 H_3 CH_3 $COOCH_2OCOC(CH_3)_3$	7.0	U	-H			Craig
2120	Pizotyline (C ₁₉ H ₂₁ NS)	6.95	U	+H			N&K Avery
2121	Polymyxin B–a mixture of polymyxin B_1 $(C_{56}H_{98}N_{16}O_{13})$ and polymyxin B_2 $(C_{55}H_{96}N_{16}O_{13})$	8.9	U	+H			N&K Avery NB: This pK _a value is for an average of five n-propylamine
2122	Practolol (C ₁₄ H ₂₂ N ₂ O ₃) NHCH(CH ₃) ₂ OH CH ₃ CONH	9.5	U	+H			groups. Craig; N&K Avery Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents ir man, <i>J. Pharmacokin. Biopharm.</i> , 12 , 263–287 (1984).

2123	Pramoxine (C ₁₇ H ₂₇ NO ₃)	6.24	U	+H			Craig
	H ₃ C~~~O						
2124	Prazepam (C ₁₉ H ₁₇ ClN ₂ O)	2.94	U	+H			Foye 3rd; see Azatadine from McEvoy.
							·
2125	Prazepam	2.99	U	+H	spectro		Doi T, Okajima A, Ohkawa Y, Yoneda M and Nagai H, Physico-chemical properties and stabilities of prazepam, <i>Iyakuhin</i> <i>Kenkyu</i> , 9 , 205–215 (1978); cited
2126	Prazosin (C ₁₉ H ₂₁ N ₅ O ₄)	6.54	U	+H	potentio	50% EtOH	in CA 88:141601a. Kostek LJ, Prazosin, <i>APDS</i> , 18 , 351–378 (1989). NB: No reference given.
	CH ₃ O N N O						
	CH ₃ O NH ₂						
2127	Prazosin	6.5	U	+H			N&K Anon

72	
	Appendix B (continued)
	-


No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
128	Prenalterol (C ₁₂ H ₁₉ NO ₃) HO $ OH$ H $ H$ $ CH_3$ $ H_3C$ $-$	9.5 10.0	U U	-H, +H +H, -H			Craig
129	Prilocaine (C ₁₃ H ₂₀ N ₂ O) H_3C	7.32 or 7.89	U	+H			Craig: Cited Lofgren N and Tegner C, Local anesthetics. XX Synthesis of some α-monoalkylamino-2- methylpropionanilides. A new useful local anesthetic, <i>Acta</i> <i>Chem. Scand.</i> , 14 , 486–490 (1960) N&K Ritschel gave 7.89; ref. Astra
.30	Prilocaine	7.9	U	+H			de Jong RH, Neural blockade by local anesthetics, <i>JAMA</i> , 238 , 1292 1282 (1077), sited in WS
131	Procainamide (C ₁₃ H ₂₁ N ₃ O) O $N(Et)_2$ H_2N	9.24 ± 0.10	U	+H	potentio		1383–1385 (1977); cited in W&G Poet RB and Kadin H, Procainamide hydrochloride, <i>APDS</i> , 4 , 333–383 (1975). Cited Jacobson H and Schaefer C, Squibb Institute, personal communication.
132	Procainamide	9.2	U	+H		<i>t</i> = 20	Mian MS, El-Obeid HA and Al-Badr AA, Procainamide hydrochloride, APDS, 28 , 258 (2001). NB: Cited Clarke as source.

ы

2133	Procaine	2.45 8.05	U U	+H +H	spectro	H ₂ O t = 15 $c \sim 0.005$ to 0.01	Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i> , 162 , 289–353 (1925). Cited in Perrin Bases, no. 484 Ref. K47. See Aconitine for details.
		8.98	U	+H	potentio	H_2O t = 25 <i>I</i> undefined	Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Associ., Sci. Edn., 45 , 300–305 (1956). Cited in Perrin Bases, no. 484 Ref. L54. See Chlorpheniramine (no. 1704) for details.
		8.91	U	+H	potentio	H_2O t = 25 c = 0.005	Krahl ME, Keltch AK and Clowes GHA, The role of changes in extracellular and intracellular hydrogen ion concentration in the action of local anesthetic bases, <i>JPET</i> , 68 , 330–350 (1940). Cited in Perrin Bases, no. 484 Ref K58.
		8.11; 8.80	U	+H			Craig; Foye 3rd; see Azatadine gave N&K. N&K cited Chatten LG (ed.), <i>Pharmaceutical Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966), which cited Martin, <i>Physical Pharmacy</i> , 1st Edn.
2134	Prochlorperazine	3.73 8.1	U U	+H +H			N&K Green AL, Ionization constants and water solubilities of some aminoalkylphenothiazine tranquillizers and related compounds, J. Pharm. Pharmacol., 19, 10–16 (1967). NB: See Amitriptylline for details.
2135	Promazine	9.28	U	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med.

Appendix	В	(continued)
----------	---	-------------

574		N	<i>"</i> 1 1)		lonization		Conditions	
	No.	Name	pK _a value(s)	Data quality	type	Method	t°C; I or c M	Comments and Reference(s) Chem., 47, 1242–1250 (2004). Ref. 277: Mannhold R, Dross KP and Reffer RF, Drug lipophilicity in QSAR practice: I. A comparison of experimental with calculative approaches, Quant. StructAct. Relat., 9, 21–28 (1990).
	2136	Propafenone (C ₂₁ H ₂₇ NO ₃)	9.27	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47, 1242–1250 (2004). Ref. not given: potentiometric titration.
	2137	Propicillin (C ₁₈ H ₂₂ N ₂ O ₅ S) $H_{22}N_2O_5S$ $H_{3}C$ $H_{3}C$ CH_3 COH	2.72 ± 0.04	Α	-H	potentio	H_2O t = 25 c = 0.01	Rapson HDC and Bird AE, Ionization constants of some penicillins and of their alkaline and penicillinase hydrolysis products, <i>J. Pharm. Pharmacol.</i> , Suppl. 15, 222–231T (1963). NB: Potentiometric titrations used a glass electrode with an unsymmetrical cell and liquid junction potentials.
	2138	Propiomazine (C ₂₀ H ₂₄ N ₂ OS) H ₃ C CH ₃ CH ₃ CH ₃ COC ₂ H ₅	6.6	U	+H	potentio	H ₂ O	 Crombie KB and Cullen LF, Propiomazine hydrochloride, <i>APDS</i>, 2, 439–466 (1973). Crombie KB and Cullen LF, Wyeth Labs. Inc., unpublished results. "The pK_a for propiomazine has been determined potentiometrically to be 6.6 by aqueous titration with 0.1N sodium hydroxide."

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2143	Propranolol	9.45	U	+H			 Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set ann leave-class-out statistics, <i>J. Med Chem.</i>, 47, 1242–1250 (2004). Re 275: Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C and Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a se of beta-adrenoceptor blocking agents, <i>Farmaco</i>, 45, 647–663 (1990). See also: Hinderling PF: Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta-adrenoceptor blocking agents i man, <i>J. Pharmacokin. Biopharm.</i>, 12, 263–287 (1984). Taylor EA, Jefferson D, Carroll JD and Turner P, Cerebrospinal fluid concentrations of propranolol, pindolol, and atenolol in man: Evidence for central actions of beta-adrenoceptor antagonists, <i>Br. J. Clin. Pharmacol.</i>, 12, 549–559 (1981). NB: See Pindolol for further details.

2144	Propylamphetamine (C ₁₂ H ₁₉ N) H $CH_2CH_2CH_3$	9.98	U	+H	Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969).
2145	Propylhexedrine	10.42	U	+H	NB: see Dexamphetamine for details. Kisbye J, Pharm. Weekblad., 93,
2110		10.42		TII	206–215 (1958). Cited in: Craig; N&K Chatten LG (ed.), <i>Pharmaceutical Chemistry</i> vol. 1, Dekker, New York, pp. 85–87 (1966), which gave $pK_b = 3.48 = pK_a = 10.52$, cited Chatten and Harris, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962), but the value there is attributed to Kisbye J, <i>Pharm. Weekblad.</i> , 93 , 206–215 (1958) (also Kisbye J, <i>Dansk. Tiddshrift Farm.</i> , 32 , 174–186, 189–201 (1958). This value is definitely from Leffler EB, Spencer HM and Burger A, Dissociation constants of adrenergic amines, <i>JACS</i> , 73 ,
2146	Propylhexedrine	10.74	U	+H	2611–2613 (1951). Vree TB, Muskens ATJM and van Rossum JM, Some physicochemical properties of amphetamine and related drugs, <i>J. Pharm. Pharmacol.</i> , 21 , 774–775 (1969). NB: See Dexamphetamine for details.
2147	Propylparaben (C ₁₀ H ₁₂ O ₃) 0 CH_3 HO	8.4	U	-Н	W&G Tammilehto S and Buchi J, p-Hydroxybenzoic acid esters (Nipagins). I. Physicochemical properties, <i>Pharm. Acta Helv.</i> , 43 , 726–738 (1968).

Appendix	(B (c	ontinued)
----------	---------------	-----------

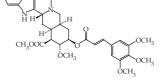
No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2148	6-n-Propyl-2-thiouracil (C ₇ H ₁₀ N ₂ OS) $S + H + C_3H_7$ $HN + C_3H_7$	7.8; 8.3	U	-H			Craig; N&K Garrett ER and Webe DJ, Metal complexes of thiouracils I. Stability constants by potentiometric titration studies and structures of complexes, <i>J. Pharm. Sci.</i> , 59 , 1383–1398 (1970). Ritschel also cited Garrett and Weber, giving 7.76.
2149	Prostaglandin E ₁ (C ₂₀ H ₃₄ O ₅)	5.02	U	-Н	??		 Uekama K, Hirayama F, Tanaka : and Takematsu K, Partition behaviour and ion-pair formation of some prostaglandins, <i>Chem. Pharm.</i> <i>Bull.</i>, 26, 3779–3784 (1978). NB: See separate entries for Dinoprost and Dinoprostone.
2150	Pseudoephedrine	9.7	U	+H			Ritschel; Borodkin S and Yunker MH, Interaction of amine drugs with a polycarboxylic acid ion-exchange resin, J. Pharn Sci., 59 , 481–486 (1970).
2151	Pseudoephedrine	9.86	U	+H			Vree TB, Muskens ATJM and van Rossum JM, Some physicochen ical properties of amphetamine and related drugs, <i>J. Pharm. Pha</i> macol., 21, 774–775 (1969). NB: S Dexamphetamine for details.
2152	Pyrazinamide (C ₅ H ₅ N ₃ O)	0.5 -0.5	U U	+H +H	spectro		Craig; N&K 'Merck 9. Rogers EF, Leanza WJ, Becker HJ Matzuk AR, O'Neill RC, Basso AJ, Stein GA, Solotorovsky M, Gregory FJ and Pfister K, Antitubercular diazine carboxamides, <i>Science</i> , 116 , 253 254 (1952). Cited in Perrin Base no. 1494 Ref. R29. Used an

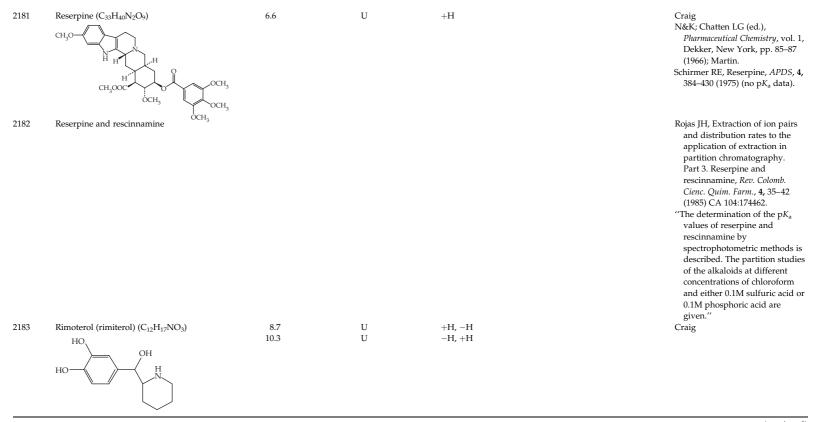
undefined optical method.

2153	Pyridine (C ₅ H ₅ N)	5.21 ± 0.05	А	+H	potentio	H_2O t = 25 $I \sim 0$	Perrin Bases no. 1018. NB: Numerous values reported over a temperature range 18 to 35 °C.
2154	Pyrilamine (C ₁₇ H ₂₃ N ₃ O) $CH_2CH_2N(CH_3)_2$ N N OCH_3	4.02 8.92	U U	+H +H	potentio	H_2O t = 25 c = 0.002 to 0.01	Craig; W&G: Cited Perrin Bases no. 1122.
2155	Pyrilamine	4.0 8.9	U U	+H +H			Persson BA and Schill G, Extraction of amines as complexes with inorganic anions, <i>Acta Pharm. Suecica</i> , 3 , 291–302 (1966). NB: No details are given for the measurement of what are described as "approximate acid dissociation constants."
2156	Pyrimethamine (C ₁₂ H ₁₃ ClN ₄) CH_3CH_2 N NH_2 CI NH_2	7	U	+H		<i>t</i> = 20.0	Loutfy MA and Aboul-Enein HY, Pyrimethamine, <i>APDS</i> , 12 , 463–479 (1983). BPC, p. 767
2157	Pyrimethamine	7.2	U	+H			N&K Ritschel gave 7.2; ref. Burroughs-Wellcome,
2158	Pyrimethamine	7.2	U	+H			Tuckahoe, NY 10707.

Ċl

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2159	Pyrimethazine	9.4	U	+H			 Anton AH, A drug-induced change in the distribution and renal excretion of sulfonamides, <i>JPET</i>, 134, 291–303 (1961) The value was obtained from Bases and Hitchings, unpublished observations. W&G: Sorby DL, Plein EM and Benmaman D, Adsorption of phenothiazine derivatives by solid adsorbents, <i>J. Pharm. Sci.</i>, 55, 785–794 (1966). NB: See Chlorpromazine for details. This appears to be the same compound as pyrimethamine, but the discrepancy in the pK_a values is unexplained—possibly
2160	Pyrrobutamine (C ₂₀ H ₂₂ ClN)	8.77	U	+H	potentio	H ₂ O t = 25 c = 0.002 to 0.01	a difference in solvent. Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Ass., Sci. Edn., 45 , 300–305 (1956). See Chlorpheniramine (no. 1704) for details. N&K Craig


2161	Quinacrine	7.73 7.69 10.18	U U U	+H +H +H	spectro potentio potentio	H ₂ O t = 30 I = 0.1 (NaCl)	Irvin JL and Irvin EM, Apparent ionization exponents of homologs of quinacrine; electrostatic effects, <i>JACS</i> , 72 , 2743–2749 (1950). NB: Dilute (0.001 M) solutions were titrated, with resulting relatively low accuracy. Measurement of pK_{a2} involved extrapolation of glass electrode pH measurements from EtOH-water solutions. No treatment of activity effects. Cited in Craig; Perrin Bases no. 2679, ref. I7.
2162	Quinacrine	8.0	U	+H			W&G: Perrin Bases
		10.2	U	+H			
2163	Quinacrine	7.73	U	+H			Lombardo F, Obach RS, Shalaeva
		10.2	U	+H			MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. 297: Irvin JL and Irvin EM, Apparent ionization exponents of homologs of quinacrine: Electrostatic effects, <i>JACS</i> , 72 , 2743–2749 (1950).
2164	Quinethazone ($C_{10}H_{12}ClN_3O_3S$)	9.3	U	-H			Craig
	Cl H C_2H_5 NH_2SO_2 O	10.7	U	-Н			N&K Am Hosp Form Service.
2165	Quinidine	4.21	U	+H			N&K cited Perrin Bases. NB:
2100	<u></u>	8.34	U	+H			These are the values for Quinine, see Perrin Bases no. 2958.


No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2166	Quinidine	8.05	U	+H			Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. 298: Tsai R-S, Carrupt PA, Testa B, Tayar, NE, Grunewald GL and Casy AF, Influence of stereochemical factors on the partition coefficient of diastereomers in a biphasic
							octan-1-ol/water system, J. Chen Res. (M), 1901–1920 (1993).
2167	quinolone–ciprofloxacin	6.00 8.80	U U	-H +H			Kitzes-Cohen R, Quinolones in CNS infections, Quinolone Bull., 3, 7–14 (1987).
2168	quinolone-enoxacin	6.00	U	-H			Dalhoff A, A review of quinolone
		8.50	U	+H			tissue pharmacokinetics, in Fernandes PB (ed.), Internationa Telesymposium on Quinolones, JR Prous, Barcelona, pp. 277–312 (1989).
2169	quinolone-fleroxacin	5.70	U	-H			Dalhoff A, A review of quinolone
		8.00	U	+H			tissue pharmacokinetics, in Fernandes PB (ed.), Internationu Telesymposium on Quinolones, JI Prous, Barcelona, pp. 277–312 (1989).
2170	quinolone-nalidixic acid	6.02	U	-Н	spectro		Staroscik R and Sulkowska J, Acid base equilibria of nalidixic acid, Acta Pol. Pharm., 28, 601–606 (1971).
2171	quinolone–nalidixic acid	6.12	U	-H	soly/pH		Staroscik R and Sulkowska J, Acic base equilibria of nalidixic acid, Acta Pol. Pharm., 28, 601–606 (1971).

2172	quinolone-norfloxacin	6.40 8.70	U U	-H +H			Kitzes-Cohen R, Quinolones in CNS infections, <i>Quinolone Bull.</i> , 3, 7–14 (1987).
2173	quinolone–norfloxacin	6.20 8.70	U U	-H +H			Stein G, Review of the bioavailability and pharmacokinetics of oral norfloxacin, Am. J. Med., 82 (Suppl. 6B), 18–21 (1987).
2174	quinolone-ofloxacin	5.70	U	-H			Kitzes-Cohen R, Quinolones in
		7.90	U	+H			CNS infections, <i>Quinolone Bull.</i> , 3 , 7–14 (1987).
2175	Racemethorphan (C ₁₈ H ₂₅ NO)	8.83	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971).
2176	Racemorphan (methorphinan) (C ₁₇ H ₂₃ NO)	8.97	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, <i>Bull. Narcotics</i> , UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), <i>Narcotic Drugs Biochemical</i> <i>Pharmacology</i> , Plenum Press, New York, 52–53 (1971).

Appendix B (co	ntinued)
----------------	----------

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2177	Ranitidine (C ₁₃ H ₂₂ N ₄ O ₃ S) (CH ₃) ₂ NCH ₂ $(H_{2} + (H_{3} + (H_{3$	2.19 ± 0.04	U	+H	spectro		 Hohnjec M, Kuftinec J, Malnar M Skreblin M, Kajfez F, Nagl A an Blazevic N, Ranitidine, APDS, 15, 533–561 (1986). Hohnjec M, Rendic S, Alebic-Kolbah T, Kajfez F, Blazevic N and Kuftinec J, Acta Pharm. Jugosl., 3 131 (1981). NB: Albert and Serjeant (1984) says pK_a 2.3 (+F and 8.2 (+H).
2178	Ranitidine	8.18	U	+H	potentio	H ₂ O t = 25 I = 0.1 (KCl)	Shankley NP, Black JW, Ganellin CR and Mitchell RC, <i>Br. J.</i> <i>Pharmacol.</i> , 94 , 264–274 (1988). " pK_a values were measured by M Graham (SK&F Ltd.) potentiometrically and corrected for 37° unless otherwise stated."
2179	Ranitidine	8.47	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set an leave-class-out statistics, <i>J. Met Chem.</i> , 47, 1242–1250 (2004). Re not given: potentiometric titration.
2180	Rescinnamine (C35H42N2O9)	6.4	U	+H			McEvoy

Appendix B	(continued)
------------	-------------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2184	Risperidone (C ₂₃ H ₂₇ FN ₄ O ₂) $(C_{13} + C_{13} + C$	8.3	U	+H	CZE/pH		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Mea</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. not given: Capillary electrophoresis.
2185	Ritodrine (C ₁₇ H ₂₁ NO ₃) $(C_{17}H_{21}NO_{3})$ (OH) (HN) (HN) (CH)	9.0	U	+H, -H			Foye 3rd; see Azatadine from McEvoy.
2186	$\begin{array}{c} \stackrel{I}{OH}\\ \text{Rivastigmine }(C_{14}H_{22}N_2O_2)\\ & & & \\ \stackrel{O}{\longrightarrow} \\ & & \\ \stackrel{O}{\longrightarrow} \\ & & \\ \stackrel{O}{\longrightarrow} \\ & \\ \stackrel{CH_3}{\longrightarrow} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	8.99	U	+H	CZE/pH		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Mea Chem.</i> , 47 , 1242–1250 (2004). Ref. not given: Capillary electrophoresis.

....

2187	Rolitetracycline (C ₂₇ H ₃₃ N ₃ O ₈) HO CH_3 H $N(CH_3)_2$ OH O OH O OH O OH O OH O OH OH	7.4	U	-H			Craig N&K Avery NB: There should be three other pK _a values for Rolitetracycline.
2188	Rotoxamine (l-carbinoxamine) (C ₁₆ H ₁₉ ClN ₂ O) $(H_2CH_2N(CH_3)_2)$ H $(H_2CH_2N(CH_3)_2)$	8.1	U	+H			Craig NB: Also known as Levocarbinoxamine.
2189	Saccharin (C ₇ H ₅ NO ₃ S)	1.31	Α	-H	spectro	H ₂ O t = 25 I = 0.2 (HCI-KCI)	Dawn H, Pitman IH, Higuchi T and Young S, N-chlorosaccharin as a possible chlorinating reagent: structure, chlorine potential, and stability in water and organic solvents, <i>J. Pharm.</i> <i>Sci.</i> , 59 , 955–959 (1970). Cited in Kortum, no. 3858, ref. D21.
	ö	1.6	U	-H		H ₂ O t = 18	According to the Dawn <i>et al.</i> paper (1970), this value was obtained by Kolthoff (1925). Also cited in Zubair MU and Hassan MMA, Saccharin, <i>APDS</i> , 13 , 487–519 (1984). No reference cited. See also N&K Martin; Ritschel.
2190	Salsalate (C ₁₄ H ₁₀ O ₅)	3.5	U	-H			Craig
	COOH O O O O O H	9.8	U	-H			

Appendix	В	(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2191	Scopolamine	7.6	U	+H		<i>t</i> = 23	Muhtadi FJ and Hassan MMA, Scopolamine hydrobromide, APDS, 19 , 477-551 (1990). NB: Clarke, p. 674; also Craig.
2192	Serotonin ($C_{10}H_{12}N_2O$)	4.9	U	+H			Craig
	H	9.1	U	+H			N&K Merck 9.
	HO CH ₂ CH ₂ NH ₂	9.8	U	-Н			Perrin Bases ref R4: Rapaport MM, Green AA, Page IH, Serum vasoconstrictor (serotonin) IV. Isolation and characterization, <i>J. Biol. Chem.</i> , 176 , 1243–1251 (1948).
2193	Sildenafil (C ₂₂ H ₃₀ N ₆ O ₄ S) CH_3CH_2O HN $CH_3CH_2CH_2CH_3$ O CH_3CH_2O $CH_3CH_2CH_2CH_3$ O $CH_3CH_2CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$	8.7	U	+H			 Badwan AA, Nabusli L, Al-Omri MM, Daraghmeh N and Ashour M, Sildenafil, <i>APDS</i>, 27, 352 (2000). "Sildenafil has a basic functional group, characterized by a pK_a value of 8.7 (NH-piperazine). In addition it has a weak acidic moiety (HN-amide) [4]." Cooper JD, Muirhead DC, Taylor JE and Baker RP, <i>J. Chrom. Biomed. Sci. Appl.</i>, 701, 87 (1997). NB: The very weakly acidic amide is confirmed by an increase in aqueous solubility at pH values between 9 and 12 (data in APDS 27).

2194	Solasodine (C ₂₇ H ₄₃ NO ₂) H ₃ C H CH ₃ + CH ₃	6.31 (pK _b)	U	+H	EtOH (60%)	Indrayant G, Syahrani A, Sondakh R and Santosa MH, Solasodine, <i>APDS</i> , 24 , 487–522 (1996). NB: pK_b in 60% ethanol was 6.31. Conversion of this value to the corresponding pK_a would require pK_w for the 60% aqueous ethanol solvent system. Ref: Bentley KW and Kirby GW, <i>Elucidation of organic structure by</i> <i>physical and chemical methods</i> , 2nd
2195 2196	Sorbitol Sotalol	13.60 8.3 9.8	U U U	-H -H +H		Edn., Interscience, 665 (1972). Merck 10, p. 1248 Foster RT and Carr RA, Sotalol, <i>APDS</i> , 21 , 501–533 (1992). Cited W&G, which in turn cited Garrett and Schnelle, 1971 (see no. 1279). NB: Hinderling PH, Schmidlin O, Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man, <i>J. Pharmacokin. Biopharm.</i> , 12 , 263–287 (1984). See Sotalol, no. 1279.
2197	Sotalol	9.76	U	+H		 Lombardo F, Obach RS, Shalaeva MY, Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave- class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. 275 = Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C, Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta-adrenoceptor blocking agents, <i>Farmaco</i>, 45, 647–663 (1990).

Appendix	в	(continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2198	Sparteine (C ₁₅ H ₂₆ N ₂) H N H H	4.80 11.96	U U	+H +H			Craig
2199	H Spectinomycin (C ₁₄ H ₂₄ N ₂ O ₇) $H_{3}CHN + H_{4}CHN + H_{$	6.95 8.70	U U	+H +H			Craig; N&K Merck 9
2200	Spiperone (C ₂₃ H ₂₆ FN ₃ O ₂)	8.31 9.09	U U	+H +H			Craig

Appendix B (continued)

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2205	Sufentanil	7.85	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J. Med. Chem., 47, 1242–1250 (2004). Ref. 276: Meuldermans WEG, Hurkmans RMA, Heykants JJP, Plasma protein binding and distribution of fentanyl, sulfentanil, alfentanil and lofentanil in blood, Arch. Int. Pharmacodyn., 257, 4–19 (1982); Potentiometric titration.
2206	Sulfacarbamide	1.8 5.5	U U	+H -H			Ritschel: Struller T, Progress in sulphonamide research, <i>Progr.</i> <i>Drug Res.</i> , 12 , 389–457 (1968).
2207	Sulfacetamide	1.78 5.38	U U	+H -H		t = 25	Drug Res., 12, 389–457 (1968). N&K Suzuki A, Higuchi WI Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59, 651–659 (1970). Craig; Clarke, p. 981; BPC, p. 862.
2208	Sulfacetamide	5.78	U	–Н	potentio		Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>ArzneimForsch.</i> , 13 , 81–88 (1963). NB: See sulphanilamide for details.
2209	Sulfacetamide	5.38	U	-H		<i>t</i> = 25	Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1, Dekker, New York, pp. 85–87 (1966); Bell, Roblin, JACS, 1942.

2210	Sulfachloropyridazine (C ₁₀ H ₉ ClN ₄ O ₂ S)	6.10	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2211	Sulfachlorpyridazine	5.9	U	-H			Ritschel: Struller T, Progress in sulphonamide research, <i>Progr. Drug Res.</i> , 12 , 389–457 (1968).
2212	Sulfadiazine	6.52	U	-H	potentio		 Brig Res., 12, 30–437 (1906). Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2213	Sulfadiazine	6.37	U	-H	spectro	H_2O t = 27 ± 1 I = 0.2	Ritschel: Yoshioka M, Hamamoto K, and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, <i>Yakugaku Zasshi</i> , 84 , 90–93 (1964).
2214	Sulfadiazine, N4-acetyl	6.34	U	-H	potentio		Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2215	Sulfadimethoxine	2.02 6.70	U U	+H -H			Craig; N&K Suzuki A, Higuchi WI, and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, <i>J. Pharm.</i> <i>Sci.</i> , 59 , 651–659. (1970).
2216	Sulfadimethoxine	6.32	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2217	Sulfadimethoxine	5.94	U	-H	potentio	<i>t</i> = 28	Nakagaki M, Koga N and Terada H, Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulphonamides with serum albumin, J. Pharm. Soc. Jpn., 83, 586–590 (1963).
2218	Sulfadimethoxine	5.98	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84, 90–93 (1964).
2219	Sulfadimethoxine, N4-acetyl ($C_{14}H_{16}N_4O_5S$) OCH ₃ OCH ₃ CH ₃ H	6.01	U	-Н	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchunger an sulfonamiden, <i>Arzneim</i> <i>Forsch.</i>, 13, 81–88 (1963). NB: See Sulphanilamide for details
2220	Sulfadimethyloxazole (C ₁₁ H ₁₃ N ₃ O ₃ S) O O N O CH_3 H_2N H H_2N H H_3	7.40	U	-Н	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch, 13, 81–88 (1963). NB: See Sulphanilamide for details.
2221	Sulfadimidine	7.70	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulbapailamide for details

Sulphanilamide for details.

2222	Sulfadimidine	2.36	U	+H		$\begin{array}{l} H_2O \; (extrap) \\ t = 24 \pm 1 \\ I \sim 0.002 \end{array}$	Chatten LG and Harris LE, Relationship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962).
2223	Sulfadimidine	7.37	U	-H		<i>t</i> = 25	Chatten LG (ed.), <i>Pharmaceutical</i> <i>Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966); Bell, Roblin, <i>JACS</i> , 1942.
2224	Sulfadimidine (sulfamethazine)	2.36	U	+H			N&K Suzuki A, Higuchi WI and
		7.38	U	-Н			Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, <i>J. Pharm. Sci.</i> , 59 , 651–659 (1970).
2225	Sulfaethidole	1.93 5.60	U U	+H -H			N&K Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2226	Sulfaethidole	5.65	U	—Н	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2227	Sulfafurazole	5.00	U	-H	potentio	<i>t</i> = 28	Nakagaki M, Koga N and Terada H, Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulphonamides with serum albumin, J. Pharm. Soc. [pn., 83, 586–590 (1963).
2228	Sulfafurazole	4.79	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K, Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84, 90–93 (1964).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2229	Sulfaguanidine	2.75 12.05	U U	+H H			Craig; N&K Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2230	Sulfamerazine	6.98	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2231	Sulfamerazine	2.26	U	+H			N&K Suzuki A, Higuchi WI and
		7.06	U	-H			Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2232	Sulfamerazine	7.06	U	-H			Chatten LG (ed.), <i>Pharmaceutical</i> <i>Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966); Bell, Roblin, <i>JACS</i> , 1942.
2233	Sulfamerazine	2.08	U	+H		$H_2O \text{ (extrap)}$ $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Relationship between pK_b (H ₂ O) of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962).
2234	Sulfamerazine	6.85	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84 , 90–93 (1964).

2235	Sulfamethizole (C ₉ H ₁₀ N ₄ O ₂ S ₂)	2.20	U	+H			Craig
		5.45	U	-H			
2236	Sulfamethizole	2.00 5.45	U U	+H -H			N&K Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2237	Sulfamethizole	5.45	U	-H			Chatten LG (ed.), <i>Pharmaceutical</i> <i>Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966); Merck 7.
2238	Sulfamethizole	5.22	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84 , 90–93 (1964).
2239	Sulfamethoxazole (C ₁₀ H ₁₁ N ₃ O ₃ S)	5.60 ± 0.05	Α	—Н	spectro, potentio		Rudy BC and Senkowski BZ, Sulfamethoxazole, <i>APDS</i> , 2 , 467–486 (1973). NB: Schmidli, Hoffmann-La Roche, Inc., unpublished data; Nakagaki M, Koga N and Terada H, Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulphonamides with serum albumin, <i>J. Pharm. Soc.</i> <i>Jpn.</i> , 83 , 586–590 (1963). "The pK _a of sulfamethoxazole has been determined spectrophotometrically to be 5.55 ± 0.05 and by titration of sulfamethoxazole in an excess of 0.1N HCl to be 5.63 ± 0.03 . These values agree very well with the pK _a value of 5.60 at 25° reported by Nakagaki, Toga, and Terada."

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2240	Sulfamethoxazole	5.72	U	-H	spectro	H_2O t = 27 ± 1 I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84, 90–93 (1964).
2241	Sulfamethoxazole	6.03	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2242	Sulfamethoxazole, N4-acetyl (C ₁₂ H ₁₃ N ₃ O ₄ S) G_{H_3} G_{H_3} $G_{$	5.54	U	H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2243	Sulfamethoxydiazine (C ₁₁ H ₁₂ N ₄ O ₃ S) O O N O	7.02	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2244	Sulfamethoxypyridazine	7.20	U	-H	potentio		Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>ArzneimForsch.</i> , 13 , 81–88 (1963). NB: See Sulphanilamide for

details.

-598

2245	Sulfamethoxypyridazine	2.06 7.00	U U	+H -H			N&K Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2246	Sulfamethoxypyridazine	6.7	U	-Н			Chatten LG (ed.), <i>Pharmaceutical</i> <i>Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966); Merck 7.
2247	Sulfamethoxypyridazine	7.17	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84, 90–93 (1964).
2248	Sulfamethoxypyridazine, N4-acetyl	6.78	U	-Н	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>ArzneimForsch.</i>, 13, 81–88 (1963). NB: See Sulphanilamide for details.
2249	Sulfamonomethoxine (C ₁₁ H ₁₂ N ₄ O ₂ S)	5.94	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>ArzneimForsch.</i>, 13, 81–88 (1963). NB: See Sulphanilamide for details.
2250	Sulfanilamide	10.08	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>Arzneim</i> <i>Forsch.</i>, 13, 81–88 (1963). NB: The pK_a potentiometric titrations were contracted out to Dr. B. Schmidli. No other experimental details were given.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2251	Sulfanilamide	2.08	U	+H		H ₂ O (extrap) $t = 24 \pm 1$ $I \sim 0.002$	Chatten LG and Harris LE, Rela- tionship between $pK_b(H_2O)$ of organic compounds and $E_{1/2}$ values in several nonaqueous solvents, <i>Anal. Chem.</i> , 34 , 1495–1501 (1962).
2252	Sulfanilamide	10.4	U	-H			W&G: Brueckner AH, Yale J. Bio Med., 15, 813 (1943).
2253	3-Sulphanilamido-4,5-dimethylpyrazole (C ₁₁ H ₁₄ N ₄ O ₂ S) H ₃ C H_3 C H_3 H ₂ N H_2 N	8.32	U	-Н	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch 13, 81–88 (1963). NB: See Sulphanilamide for details.
2254	2-Sulfanilamido-4,5,6-trimethoxypyrimidine (C ₁₃ H ₁₆ N ₄ O ₅ S) OCH_3 H_2N OCH_3 H_2N	6.54	U	H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch 13, 81–88 (1963). NB: See Sulphanilamide for details.
2255	Sulfanilic acid ($C_6H_7NO_3S$)	3.2	U	+H			W&G: Kolthoff IM and Stenger VA, <i>Volumetric Analysis</i> , vol. 1 2nd Edn., Interscience, NY (1942).

2256	Sulfaperine (also called sulfamethyldiazine; 4-methylsulfadiazine)	6.77	U	-H	potentio		Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13 , 81–88 (1963). NB: See Sulphanilamide for details.
2257	Sulfaphenazole	1.9	U	+H			Craig; N&K Suzuki A, Higuchi WI
		6.50	U	-Н			and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2258	Sulfaphenazole	6.09	U	-H	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>ArzneimForsch.</i>, 13, 81–88 (1963). NB: See Sulphanilamide for details.
2259	Sulfaphenazole	5.89	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, <i>Yakugaku Zasshi</i> , 84 , 90–93 (1964).
2260	Sulfaphenazole	5.80-6.13	U	-Н			 Elofsson R, Nilsson SO and Agren A, Complex formation between macromolecules and drugs IV, <i>Acta Pharm. Succ.</i>, 7, 473–482 (1970). NB: This compound was not measured in the study but sourced from literature (ref. 8, Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>Arzneim</i> <i>Forsch.</i>, 13, 81–88 (1963); 9, Kruger-Thiemer, E and Bunger P, <i>Proc. Eur. Soc. Drug Toxicity.</i> vol. XI (1965) (Excerpta Medica Intl. Congress Series no. 97). See Sulphanilamide for details.

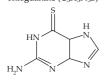
No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2261	Sulfapyridine	2.58 8.43	U U	+H -H			Craig; NB: This appears to be the Bell and Roblin data. See no. 1377. N&K Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59, 651–659 (1970).
2262	Sulfapyridine	8.56	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto J and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84, 90–93 (1964).
2263	Sulfathiazole	2.36 7.12	U U	+H -H			 Craig; N&K Suzuki A, Higuchi W and Ho NFH, Theoretical mode studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59, 651–659 (1970). NB: Kapoor VK, Sulfathiazole, APDS, 22, 389–430 (1993), citing Clarke, gave 7.1.
2264	Sulfathiazole	7.25	U	-H	potentio		Rieder J, Physicalisch-chemische und biologische untersuchunge an sulfonamiden, <i>Arzneim</i> <i>Forsch.</i> , 13 , 81–88 (1963). NB: See Sulphanilamide for details.
2265	Sulfathiazole	7.59	U	-H		<i>t</i> = 25	Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1, Dekker, New York, pp. 85–87 (1966); Bel Roblin, JACS 1942
2266	Sulfathiazole	7.00	U	-H	potentio	t = 28	Nakagaki M, Koga N and Terada H, Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulphonamides with serum albumin, J. Pharm. Soc.

Jpn., 83, 586-590 (1963).

2267	Sulfathiazole	7.23	U	-H	spectro	H_2O t = 27 ± 1 I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, <i>Yakugaku Zasshi</i> , 84 , 90–93 (1964).
2268	Sulfinpyrazone	2.8 3.25	U U	-H -H			Craig; N&K Ritschel gave 2.8 only; ref Geigy Pharmaceuticals. NB: See Oxyphenbutazone.
2269	Sulfisomidine (2-Sulfanilamido-2, 4-dimethylpyrimidine)	7.25	U	-H	potentio		Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, <i>Arzneim</i> <i>Forsch.</i> , 13 , 81–88 (1963). NB: See Sulphanilamide for details.
2270	Sulfisomidine	2.36 7.5	U U	+H -H			N&K Suzuki A, Higuchi WI and Ho NFH, Theoretical model studies of drug absorption and transport in the gastrointestinal tract, J. Pharm. Sci., 59 , 651–659 (1970).
2271	Sulfisomidine	7.49	U	-H	spectro	H_2O $t = 27 \pm 1$ I = 0.2	Ritschel: Yoshioka M, Hamamoto K and Kubota T, Acid dissociation constants of sulfanilamides and substituent effects on the constants, Yakugaku Zasshi, 84, 90–93 (1964).
2272	Sulfisomidine	7.57	U	-Н	potentio		 Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, ArzneimForsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2273	Sulfisomidine	7.17	U	-H	potentio	<i>t</i> = 28	Nakagaki M, Koga N and Terada H, Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulphonamides with serum albumin, <i>J. Pharm. Soc.</i> <i>Jpn.</i> , 83, 586–590 (1963).

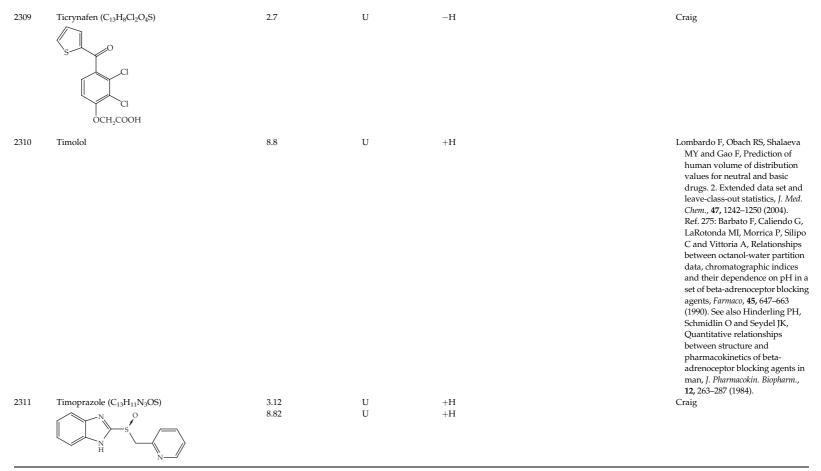
Appendix B (continued)
--------------	------------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2274	Sulfisoxazole (C ₁₁ H ₁₃ N ₃ O ₃ S) H ₂ N \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} N HN \xrightarrow{O} CH ₃	5.0	U	-H	spectro, potentio		Rudy BC and Senkowski BZ, Sulfisoxazole, APDS, 2 , 487–506 (1973). spectro: Motchane A, Hoffmann- La Roche, unpublished data. potentio: Rieder J, ArzneimForsch. 13 , 81–88 (1963). Nakagaki M, Koga N and Terada H, J. Pharm. Soc. Jpn., 83 , 586 (1963).
2275	Sulfisoxazole	5.00	U	-Н	potentio		Rieder J, Physicalisch-chemische und biologische untersuchunger an sulfonamiden, Arzneim Forsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2276	Sulfisoxazole, N4-acetyl	4.72	U	-H	potentio		Rieder J, Physicalisch-chemische und biologische untersuchungen an sulfonamiden, Arzneim Forsch., 13, 81–88 (1963). NB: See Sulphanilamide for details.
2277	Sulthiame ($C_{10}H_{14}N_2O_4S_2$)	10.0	U	-H			Craig
2278	Sumatriptan (C ₁₄ H ₂₁ N ₃ O ₂ S) H ₃ C \xrightarrow{O}_{H_3} \xrightarrow{O}_{H_4} \xrightarrow{H}_{H_5} \xrightarrow{O}_{H_3} \xrightarrow	9.5	U	+H			 Lombardo F, Obach RS, Shalaeva M and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave- class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. 300: O'Connor DO, Capel C, Rycroft W Tattersall FD, Locker K, Sohal B, Graham MI and Evans DC. Influence of the physicochemistry on the brain penetration of the Triptans in rat. Poster presented a the XIV Course in Drug Research June 5–6, 1997, Helsinki, Finland.


2279	p-Synephrine	9.3	U	-H		Craig
2280	Tacrine (C ₁₃ H ₁₄ N ₂)	10.2 9.8	U U	+H +H		 Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave- class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. 301: Desai MC, Thadeio PF, Lipinski CA, Liston DR, Spencer RW and Williams IH, Physical parameters for brain uptake: Optimizing logP, logD and pK_a of THA, <i>Bioorg. Med. Chem. Lett.</i>, 1, 411–414 (1991).
2281 2282	Tamoxifen Tamoxifen	8.9 8.45	U U	+H -H	potentio H_2O t = 25	McEvoy Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P, Absorption classification of oral drugs based on molecular surface properties, J. Med. Chem., 46(4), 558–570 (2003). NB: From extrapolation of aqueous-methanol mixtures to 0% methanol.
2283	Temazepam (C ₁₆ H ₁₃ ClN ₂ O ₂) H_3C Cl H_3C OH	1.6	U	+H		Craig
2284	Tenoxicam (C ₁₃ H ₁₁ N ₃ O ₄ S ₂) O O O O O O O O	1.1 5.3	U U	+H -H		 Al-Obaid AM, Mian MS, Tenoxicam, APDS, 22, 431–459 (1993). NB: The structure is probably better shown in the keto (carbon acid form). NB: No reference was given, although there was acknowledgement of assistance from Hoffman La-Roche with "product information and relevant literature."

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2285	Terbutaline	8.8	U	+H			Ahuja S and Ashman J, Terbutalin
		10.1	U	-H			sulfate, APDS, 19 , 601–625 (1990
		11.2	U	-H			Ahuja S, personal communication (1976).
							NB: Same values in Craig and N&I
286	Terbutaline	8.67 ± 0.01	А	+H	potentio	H ₂ O	Sirius Technical Application Note
		9.97 ± 0.01	U	-H		t = 25.0	vol. 2, pp. 36–37 (1995). Sirius
		11.02 ± 0.01	U	-H		I = 0.15 (KCl)	Analytical Instruments, Ltd., Forest Row, East Sussex, RH18 5DW, UK. NB: Concentration o analyte, 1.81.9 mM.
7	Terfenadine	6.56	U	+H	potentio	H ₂ O (extrap) <i>t</i> = 22	 Badwan AA, Al Kaysi HN, Owais LB, Salem MS and Arafat TA, Terfenadine, APDS, 19, 627-662 (1990). NB: Titrations in methanol-wate mixtures extrapolated to zero percent methanol by the Yasuda Shedlovsky procedure, accordin to Newton DW, Murray WJ and Lovell MW, J. Pharm. Sci., 71(12) 1363–1366 (1982). Unpublished data obtained by M. Omari, Jordanian Pharmaceutical Manufacturing Co., Amman, Joi dan. See also Australian Nationa Drug Information Service, Aust. Pharmacy, 67, 1077 (1986).
38	Tetracaine	8.39	U	+H			Riaz M, Tetracaine, APDS, 18, 379–411 (1989). NB: See Dittgen I and Jensch HP, Influence of the physicochemical properties of tf drug on its release from acrylic films, Acta Pharm. Jugo., 38(4), 315–320 (1988). Also see Doyle T and Proctor JB, Dermination of procaine and related local anaesthetics, J. Assoc. Off. Anal. Chem., 58, 88–92, 93–94 (1975); N&K Anon.

2289	Tetracaine	8.5	U	+H			W&G: Truant AP and Takman B, Differential physical-chemical and neuropharmacologic properties of local anesthetic agents, <i>Anesth.</i>	
2290	Tetracycline	3.30	U	-H		H ₂ O	<i>Analg.,</i> 38, 478–484 (1959). Ali SL, Tetracycline hydrochloride,	
		7.68	U	-H		t = 25.0	APDS, 13, 597-645 (1984).	
		9.69	U	+H			pK_{a4} assigned to ionisation of the	
		(10.7)	U	-Н			second proton of the extended phenolic-enolic system (see: Rigler NE, et al., Anal. Chem., 37 , 872–875 (1965)).	
2291	Tetrahydrocannabinol ($C_{21}H_{30}O_2$) CH_3 H_3C H_4 H_3C C_5H_{11}	10.6	U	-Н			Albert A and Serjeant EP, <i>The</i> <i>determination of ionization</i> <i>constants</i> , 3rd Edn., Chapman and Hall, London (1984).	
2292	Thebaine	8.15	U	+H	potentio	50% aq EtOH	Farmilo CG, Oestreicher PM and Levi L, Physical methods for the identification of narcotics. IB Common physical constants for identification of ninety-five narcotics and related compounds, Bull. Narcotics, UN Dept. Social Affairs, vol. 6, pp. 7–19 (1954); cited in Clouet DH (ed.), Narcotic Drugs Biochemical Pharmacology, Plenum Press, New York, 52–53 (1971).	
2293	Thenyldiamine (C ₁₄ H ₁₉ N ₃ S) $\begin{pmatrix} S \\ N \\ - N \\ - CH_2CH_2N(CH_3)_2 \end{pmatrix}$	3.94 8.93	U U	+H +H	potentio	H ₂ O t = 25 c = 0.002 to 0.01	 Incisi, NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Ass. Sci. Edn., 45, 300–305 (1956). Cited in Perrin Bases no. 1124 ref. L54. NB: Used glass electrode in cell with liquid junctions. See Chlorpheniramine (no. 1704) for details. 	


Appendix	B	(continued)
-		

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2294	Thiabendazole (C ₁₀ H ₇ N ₃ S)	4.7	U	+H			McEvoy
2295	Thiamine (C ₁₂ H ₁₇ N ₄ OS)	4.8	U	+H			Carlin HS and Perkins AJ,
	H ₃ C NH ₂ S CH ₂ CH ₂ OH	9.0	Ū	+H			Compatibilities of parenteral medications, <i>Am. J. Hosp. Pharm.</i> 25, 270–279 (1968).
2296	ĊH ₃ Thiamine	4.8	U	+H			Craig
2290	Thiamine	4.8	U	+H			N&K W&G: Carlin and Perkins
		9.0	U	+H			data (see no. 2295).
2298	Thiamine	4.8	U	+H			Ritschel: Gupta VD, Cadwallader DE, Herman HB and Honigber IL, Effect of pH and dye concentration on the extraction of a thiamine dye salt by an organic solvent, <i>J. Pharm. Sci.</i> , 57 , 1199–1202 (1968); cited $K_a = 1.58 \times 10^{-5}$; from Merck Index.
2299	Thiamine-O-monophosphate (C ₁₂ H ₁₈ N ₄ O ₄ PS)	2.40	U	-H	potentio		Okamoto K, The alternating
	HO ou	4.80	U	+H			current polarography of
	HOOH	6.27	U	-H			thiamine O-monophosphate,
	CH_3 N NH_2 S O $P=O$	9.65 10.20	U U	+H -H			Bull. Chem. Soc. Jpn., 36, 366–37 (1963). Cited in Perrin Bases, Suppl. No. 7798, ref. O3. NB: Polarographic behaviour was related to acid-base equilibria. No. for the activity.
2300	Thioguanine ($C_5H_5N_5S$)	8.22	U	-H			No further details. Craig

2301	Thioridazine	9.5	U	+H	 Abdel-Moety EM and Al-Rashood KA, Thioridazine and Thioridazine hydrochloride, <i>APDS</i>, 18, 459–525 (1989). NB: See Remington, Foye and Green AL, Ionization constants and water solublities of some aminoalkylphenothiazine tranquilizers and related compounds, <i>J. Pharm.</i> <i>Pharmacol.</i>, 19, 10–16 (1967). See Amitriptylline for details.
2302	Thiothixene (C ₂₃ H ₂₉ N ₃ O ₂ S) (CH_3) (CH_3) $(CH_3)_2$	7.67 7.97	U U	+H +H	Craig
2303	2-Thiouracil (C ₄ H ₄ N ₂ OS) $V \rightarrow V$ $V \rightarrow V$	7.46	U	-Н	N&K Garrett ER and Weber DJ, Metal complexes of thiouracils I. Stability constants by potentiometric titration studies and structures of complexes, J. Pharm. Sci., 59 , 1383–1398 (1970).
2304	Thonzylamine ($C_{16}H_{22}N_4O$)	2.17 8.96	U U	+H +H	Craig N&K Chatten LG (ed.), <i>Pharmaceutical Chemistry</i> , vol. 1, Dekker, New York, pp. 85–87 (1966); Tolstoouhov (see Pheniramine, no. 2081).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)	
	CH ₃ O N CH ₂ CH ₂ CH ₂ N(CH ₃) ₂							
2305	Thonzylamine	2.08 8.84	A U	+H +H	potentio	H_2O t = 25 c = 0.002 to 0.01	W&G: Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Ass. Sci. Edn., 45 , 300–305 (1956). See Chlorpheniramine (no. 1704) for details.	
2306	Thyronine, L- $(C_{15}H_{12}I_3NO_4)$	9.6	U	-H		H ₂ O	W&G: Smith RL, <i>Med. Chem.</i> , 2 , 477 (1964). NB: This reference could not be identified; see Liothyronine.	
2307	Tiaprofenic acid (tiprofenic acid) (C ₁₄ H ₁₂ O ₃ S)	3.0	U	-H			Craig	
2308	Ticarcillin (C ₁₅ H ₁₆ N ₂ O ₆ S ₂) s $(H_{16} H_{16} H_$	$\begin{array}{c} 2.89 \pm 0.05 \\ 3.28 \pm 0.04 \end{array}$	U U	H H	potentio	H_2O t = 25.0 I = 0.15 (KCl)	Sirius Technical Application Notes, vol. 2, p. 109 (1995). Sirius Analytical Instruments, Ltd., Forest Row, East Sussex, RH18	
	COOH	2.55 3.42	U U	-H -H			5DW, UK. Craig; N&K Anon.	

Appei	ndix B	(contin	ued)
-------	--------	---------	------

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2312	Tiotidine (C ₁₂ H ₁₈ N ₆ S ₂) $H_{2}N \xrightarrow{NH} (S \xrightarrow{N} (N \xrightarrow{N}$	6.80	U	+H	potentio		Shankley NP, Black JW, Ganellin CR and Mitchell RC, <i>Br. J. Pharmacol.</i> , 94 , 264–274 (1988). NB: See Ranitidine for details. Also cited in Craig.
2313	Tobramycin (C ₁₈ H ₃₇ N ₅ O ₉) HOCH ₂ HO HO H ₂ N HO H ₂ N HO H ₂ N HO H ₂ N HO H ₂ N H ₂ N H ₂ N	6.7 8.3 9.9	U U U	+H +H +H			 Dash AK, Tobramycin, APDS, 24, 579–613 (1996). Albert A and Serjeant EP, The determination of ionization constants, 3rd Edn., Chapman and Hall, NY 174 (1984). NB: Raymond GG and Born JL, An updated pK_a listing of medicinal compounds, Drug Intel. Clin. Pharm., 20, 683–686 (1986) reported four pK_a values (6.2, 7.4, 7.6, and 8.6).
2314 2315	Tocainide Tolamolol (C ₂₀ H ₂₆ N ₂ O ₄) $H_{2}N_{4} \xrightarrow{CH_{3}} H_{2}N_{4} \xrightarrow{CH_{3}} H_{2} CH_{3$	7.54 7.90	U U	+H +H			 Craig Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave- class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. 275: Barbato F, Caliendo G, LaRotonda MI, Morrica P, Silipo C and Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta- adrenoceptor blocking agents, <i>Farmaco</i>, 45, 647–663 (1990).

2316	Tolamolol	7.94	U	+H			 Hinderling PH, Schmidlin O and Seydel JK, Quantitative relationships between structure and pharmacokinetics of beta- adrenoceptor blocking agents in man, J. Pharmacokin. Biopharm., 12, 263–287 (1984).
2317	Tolazamide	3.1	U	-H			Craig; N&K Avery
2210	m 11 / 1	5.7	U	+H			
2318	Tolbutamide	5.43 5.32	U U	-H -H	spectro soly/pH	t = 25 t = 37.5	Forist AA and Chulski T, pH- solubility relations for 1-butyl-3- (p-tolylsulfonyl)urea (Orinase) and its metabolite, 1-butyl-3- (p-carboxyphenylsulfonyl)urea, Metabolism, 5, 807–812 (1956). NB: The metabolite was found to have $pK_a = 3.54$ at 37.5 °C by the solubility method. See also Glibenclamide for further discussion. See also Beyer WF, Jensen EH, Tolbutamide, <i>APDS</i> , 3, 513–543 (1974).
2319	Tolterodine (C ₂₂ H ₃₁ NO) OH OH $CH(CH_3)_2$ CH_3	9.8	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. 302: Detrol [®] LA Capsules Monograph. Physician's Desk reference, 2001. On-line Version. Medical Economics Company, Montvale NJ, 2001; potentiometric titration.
2320	Tramazoline (C ₁₃ H ₁₇ N ₃)	10.66	U	+H			Craig

Appendix	B	(continued)

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; l or c M	Comments and Reference(s)
2321	Tranexamic acid (C ₈ H ₁₅ NO ₂) H H ₂ N H	4.3 10.6	U U	-H +H			N&K S&R
2322	Tranylcypromine (C ₉ H ₁₁ N)	8.2	U	+H			Craig; N&K Ritschel gave 8.2; ref. SKF NB: See also Abdel-Aleem H, El-Ashmawy MB, Belai F, El-Amam AA and Brittain HG, Tranylcypromine Sulfate, <i>APDS</i> , 25 , 501–533 (1997) (no specific
2323	Trazodone	6.79	U	+H	potentio		reference). Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave- class-out statistics, <i>J. Med. Chem.</i> , 47 , 1242–1250 (2004). Ref. not
2324	Triamterene (C ₁₂ H ₁₁ N ₇) H ₂ N N N NH ₂ N NH ₂	6.2	U	+H			given: Potentiometric titration. Craig; Clarke, p. 1037 N&K Ritschel gave 6.2; ref. Smith, Kline & French.
2325	Trichloromethiazide	8.6	U	-H			Craig; Foye 3rd; see Azatadine from N&K Anon.

2326	Trifluoperazine	4.10 8.36	U U	+H +H	potentio		Trifluop APDS, 9 The appropriate the properties of the properties of the properties of the the properties of the properties	arren, RJ, Zarembo JE, berazine hydrochloride, 9 , 544-579 (1980). arent pK_{a1} and pK_{a2} have termined using ric and solubility ements. As reported by f these investigators, the ination of the pK_a of niazines, in general, are t to obtain because of toor water solubility. Thus of the term apparent pK_a . er, Green, using ty measurements, did confirm that apparent t trifluoperazine is imately 8.1–confirming ilts obtained by ric measurements."
						pK _{a1}	pK _{a2}	Procedure (reference)
						3.9	8.4	Titrimetric; Chatten LG and Harris LE, Anal. Chem., 34 , 1495–1501 (1962).
						3.9	8.1	Titrimetric; Murthy KS and Zografi G, J. Pharm. Sci., 59 , 1281–1285 (1970).
						4.10	8.36	Titrimetric; Sorby DL, Plein EM and Benmaman D, J. Pharm. Sci., 55 , 785–794 (1966).
						-	8.1	Solubility; Green AL, J. Pharm. Pharmacol., 19 , 10–16 (1967). NB: See Amitriptylline for details.
						_	8.3	TLC; Kraus L and Dumont E, J. Chromatog., 56 , 159–162 (1971).

pendix B (continued) 616

ע	Арр

No.	Name	pK _a value(s)	Data quality	lonization type N	Conditions Aethod t°C; I or c M	Comments and Reference(s)
2327	Trifluoperazine	8.1	U	+H		Zografi G and Munshi MV, Effect of chemical modification on the surface activity of some phenothiazine derivatives, J. Pharm. Sci., 59 , 819–822 (1970) cited in Ritschel.
2328	5-Trifluoromethyl-2'-deoxyuridine (C ₁₀ H ₁₁ F ₃ N ₂ O ₅) $(C_{10}H_{11}F_3N_2O_5)$	7.85	U	-H		Nester HJ and Garrett ER, Prediction of stability in pharmaceutical preparations XV, Kinetics of hydrolysis of 5-trifluoromethyl- 2'-deoxyuridine, <i>J. Pharm. Sci.</i> , 1117–1125 (1968). Cited in Ritschel.
2329	Triflupromazine	9.45	U	+H		 Florey K, Triflupromazine hydrochloride, <i>APDS</i>, 2, 523–550 (1973). NB: <i>APDS</i>, 5, 557: Erratum. "The pK_a of 6.5 as listed in volume 2, p. 533 is in error. Reexamination by Dr. H. Jacobson gave a pK_a value of 9.45, in reasonable agreement with values determined by references 8 and 9.
2330	Triflupromazine	9.2	U	+H		Zografi G, Munshi MV, Effect of chemical modification on the surface activity of some phenothiazine derivatives, <i>J. Pharm. Sci.</i> , 59 , 819–822 (1970)

J. Pharm. Sci., **59**, 8 cited in Ritschel. 2(1970);

2331	Trimeprazine (methylpromazine) (C ₁₈ H ₂₂ N ₂ S) $(CH_{3})_{2}$ $(CH_{3})_{2}$ $(CH_{3})_{2}$ $(CH_{3})_{2}$	9.4	U	+H			W&G: Hulshoff and Perrin, 1976. NB: See Cyanopromazine for details.
2332 2333	Trimeprazine Trimethobenzamide (C ₂₁ H ₂₈ N ₂ O ₅) (CH ₃) ₂ NCH ₂ CH ₂ O + + + + + + + + + + + + + + + + + + +	9.00 8.27 ± 0.03	U U	+H +H	potentio	H ₂ O	Craig Blessel KW, Rudy BC and Senkowski BZ, Trimethobenzamide hydrochloride, <i>APDS</i> , 2 , 551–570 (1973). NB: Cited Motchane A, Hoffmann- La Roche Inc., unpublished data.
2334	Trimethoprim	7.6	U	+H			Hansen I, Nielsen ML, Heerfordt L, Henriksen B and Bertelsen S, Trimethoprim in normal and pathological human lung tissue, <i>Chemotherapy</i> , 19 (4), 221–234 (1973). "The concentration of trimethoprim in normal and in pathological human lung tissue was measured in 31 patients. The pK_a of 7.6 for trimethoprim implies that even small changes in the pH of the tissue in the acid direction will have a strong permeability- increasing effect on trimethoprim."
2335	Trimethoprim	7.2	U	+H			Trimenoprim. Kaplan SA, Weinfeld RE, Cotler S, Abruzzo CW and Alexander K, Pharmacokinetic profile of trimethoprim in dog and man, <i>J.</i> <i>Pharm. Sci.</i> , 59 , 358–363 (1970). NB: See also N&K.

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2336	Trimethoprim	7.26	U	+H	potentio, CZE/pH		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics, J. Med. Chem., 47, 1242–1250 (2004). Ref. not given: potentiometric titration; Capillary electrophoresis.
2337	Trimethoxy-3,4,5-phenylsulfonyl derivatives	7.1 to 7.6	U	+H			 Foussard-Blanpin O, Uchida- Ernouf G, Moreau R and Adam Y, Central depressant activity of some derivatives with trimethoxy-3,4,5-phenylsulfonyl groups, Ann. Pharm. Fr., 36, 581–586 (1978). "The central depressant activity of 11 synthetic derivatives, differing from one another only by the nature of the chain linked to trimethoxy-3,4, 5-phenylsulfonyl was studied in mice. It was shown that the most active molecules are a hydroxysulfone with a primary alcohol grouping and a low partition coefficient in an octanol/water system; and 3 aminosulfones with a nitrogen atom, a part of a piperidine cycle or substituted by alkyls and with log P close to 2 and pK_a ranging from 7.1 to 7.6."

2338	Trimipramine ($C_{20}H_{26}N_2$)	8.0	U	+H			McEvoy
	CH ₃ N(CH ₃) ₂						
2339	Trimipramine	9.24	U	+H	potentio		 Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave- class-out statistics, <i>J. Med. Chem.</i>, 47, 1242–1250 (2004). Ref. not given: potentiometric titration.
2340	Tripelennamine	4.20 8.71	U U	+H +H			Craig; N&K Chatten LG (ed.), Pharmaceutical Chemistry, vol. 1, Dekker, New York, pp. 85–87 (1966); Tolstoouhov.
2341	Tripelennamine	8.3	U	+H			Ritschel: Robson JM and Stacey RS, Recent advances in pharmacology, 4th Edn., Little Brown and Co., Boston, p. 108 (1968).
2342	Tripelennamine	3.92 8.96	A U	+H +H	potentio	H_2O t = 25 c = 0.002 to 0.01	 W&G: Lordi NG and Christian JE, Physical properties and pharmacological activity: Antihistaminics, J. Am. Pharm. Ass. Sci. Edn., 45, 300–305 (1956). See Chlorpheniramine (no. 1704) for details.
2343	Triprolidine	3.6 9.3	U U	+H +H			Benezra SA and Yang C, Triprolidine hydrochloride, <i>APDS</i> , 8 , 509–528 (1979). Cited Morgan TA, Burroughs Wellcome Co., personal communication . NB: Craig gave only one value (6.4, +H).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2344	Triprolidine	~6.5	U	+H			DeAngelis RL, Kearney MF and Welch RM, Determination of triprolidine in human plasma by quantitative TLC, J. Pharm. Sci., 66 , 841–843 (1977).
2345	Troleandomycin (C ₄₁ H ₆₇ NO ₁₅) H ₃ C $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	6.6	U	+H			Craig; N&K Merck 9.
2346	Tromethamine	8.10	U	+H			Ritschel: Bruice TC and York JL, JACS, 83, 1382–1387 (1961); cited in Brooke D, Guttman DE, Complex formation influence on reaction rate. IV. Studies on the kinetic behaviour of 3-carbethoxy-1-pyridinium cation, J. Pharm. Sci., 57, 1677–1684 (1968).
2347	Tropacocaine	4.32	U	+H			Ritschel: NB: This is a p K_b value. The p K_a value (assuming it is measured at 25 °C) = 9.69. Cited from <i>Merck</i> 8th Edn., p. 1083.
2348	Tropacocaine	9.68	U	+H			 W&G: Kolthoff IM, The dissociation constants, solubility product and titration of alkaloids, <i>Biochem. Z.</i>, 162, 289–353 (1925); Christophers SR, <i>Trans. Farad. Soc.</i>, 39, 333–338

(1943).

2349	DL-Tropic acid	4.20	U	-Н			Ritschel: Randinitis EJ, Barr M, Wormser HC and Nagwekar JB, Kinetics of urinary excretion of D-(-)-mandelic acid and its homologs. I. Mutual inhibitory effect of D-(-)-mandelic acid and its certain homologs on their renal tubular secretion in rats, J. Plurm. Sci., 59, 806–812 (1970). NB: See Mandelic acid (no. 762) for details.
2350	Tropicamide ($C_{17}H_{20}N_2O_2$)	5.3	U	+H	potentio		Blessel KW, Rudy BC and Senkowski BZ, Tropicamide, APDS, 3 , 565–580 (1974). NB: No
	Et N CH ₂ OH	5.2	U	+H	spectro		references given.
2351	Tropicamide	5.25	U	+H	potentio		N&K APDS, 3 (see no. 2350)
2352	Tyramine ($C_8H_{11}NO$)	9.30	U	+H, -H			Craig
	HO-CH ₂ CH ₂ NH ₂	10.9	U	-H, +H			
2353	Tyramine	9.5	U	+H, −H			Lewis GP, The importance of
		10.8	U	-H, +H			ionization in the activity of sympathomimetic amines, <i>Br. J. Pharmacol.</i> , 9 , 488–493 (1954); cited in W&G.
2354	Uracil (C ₄ H ₄ N ₂ O ₂)	9.21 ± 0.01	U	-H	potentio	H ₂ O	Sirius Technical Application
		13.28 ± 0.01	U	-H		t = 25.0 I = 0.16 (KCl)	Notes, vol. 2, p. 6 (1995). Sirius Analytical Instruments Ltd., Forest Row, East Sussex, RH18 5DW, UK.
	\/	9.0	U	-H			Ritschel: Nestler HJ and Garrett
		13.0	U	—Н			ER, Prediction of stability in pharmaceutical preparations XV, Kinetics of hydrolysis of 5-trifluoromethyl- 2'-deoxyuridine, <i>J. Pharm. Sci.</i> , 1117–1125 (1968).

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2355	Urea (CH ₄ N ₂ O) O $\xrightarrow{NH_2}$ NH ₂	0.18	U	+H			McLean WM, Poland DM, Cohon MS, Penzotti SC and Mattocks AM, Effect of tris (hydroxymethyl) aminomethan on removal of urea by peritonee dialysis, J. Pharm. Sci., 56 , 1614–1621 (1967). Cited in W&C
2356	Uric acid (C ₅ H ₄ N ₄ O ₃) HN HN HN HN HN HN HN HN H	5.47 ± 0.07	U	-H	potentio	H ₂ O t = 25	Bernoulli AL and Loebenstein A, Dissociation constants of uric acid, <i>Helv. Chim. Acta</i> , 23 , 245–247 (1940). Used a glass electrode with a salt bridge. Cited in Kortum, ref. B25.
	Or N. H.	10.3	U	-Н			See also W&G: White A, et al., Principles of Biochemistry, McGraw-Hill, NY, p. 184 (1968)
2357	Venlafaxine (C ₁₇ H ₂₇ NO ₂) N(CH ₃) ₂ OH CH ₃ O	9.5	U	+H	potentio		Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J. Med Chem., 47, 1242–1250 (2004). Re 292: Dallet P, Labat L, Richard M, Langlois MH and Dubost JI A reversed phase HPLC metho development for the separation of new antidepressants, J. Liq. Chrom. Rel. Technol., 25, 101–11 (2002): potentiometric titration.
2358	Verapamil	8.6	U	+H	potentio	H ₂ O	Chang ZL, Verapamil, APDS, 17, 643–674 (1988). NB: No reference given. Extrapolated from MeOH-water mixtures. Solubility-pH data (Yunker M and Woodward S, Abbott Labs, personal communication) with the standard solubility-pH dependence equation gave a pK

dependence equation gave a pK_a value of 9.06 \pm 0.27.

2359	Verapamil	8.92	U	+H	CZE/pH	H_2O t = 25 I = 0.1	Lombardo F, Obach RS, Shalaeva MY and Gao F, Prediction of human volume of distribution values for neutral and basic
		8.92 ± 0.03	U	+Η	partition	H_2O $t = 25.0 \pm 0.1$ I = 0.0315	drugs. 2. Extended data set and leave-class-out statistics, <i>J. Med.</i> . <i>Chem.</i> , 47 , 1242–1250 (2004). Ref. 304: Hasegawa J, Fujita T, Hayashi Y, Iwamoto K and Watanabe J, pK _a determination of verapamil by liquid-liquid partition, <i>J. Pharm. Sci.</i> , 73 , 442–445 (1984). At 31 °C, the value was 8.79, and at 37 °C, the value was 8.79, and at 37 °C, the value was 8.68; 305: Ishihama Y, Oda Y and Asakawa N, Microscale determination of dissociation constants of multivalent pharmaceuticals by capillary electrophoresis, <i>J. Pharm. Sci.</i> , 83 , 1500–1507 (1994).
2360	Vidarabine (C ₁₀ H ₁₃ N ₅ O ₄)	3.55	Α	+H (N1)	potentio	H ₂ O	Hong W, Chang T and Daly RE,
	NH2 N N HOCH2 OH	11.4	U	-H (OH)		<i>t</i> = 20 <i>I</i> = 0.1 (KCl)	 Vidarabine, APDS, 15, 647–672 (1986). NB: Craig gave 3.5, 12.5. 8. Sober HA (ed.), Handbook of Biochemistry, 2nd Edn., CRC, Cleveland OH (1970) J5. 9. Serjeant EP, Dempsey B, Ionisation Constants of Organic Acids in Aqueous Solution, IUPAC, Pergamon Press, Oxford, 561 (1979). 10. Martin RB and Mariam YH, Interactions between metal ions and nucleic bases, nucleosides, and nucleotides in solution, Met. Ions Biol. Syst., 8, 57–124 (1979). 11. Martell AE and Schwarzenbach J, Helv. Chim. Acta, 39, 653–661 (1956). NB: Gave pK_{a1} = 3.55 ± 0.02 for adenosine by potentiometry at I = 0.1 M (KCI) and t = 20°C.

No.	Name	pKa value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2361	Viloxazine (C13H19NO3)	8.1	U	+H			 Wallenfels K and Sund H, Mechanism of hydrogen transfe with pyridine nucleotides. III. Binary and ternary zinc complexes as models for enzyme-coenzyme bonds, <i>Biochem. Z.</i>, 329, 41–47 (1957). Gonnella NC, Nakanishi H, Holtwick JB, <i>et al.</i>, Studies of tautomers and protonation of adenine and its derivatives by nitrogen-15 nuclear magnetic resonance spectroscopy, <i>JACS</i>, 105, 2050–2055 (1983). NB: Gav pK_{a1} = 4.1 ± 0.1 and pK_{a2} = 10.1 ± 0.2. Supports the current assignments. Craig
	O OCH ₂ CH ₃						
2362	Vinblastine	5.0 7.0	U U	+H +H	potentio	66% DMF/ H ₂ O	Burns JH, Vinblastine sulfate, <i>APDS</i> , 1 , 450 (1972). NB: Beer CT, Cutts JH and Noble RL, U Pat. 3,097,137 July 9, 1963. The latest version of ACD/pK _a (ACD Labs, Toronto, Canada) gave the following values for vinblastine (applicable to wate at 25 °C): 7.64 \pm 0.60 (catharanthine 2° alicyclic nitrogen); 5.62 \pm 0.70 (vindolii 3° alicyclic nitrogen); 1.23 \pm 0. (vindoline 2,3-dihydroindole). The corresponding values for

vincristine (applicable to water

2363	Viomycin (C ₂₅ H ₄₃ N ₁₃ O ₁₀) $H_2^N \rightarrow O$ $H_N \rightarrow H_N$ $H_N \rightarrow H_1$ $H_N \rightarrow H_2$ $H_N \rightarrow H_2$ $H_N \rightarrow H_2$ $H_N \rightarrow H_2$ $H_N \rightarrow H_2$ $H_1 \rightarrow H_2$ $H_2 \rightarrow H_2$ $H_1 \rightarrow H_2$ $H_2 \rightarrow H_2$ $H_1 \rightarrow H_2$ $H_2 \rightarrow H_2$	8.2 10.3	U U	+H +H, –H		(catharanthine 2° alicyclic nitrogen); 5.54 ± 0.70 (vindoline 3° alicyclic nitrogen); -2.95 ± 0.60 (catharanthine indole). N&K Merck 9. ACD/pK _a suggests >14 for the guanidine, 10.3 for the terminal amino, 10.3 for the -OH adjacent to guanidine, 9.9 for the amide nitrogen included in the conjugated system, 8.8 for the 2° -NH ₂ group. All other functionalities are predicted to be outside the range 0 to 14.
2364	Viomycin	2.8 5.87 13.4	U U U	? ? ?		Ritschel cited Dyer JR, Hayes HB, Miller EG, Jr, Chemistry of Viomycin, presented at the Third Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington (Oct 28–30), 1963. NB: The 2.8 and 5.87 values do not correspond to any of the p K_a values estimated by ACD/p K_a , but may be p K_b values corresponding to the two amino groups. The value of 13.4 may be the p K_a for the guanidine function.
2365	Warfarin	5.0	U	-H	<i>t</i> = 20.0	Babhair SA, Tariq M and Al-Badr AA, Warfarin, <i>APDS</i> , 14 , 423-450 (1985). NB: BPC, p. 990. May be from O'Reilly RA, Nelson E and Levy G. Physicochemical and physiologic factors affecting the absorption of warfarin in man. <i>J. Pharm. Sci</i> , 55 , 435–437 (1966).

at 25 °C) are: 7.64 \pm 0.60

Append	lix B (continued)	1
--------	---------	------------	---

No.	Name	pK _a value(s)	Data quality	lonization type	Method	Conditions t°C; I or c M	Comments and Reference(s)
2366	Warfarin	5.5	U	-H			 Robinson DS, Benjamin DM and McCormack JJ, Interaction of warfarin and nonsystemic gastrointestinal drugs, <i>Clin.</i> <i>Pharmacol. Ther.</i>, 12, 491–495 (1971). "Interactions between warfarin and cholestyramine were studied in 6 normal subjects <i>In vitro</i> experiments demonstrated significant binding of warfarin to cholestyramine at a pH above its pK_a of 5.5."
2367	Xanthine (C ₅ H ₄ N ₄ O ₂) HNN HNN HNN HNN HNN HNN HNN HNN HNNN HNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	9.95	U	-H			 Cohen JL and Connors KA, Stability and structure of some organic molecular complexes in aqueous solution, <i>J. Pharm. Sci.</i>, 59, 1271–1276 (1970); cited in Ritschel.
2368	Zimeldine (zimelidine) (C ₁₆ H ₁₇ BrN ₂) Br N H $CH_2N(CH_3)_2$	3.8 8.74	U U	+H +H			Craig

INDEX

ALPHABETICAL INDEX OF DRUGS OR DRUG RELATED COMPOUNDS FOUND IN PK_A DATABASE FILES

Appendix A – pK_a values found with significant data quality information Appendix B – pK_a values found with little or no data quality information

Compound Name	Appendix A	Appendix B
А		
Acebutolol (C ₁₈ H ₂₈ N ₂ O ₄)	1167	1523-1526
Acenocoumarin ($C_{19}H_{15}NO_6$)	637	
Acenocoumarol ($C_{19}H_{15}NO_6$)		1527
Acepromazine ($C_{19}H_{22}N_2OS$)	16	
7-Acetamidonitrazepam ($C_{17}H_{13}N_3O_4$)	205	
Acetaminophen ($C_8H_9NO_2$)	1–7	1528-1530
Acetanilide (C_8H_9NO)	8–9	1531
Acetarsone ($C_8H_{10}AsNO_5$)	10	
Acetazolamide ($C_4H_6N_4O_3S_2$)	11	1532-1535
Acetic acid ($C_2H_4O_2$)	12,252	
Acetohydroxamic acid ($C_2H_5NO_2$)		1536
N^2 -Acetylacyclovir ($C_{10}H_{13}N_5O_4$)	20	
N-Acetylaminosalicylic acid (C ₉ H ₉ NO ₄)	13	
3-Acetylazuloic acid ($C_{13}H_{10}O_3$)	115	
α-Acetylmethadol (Levomethadyl acetate)	14	1537
$(C_{23}H_{31}NO_2)$		
6-Acetylmorphine (C ₁₉ H ₂₁ NO ₄)	15	
N-Acetylnorfloxacin ($C_{18}H_{20}FN_3O_4$)	1224	
N-(3'-Acetylphenyl)anthranilic acid ($C_{15}H_{13}NO_3$)	552-553	
Acetylpromazine (Acepromazine) (C ₁₉ H ₂₂ N ₂ OS)	16	
Aconitine (C ₃₄ H ₄₇ NO ₁₁)	17	
Acridine derivatives	18–19	
Acridine orange ($C_{17}H_{19}N_3$)	18	
Acridine yellow ($C_{15}H_{15}N_3$)	18	
Acriquine	9	
Acyclovir ($C_8H_{11}N_5O_3$)	20–21	1538
Adenine ($C_5H_5N_5$)	22, 241	
Adenosine ($C_{10}H_{13}N_5O_4$)	23	1539
Adinazolam (C ₁₉ H ₁₈ ClN ₅)	24	
Adrenaline ($C_9H_{13}NO_3$)	25, 497–502	

Adriamycin ($C_{27}H_{29}NO_{11}$) Ajmaline ($C_{20}H_{26}N_2O_2$)	469-470	1821–1822 1540
Ala-Ile $(C_9H_{18}N_2O_3)$	453	
Ala-Leu $(C_9H_{18}N_2O_3)$	453	
Ala-Phe $(C_{12}H_{16}N_2O_3)$	453 26	
Albendazole sulphoxide ($C_{12}H_{15}N_3O_3S$)	26 27, 1260	15/1
Albuterol (Salbutamol) (C ₁₃ H ₂₁ NO ₃) Alclofenac (C ₁₁ H ₁₁ ClO ₃)	27, 1200	1541 1542–1543
Alfentanil ($C_{21}H_{32}N_6O_3$)		1542 - 1543 1544 - 1545
Alginic acids		1544-1545
Allobarbital ($C_{10}H_{12}N_2O_3$)	158–160	1540
Allopurinol $(C_5H_4N_4O)$	96	1547-1548
Alphaprodine ($C_{16}H_{23}NO_2$)	20	1547 1540
Alprenolol ($C_{15}H_{23}NO_2$)	28	1550
Altretamine (hexamethylmelamine) ($C_9H_{18}N_6$)	20	1551
Alypine (Amydricaine) ($C_{16}H_{26}N_2O_2$)	398	1001
Amantadine ($C_{10}H_{17}N$)	29–30	1552–1555
Amdinocillin (Mecillinam) ($C_{15}H_{23}N_3O_3S$)	31	1556
Amifloxacin ($C_{16}H_{19}FN_4O_3$)	1225-1226	
Amikacin ($C_{22}H_{43}N_5O_{13}$)		1557
Amiloride $(C_6H_8CIN_7O)$	32–33	1558
Aminacrine $(C_{13}H_{10}N_2)$		1559
Amino acid esters	34	
Amino acids		1560
2-Aminoacridine ($C_{13}H_{10}N_2$)	19	
3-Aminoacridine ($C_{13}H_{10}N_2$)	18	
9-Aminoacridine ($C_{13}H_{10}N_2$)	19	1559
4-Aminobenzoic acid (C ₇ H ₇ NO ₂)	35–39	1561–1562
γ -Aminobutyric acid (GABA) (C ₄ H ₉ NO ₂)	378	
ϵ -Aminocaproic acid (C ₆ H ₁₃ NO ₂)		1563
1'-Aminocyclopentanecarboxamidopenicillin	1511	
$(C_{14}H_{21}N_3O_4S)$	(a .	
3-Amino-5-heptafluorobutyramido-1,2,4-triazole	602	
(Guanazole prodrug) ($C_6H_4F_7N_5O$)		
4-Aminohippuric acid $(C_9H_{10}N_2O_3)$		1564–1565
2-Amino-4-[4'-hydroxyphenyl]butane (C ₁₀ H ₁₅ NO)	41	
2 Aming $E[A]$ had a sumb anally an tang (C, U, NO)	41	
2-Amino-5-[4'-hydroxyphenyl]pentane ($C_{11}H_{17}NO$)	42	
1'-Amino-3'-		
1'-Amino-3'- methylcyclopentanecarboxamidopenicillin	42	
1'-Amino-3'- methylcyclopentanecarboxamidopenicillin (C ₁₅ H ₂₃ N ₃ O ₄ S)	42 1512	
1'-Amino-3'- methylcyclopentanecarboxamidopenicillin (C ₁₅ H ₂₃ N ₃ O ₄ S) 2-Amino-2-methyl-3-hydroxyoctane (C ₈ H ₂₁ NO)	42 1512 43	
1'-Amino-3'- methylcyclopentanecarboxamidopenicillin (C ₁₅ H ₂₃ N ₃ O ₄ S) 2-Amino-2-methyl-3-hydroxyoctane (C ₈ H ₂₁ NO) 7-Aminonitrazepam (C ₁₅ H ₁₂ N ₄ O ₃)	42 1512 43 205	1566
 1'-Amino-3'- methylcyclopentanecarboxamidopenicillin (C₁₅H₂₃N₃O₄S) 2-Amino-2-methyl-3-hydroxyoctane (C₈H₂₁NO) 7-Aminonitrazepam (C₁₅H₁₂N₄O₃) 6-Aminopenicillanic acid (C₈H₁₂N₂O₃S) 	42 1512 43 205 40	1566 1569
1'-Amino-3'- methylcyclopentanecarboxamidopenicillin (C ₁₅ H ₂₃ N ₃ O ₄ S) 2-Amino-2-methyl-3-hydroxyoctane (C ₈ H ₂₁ NO) 7-Aminonitrazepam (C ₁₅ H ₁₂ N ₄ O ₃)	42 1512 43 205	1566 1569

2-Amino-4-phenylbutane ($C_{10}H_{15}N$)	44	
1-Amino-1-phenylethane ($C_8H_{11}N$)	973	
2-Amino-5-phenylpentane ($C_{11}H_{17}N$)	45	15/5
Aminophylline ($C_{16}H_{24}N_{10}O_4$)		1567
Aminopterin ($C_{19}H_{20}N_8O_5$)		1568
Aminopyrine (aminophenazone) ($C_{13}H_{17}N_3O$)	46-47	1569
4-Aminoquinaldine ($C_9H_8N_2$)	48	
2-Aminoquinoline ($C_9H_8N_2$)	48	
4-Aminosalicyclic acid (C ₇ H ₇ NO ₃)	49	1570
5-Aminosalicyclic acid ($C_7H_7NO_3$)	50	
Aminothiadiazole ($C_2H_3N_3S$)		1571
Amiodarone ($C_{25}H_{29}I_2NO_3$)	51–55	
Amitriptyline ($C_{20}H_{23}N$)	56–59	
Amizil	9	
Amlodipine (C ₂₀ H ₂₅ ClN ₂ O ₅)		1572
Ammonia (H ₃ N)	60	
Amobarbital (C ₁₁ H ₁₈ N ₂ O ₃)	145-148	
Amoxapine (C ₁₇ H ₁₆ ClN ₃ O)		1573
Amoxicillin ($C_{16}H_{19}N_3O_5S$)	61–66	1574
Amphetamine ($C_9H_{13}N$)	67–68	1575
Amphetamine, 4-hydroxy ($C_9H_{13}NO$)	69	
Amphetamine, 3-methoxy ($C_{10}H_{15}NO$)	70	
Amphetamine, 4-methoxy ($C_{10}H_{15}NO$)	71	
Amphotericin B ($C_{47}H_{73}NO_{17}$)		1576–1577
Ampicillin ($C_{16}H_{19}N_3O_4S$)	72–76	
Amydricaine (Alypine) ($C_{16}H_{26}N_2O_2$)	398	
Amylobarbitone ($C_{11}H_{18}N_2O_3$)	145-148	
Amylocaine ($C_{14}H_{21}NO_2$)	398	
n-Amylpenilloic acid ($C_{13}H_{24}N_2O_3S$)	77–78	
Anagrelide ($C_{10}H_7$ (Cl_2N_3O)	79	
Anhydro-4-epitetracycline ($C_{22}H_{22}N_2O_7$)	491-492	
Anhydrochlortetracycline ($C_{22}H_{21}ClN_2O_7$)	80	
Anileridine ($C_{22}H_{28}N_2O_2$)		1578
Anisindione $(C_{16}H_{12}O_3)$	81	
Antazoline $(C_{17}H_{19}N_3)$		1579–1581
Antifebrin (C_8H_9NO)	8–9	1531
Antipyrine $(C_{11}H_{12}N_2O)$	9	1582–1584
Apazone ($C_{16}H_{20}N_4O_2$)	108-109	1002 1001
Apoatropine	652	
Apomorphine ($C_{17}H_{17}NO_2$)	82-84	
Apressine	9	
Aprindine ($C_{22}H_{30}N_2$)	85	
Aprobarbital ($C_{10}H_{14}N_2O_3$)	152–154	
Arecaidine ($C_7H_{11}NO_2$)	86	
Arecaidine methyl ester ($C_8H_{13}NO_2$)	87	
/ (C811/31/02)	07	

Arecoline ($C_8H_{13}NO_2$)	88-89	
Arsthinol ($C_{11}H_{14}AsNO_3S_2$)	10	
1-Arylpiperazine derivatives	90	1 - 0 -
Ascorbic acid $(C_6H_8O_6)$	91–93	1585
Aspartame ($C_{14}H_{18}N_2O_5$)	94	1504 1505
Aspirin ($C_9H_8O_4$)	95–97	1586–1587
Astemizole ($C_{28}H_{31}FN_4O$)	98	
Atenolol ($C_{14}H_{22}N_2O_3$)	99–102, 1167	1588–1590
Atomoxetine ($C_{17}H_{21}NO\cdot HCl$)		1591
Atomoxetine (C ₁₇ H ₂₂ ClNO)		1591
Atorvastatin ($C_{33}H_{35}FN_2O_5$)	103	
Atrazine (C ₈ H ₁₄ ClN ₅)	104	1592
Atropine (C ₁₇ H ₂₃ NO ₃)	9, 105–107	1593–1596
Atropine (non-aqueous titration) ($C_{17}H_{23}NO_3$)	194	
Azapropazone (apazone) ($C_{16}H_{20}N_4O_2$)	108-109	
Azatadine ($C_{20}H_{22}N_2$)		1597
Azathioprine ($C_9H_7N_7O_2S$)	110	1598
Azelastine ($C_{22}H_{24}CIN_3O$)	111–112	
Azithromycin ($C_{38}H_{72}N_2O_{12}$)	113	
Azlocillin ($C_{20}H_{23}N_5O_6S$)	110	1599
Aztreonam ($C_{13}H_{17}N_5O_8S_2$)	114	1077
Azuloic acid $(C_{11}H_8O_2)$	115	
B	115	
Bacampicillin (C ₂₁ H ₂₇ N ₃ O ₇ S)		1600
		1600
Baclofen ($C_{10}H_{12}CINO_2$)	117	1001
Bamipine $(C_{19}H_{24}N_2)$	116	1(00
Barbital ($C_8H_{12}N_2O_3$)	126–131	1602
Barbituric acid ($C_4H_4N_2O_3$)	117	
Barbituric acid, 5-allyl-5-ethyl (C ₉ H ₁₂ N ₂ O ₃)	151	
Barbituric acid, 5-allyl-5-isopropyl (aprobarbital) (C ₁₀ H ₁₄ N ₂ O ₃)	152–155	
Barbituric acid, 5-allyl-5-isobutyl ($C_{11}H_{16}N_2O_3$)	155–156	
Barbituric acid, 5-allyl-5-(1-methylbutyl) (secobarbital) (C ₁₂ H ₁₈ N ₂ O ₃)	157	1608
Barbituric acid, 5-allyl-5-(1-methylbutyl)-2-thio (Thiamylal) (C ₁₂ H ₁₈ N ₂ O ₂ S)		1610
Barbituric acid, 5-allyl-5-(1-methylpent-2-ynyl)-N-		1609
methyl (methohexital) ($C_{14}H_{18}N_2O_3$) Barbituric acid, 5-allyl-5-(1-methylpropyl) (Talbutal)		1611
$(C_{11}H_{16}N_2O_3)$ Barbituric acid, 5-t-butyl-5-(3-methylbut-2-enyl)	164	
$(C_{13}H_{20}N_2O_3)$		
Barbituric acid, 5-cyclohex-1'-enyl-1,5-dimethyl (hexobarbital) ($C_{12}H_{16}N_2O_3$)	125	

Barbituric acid, $-1'$,5-spiro(cyclobutane) (C ₇ H ₈ N ₂ O ₃)	191	
Barbituric acid, -1',5-spiro(cyclohexane)	193	
$(C_9H_{12}N_2O_3)$		
Barbituric acid, -1',5-spiro(cyclopentane)	192	
$(C_8H_{10}N_2O_3)$		
Barbituric acid, -1',5-spiro(cyclopropane)	190	
$(C_6H_6N_2O_3)$		
Barbituric acid, 5,5-diallyl (allobarbital)	158–160	
$(C_{10}H_{12}N_2O_3)$	110	
Barbituric acid, 5,5-dibromo ($C_4H_2Br_2N_2O_3$)	118	
Barbituric acid, 5,5-dichloro ($C_4H_2Cl_2N_2O_3$)	119	1.00
Barbituric acid, 5,5-diethyl (barbital) ($C_8H_{12}N_2O_3$)	126–131	1602
Barbituric acid, 5,5-diethyl-1-benzoyl ($C_{15}H_{16}N_2O_4$)	132	
Barbituric acid, 5,5-diethyl-1-benzyl ($C_{15}H_{18}N_2O_3$)	132	
Barbituric acid, 5,5-diethyl-1-(2-bromobenzoyl)	132	
$(C_{15}H_{15}BrN_2O_4)$		
Barbituric acid, 5,5-diethyl-1-(3-bromobenzoyl)	132	
$(C_{15}H_{15}BrN_2O_4)$		
Barbituric acid, 5,5-diethyl-1-(4-bromobenzoyl)	132	
$(C_{15}H_{15}BrN_2O_4)$		
Barbituric acid, 5,5-diethyl-1-(4-chlorobenzyl)	132	
$(C_{15}H_{17}ClN_2O_3)$		
Barbituric acid, 5,5-diethyl-1-(2-methoxybenzoyl)	132	
$(C_{16}H_{18}N_2O_5)$		
Barbituric acid, 5,5-diethyl-1-(3-methoxybenzoyl)	132	
$(C_{16}H_{18}N_2O_5)$		
Barbituric acid, 5,5-diethyl-1-(4-methoxybenzoyl)	132	
$(C_{16}H_{18}N_2O_5)$		
Barbituric acid, 5,5-diethyl-1-methyl (metharbital)	132	1603-1604
$(C_9H_{14}N_2O_3)$		
Barbituric acid, 5,5-diethyl-1-(2-methylbenzoyl)	132	
$(C_{16}H_{18}N_2O_4)$		
Barbituric acid, 5,5-diethyl-1-(3-methylbenzoyl)	132	
$(C_{16}H_{18}N_2O_4)$	10-	
Barbituric acid, 5,5-diethyl-1-(4-methylbenzoyl)	132	
$(C_{16}H_{18}N_2O_4)$	102	
Barbituric acid, 5,5-diethyl-1-(4-nitrobenzyl)	132	
$(C_{15}H_{17}N_3O_5)$	102	
Barbituric acid, 5,5-diethyl-1-(4-nitrophenyl)	132	
$(C_{14}H_{15}N_3O_5)$	102	
Barbituric acid, 5,5-diethyl-1-phenyl ($C_{14}H_{16}N_2O_3$)	132	
Barbituric acid, 5,5-dimethyl ($C_6H_8N_2O_3$)	120–122	
Barbituric acid, 5,5-di-(3-methylbut-2-enyl)	120–122	
$(C_{14}H_{20}N_2O_3)$	105	
Barbituric acid, 1,5-dimethyl-5-ethyl ($C_8H_{12}N_2O_3$)	133	
baronanc acia, 1,5-anneary1-5-eary1 (C811 ₁₂ 1N2O3)	155	

Barbituric acid, 1,5-dimethyl-5-iso-propyl	133	
$(C_9H_{14}N_2O_3)$ Barbituric acid, 5,5-diphenyl ($C_{16}H_{12}N_2O_3$)	189	
Barbituric acid, 5-ethyl-5-n-butyl ($C_{16}H_{12}H_2O_3$)	137, 155	
Barbituric acid, 5-ethyl-5- <i>iso</i> -butyl (butabarbital)	137, 135	1605
$(C_{10}H_{16}N_2O_3)$	139	1005
Barbituric acid, 5-ethyl-5-sec-butyl ($C_{10}H_{16}N_2O_3$)	138	
Barbituric acid, 5-ethyl-5-(1,3-dimethylbutyl)	138	
$(C_{12}H_{20}N_2O_3)$		
Barbituric acid, 5-ethyl-5-methyl (C ₇ H ₁₀ N ₂ O ₃)	123	
Barbituric acid, 5-ethyl-5-(1-methylbut-1-enyl)	166–167	
$(C_{11}H_{16}N_2O_3)$		
Barbituric acid, 5-ethyl-5-(1-methylbutyl)	140–143,	
(pentobarbitone) ($C_{11}H_{18}N_2O_3$)	155	
Barbituric acid, 5-ethyl-5-(1-methylbutyl)-2-thio	144, 1436	1606–1607
(thiopentone) ($C_{11}H_{18}N_2O_2S$)		
Barbituric acid, 5-ethyl-5-(3-methylbutyl)	145–148	
(amobarbital; amylobarbitone) ($C_{11}H_{18}N_2O_3$)		
Barbituric acid, 5-ethyl-5-(3-methylbut-2-enyl)	162	
$(C_{11}H_{16}N_2O_3)$		
Barbituric acid, 5-ethyl-5-(4-methylpent-1-en-2-yl)	168	
$(C_{12}H_{18}N_2O_3)$		
Barbituric acid, 5-ethyl-5-(3-nitrophenyl)	186–187	
$(C_{12}H_{11}N_3O_5)$		
Barbituric acid, 5-ethyl-5-(4-nitrophenyl)	188	
$(C_{12}H_{11}N_3O_5)$		
Barbituric acid, 5-ethyl-5-phenyl (Phenobarbital)	173–184	1612–1613
$(C_{12}H_{12}N_2O_3)$		
Barbituric acid, 5-ethyl-5-phenyl-1-benzoyl	185	
$(C_{19}H_{16}N_2O_4)$		
Barbituric acid, 5-ethyl-5- <i>iso</i> -propyl ($C_9H_{14}N_2O_3$)	134–136	
Barbituric acid, 1-methyl-5,5-diallyl ($C_{11}H_{14}N_2O_3$)	133	
Barbituric acid, 1-methyl-5,5-di-n-propyl	133	
$(C_{11}H_{18}N_2O_3)$		
Barbituric acid, 1-methyl-5-ethyl-5-butyl	133	
$(C_{11}H_{18}N_2O_3)$		
Barbituric acid, 1-methyl-5-ethyl-5-phenyl (C ₁₃ H ₁₄ N ₂ O ₃)		1614
Barbituric acid, 5-methyl-5-(3-methyl-but-2-enyl)	161	
$(C_{10}H_{14}N_2O_3)$	101	
Barbituric acid, 5-methyl-5-(4-methylpent-1-en-2-yl)	169	
$(C_{11}H_{16}N_2O_3)$	10/	
Barbituric acid, 5-methyl-5-phenyl ($C_{11}H_{10}N_2O_3$)	170–171	
Barbituric acid, 5-methyl-5-phenyl-1-benzoyl	170 171	
$(C_{18}H_{14}N_2O_4)$	1/ =	
(~1014- 2~4/		

Barbituric acid, 1-methyl-5-propyl-5-iso-propyl (C ₁₁ H ₁₈ N ₂ O ₃)	133	
Barbituric acid, 5-methyl-5-iso-propyl ($C_8H_{12}N_2O_3$)	124	
Barbituric acid, 5-iso-propyl-5-(3-methylbut-2-enyl)	163	
$(C_{12}H_{18}N_2O_3)$		
Barbituric acids, N-methylated	133	
Bases (non-aqueous titrations)	194	
Bemegride ($C_8H_{13}NO_2$)		1615
Bencyclane ($C_{19}H_{31}NO$)	195	
Bendazol	9	
Bendroflumethiazide ($C_{15}H_{14}F_3N_3O_4S_2$)	196–197	
Beneperidol ($C_{22}H_{24}FN_3O_2$)		1616
Benidipine $(C_{28}H_{31}N_3O_6)$	198	
Benperidol ($C_{22}H_{24}FN_3O_2$)	_, ,	1616
Benzacine	9	1010
2-Benzenesulfanilamidopyrimidine ($C_{10}H_9N_3O_2S$)	199	
2-Benzenesulfonamidopyridine ($C_{10}H_9NO_2S$)	200	
Benzenesulfonamide ($C_6H_7NO_2S$)	200	
	201 201	
Benzenesulfonamide analogues		
1-(1,2-Benzisothiazol-3-yl)piperazine ($C_{11}H_{13}N_3S$)	90	1(18 1(10
Benzocaine ($C_9H_{11}NO_2$)	202–203	1617–1619
Benzocaine (non-aqueous titration)	194	
1,4-Benzodiazepines	204	
1,4-Benzodiazepine metabolites	205	
Benzoic acid ($C_7H_6O_2$)	206–212,	
	252, 649,	
	874	
Benzoic acid, 4-amino (C ₇ H ₇ NO ₂)	212	
Benzoic acid, 4-amino, diethylaminoethyl ester $(C_{13}H_{20}N_2O_2)$	212	
Benzoic acid, 4-bromo ($C_7H_5BrO_2$)	212	
Benzoic acid, 4-bromo, diethylaminoethyl ester	212	
(C ₁₃ H ₁₈ BrNO ₂)		
Benzoic acid, 4-chloro ($C_7H_5ClO_2$)	212	
Benzoic acid, diethylaminoethyl ester ($C_{13}H_{19}NO_2$)	212	
Benzoic acid, 4-chloro, diethylaminoethyl ester (C ₁₃ H ₁₈ ClNO ₂)	212	
Benzoic acid, 4-ethoxy ($C_9H_{10}O_2$)	212	
Benzoic acid, 4-ethoxy, diethylaminoethyl ester $(C_{15}H_{23}NO_2)$	212	
Benzoic acid, 4-N-ethylamino ($C_9H_{11}NO_2$)	212	
Benzoic acid, 4-(N-ethylamino), diethylaminoethyl	212	
ester ($C_{19}H_{24}N_2O_2$) Benzoic acid, 4-fluoro ($C_7H_5FO_2$)	212	

Benzoic acid, 4-fluoro, diethylaminoethyl ester	212	
$(C_{13}H_{18}FNO_2)$		
Benzoic acid, 4-hydroxy (C ₇ H ₆ O ₃)	212	
Benzoic acid, 4-hydroxy, diethylaminoethyl ester	212	
$(C_{13}H_{19}NO_3)$	010	
Benzoic acid, 4-methyl ($C_8H_8O_2$)	212	
Benzoic acid, 4-methyl, diethylaminoethyl ester (C ₁₄ H ₂₁ NO ₂)	212	
Benzoic acid, 4-nitro ($C_7H_5NO_4$)	212	
Benzoic acid, 4-nitro, diethylaminoethyl ester	212	
$(C_{13}H_{18}N_2O_4)$		
Benzoic acid, 4-substituted, diethylaminoethyl esters	212	
Benzoylecgonine ($C_{16}H_{19}NO_4$)	213	
Benzoylecgonine methyl ester (Cocaine)	214, 346–	1739–1744,
$(C_{17}H_{21}NO_4)$	347	1988
Benzoylhydrazine ($C_7H_8N_2O$)	699	
Benzphetamine ($C_{17}H_{21}N$)		1620
Benzquinamide ($C_{22}H_{32}N_2O_5$)	215	1621
Benztropine ($C_{21}H_{25}NO$)		1622
Benzylamphetamine ($C_{16}H_{19}N$)		1623
Benzyldesthiopenicillin	959	
D-(-)-Benzyllactic acid	762	
Benzylpenicillin (Penicillin G) (C ₁₆ H ₁₈ N ₂ O ₄ S)	217, 958– 959	
Benzylpenicilloic acid (C ₁₆ H ₂₀ N ₂ O ₅ S)	218–219	
Benzylpenicilloic acid α -benzylamide	220–221	
$(C_{23}H_{25}N_3O_4S)$		
Benzylpenilloic acid ($C_{15}H_{20}N_2O_3S$)	222	
Betahistine ($C_8H_{12}N_2$)		1624
Betaprodine ($C_{16}H_{23}NO_2$)		1625
Betaxolol ($C_{18}H_{29}NO_3$)		1626
Bethanidine ($C_{10}H_{15}N_3$)		1627
Bevantolol	1167	
Biscoumacetic acid ($C_{20}H_{12}O_8$)		1628
Bishydroxycoumarin ($C_{19}H_{12}O_6$)		1789
Bisoprolol ($C_{18}H_{31}NO_4$)	223	
Boric acid (H_3BO_3)	224	
Brequinar ($C_{23}H_{15}F_2NO_2$)	225	
Brinzolamide (C ₁₂ H ₂₁ N ₃ O ₅ S ₃) Bromazepam (C ₁₄ H ₁₀ BrN ₃ O)	226	1629–1630
3-Bromoazuloic acid ($C_{11}H_7BrO_2$)	115	1029-1030
Bromocresol green ($C_{21}H_{14}Br_4O_5S$)	227	
Bromocriptine ($C_{32}H_{40}BrN_5O_5$)		1631–1632
Bromodiphenhydramine ($C_{17}H_{20}BrNO$)		1633
r · · · · · · · · · · · · · · · · · · ·		

Bromophenol blue ($C_{19}H_{10}Br_4O_5S$)	228	
Bromothen ($C_{14}H_{18}BrN_3S$)		1634
8-Bromotheophylline ($C_7H_7BrN_4O_2$)	229	
Brompheniramine ($C_{16}H_{19}BrN_2$)	230	1635–1636
Brucine ($C_{23}H_{26}N_2O_4$)	231	1637
Bufuralol ($C_{16}H_{23}NO_2$)	1167	1638–1639
Bumetanide (C ₁₇ H ₂₀ N ₂ O ₅ S)	232–233	1640
Bunolol (levobunolol) (C ₁₇ H ₂₅ NO ₃)	1167	1641–1642
Bupivacaine ($C_{18}H_{28}N_2O$)	234–236	
Buprenorphine ($C_{29}H_{41}NO_4$)	237–238	
Bupropion ($C_{13}H_{18}CINO$)		1643
Burimamide (C ₉ H ₁₆ N ₄ S)		1644
Buspirone ($C_{21}H_{31}N_5O_2$)	239	
Butabarbital ($C_{10}H_{16}N_2O_3$)	139	1605
Butacaine ($C_{18}H_{30}N_2O_2$)		1645
Butaclamol ($C_{25}H_{31}NO$)		1646
Butamben ($C_{11}H_{15}NO_2$)		1647
Butanephrine ($C_{10}H_{15}NO_3$)	240	
Butorphanol ($C_{21}H_{29}NO_2$)	• •	1648–1649
Butyl 4-aminobenzoate ($C_{11}H_{15}NO_2$)	38	
Butylated hydroxytoluene ($C_{15}H_{24}O$)		1650
Butylparaben ($C_{11}H_{14}O_3$)	07 0	1651–1652
Butyric acid $(C_4H_8O_2)$	378	
γ -Butyrobetaine (GBB) (C ₇ H ₁₅ NO ₂)	378	
1-Butyryloxymethyl-5-fluorouracil	569	
C		
Caffeine ($C_8H_{10}N_4O_2$)	9, 241–243	1653
Camptothecin ($C_{20}H_{16}N_2O_4$)	244	1654
Candesartan cilexetil ($C_{33}H_{34}N_6O_6$)	245	
Cannabidiol ($C_{21}H_{30}O_2$)		1655
Capreomycin IA ($C_{25}H_{44}N_{14}O_8$)		1656
Capreomycin IB ($C_{25}H_{44}N_{14}O_7$)		1656
Captopril (C ₉ H ₁₅ NO ₃ S)	246	
Carbachol ($C_6H_{15}ClN_2O_2$)		1657
Carbenicillin ($C_{17}H_{18}N_2O_6S$)		1658
Carbenoxolone ($C_{34}H_{50}O_7$)	247–248	1659
Carbinoxamine ($C_{16}H_{19}ClN_2O$)	249	1660, 2188
β -Carboline alkaloids	2- 2	1907
Carbomycin A (Magnamycin A) ($C_{42}H_{67}NO_{16}$)	250	
Carbomycin B ($C_{42}H_{67}NO_{15}$)	250	1771
Carbonic acid (CH_2O_3)	251	1661
5-Carboxy-2'-deoxyuridine ($C_{10}H_{12}N_2O_7$)	050	1769
Carboxylic acids	252	17/0
5-Carboxyuracil ($C_5H_4N_2O_4$)	050	1769
Carbutamide (C ₁₁ H ₁₇ N ₃ O ₃ S)	253	

Carisoprodol (C ₁₂ H ₂₄ N ₂ O ₄)		1662
Carnitine $(C_7H_{15}NO_3)$	378	
Carpindolol ($C_{19}H_{28}N_2O_4$)		1663
Cefaclor $(C_{15}H_{14}ClN_3O_4S)$		1664
Cefadroxil $(C_{16}H_{17}N_3O_5S)$	254	
Cefamandole $(C_{18}H_{18}N_6O_5S_2)$		1665
Cefazaflur ($C_{13}H_{13}F_3N_6O_4S_3$)	255	
Cefazolin ($C_{14}H_{14}N_8O_4S_3$)	256	1666–1669
Cefixime $(C_{16}H_{15}N_5O_7S_2)$		1670
Cefoperazone ($C_{25}H_{27}N_9O_8S_2$)		1671
Cefotaxime ($C_{16}H_{17}N_5O_7S_2$)	257	
Cefoxitin $(C_{16}H_{17}N_3O_7S_2)$		1672
Cefroxadine ($C_{16}H_{19}N_3O_5S$)	258	
Ceftazidime $(C_{22}H_{22}N_6O_7S_2)$		1673
Ceftizoxime $(C_{13}H_{13}N_5O_5S_2)$		1674
Ceftriaxone ($C_{18}H_{18}N_8O_7S_3$)		1675–1676
Cefuroxime ($C_{16}H_{16}N_4O_8S$)		1677
Celiprolol ($C_{20}H_{33}N_3O_4$)		1678
Cellulose acetate phthalate		1679
Cephacetrile ($C_{13}H_{13}N_3O_6S$)		1680
Cephalexin ($C_{16}H_{17}N_3O_4S$)	259-262	1681-1682
Cephaloglycin (C ₁₈ H ₁₉ N ₃ O ₆ S)	263-265	
Cephaloridine ($C_{19}H_{17}N_3O_4S_2$)	266-267	
Cephalosporin derivative (C ₁₆ H ₁₇ N ₃ O ₇ S)	268	
Cephalosporin, 5-amino-5-carboxyvaleramido,	269	
O-acetyl (C ₁₇ H ₂₃ N ₃ O ₈ S)		
Cephalosporin, 5-amino-5-carboxyvaleramido,	269	
O-carbamoyl ($C_{16}H_{22}N_4O_8S$)		
Cephalosporin, 5-amino-5-carboxyvaleramido,	269	
7-methoxy, O-acetyl ($C_{18}H_{25}N_3O_9S$)		
Cephalosporin, 5-amino-5-carboxyvaleramido,	269	
7-methoxy, O-carbamoyl (C ₁₇ H ₂₄ N ₄ O ₉ S)		
Cephalosporin C (C ₁₆ H ₂₁ N ₃ O ₈ S)	270	
Cephalosporin C, N-chloroacetyl (C ₁₈ H ₂₂ ClN ₃ O ₉ S)	270	
Cephalosporin C, deacetoxy (C ₁₄ H ₁₉ N ₃ O ₇ S)	270	
Cephalothin ($C_{16}H_{16}N_2O_6S_2$)	271-272	1683
Cephapirin (C ₁₇ H ₁₇ N ₃ O ₆ S ₂)	273	1684
Cephradine ($C_{16}H_{15}N_5O_7S_2$)		1685
Cerivastatin ($C_{26}H_{34}FNO_5$)	274	
Chenodeoxycholic acid ($C_{24}H_{40}O_4$)	275	
Chenodeoxycholic acid derivatives	275	
Chenodiol ($C_{24}H_{40}O_4$)		1686
Chloral hydrate ($C_2H_3Cl_3O_2$)	276–277	
Chlorambucil (C ₁₄ H ₁₉ Cl ₂ NO ₂)		1687–1688
Chlorcyclizine ($C_{18}H_{21}ClN_2$)	278	1689

Chlordiazepoxide ($C_{16}H_{14}CIN_3O$)	204, 279	1690–1691
Chlordiazepoxide lactam ($C_{15}H_{11}ClN_2O_2$)	205	
Chlorhexidine ($C_{22}H_{30}Cl_2N_{10}$)	282	1692
Chloridine	9	
Chlorimipramine ($C_{19}H_{23}ClN_2$)	280	
Chlormethiazole (C_6H_8CINS)		1726-1728
Chloroacetazolamide ($C_4H_5ClN_4O_3S_2$)	11	
Chloroacetic acid ($C_2H_3ClO_2$)	252	
N-Chloroacetylcephalosporin C ($C_{18}H_{22}ClN_3O_9S$)	270	
N-Chloroacetyldeacetoxycephalosporin C	270	
$(C_{16}H_{20}ClN_3O_8S)$		
4-Chloroamphetamine (C_9H_{12} ClN)		1693
3-Chloroazuloic acid ($C_{11}H_7ClO_2$)	115	
Chlorocresol (C ₇ H ₇ ClO)		1694
(S)-6-Chloro-4-(cyclo-propylethynyl)-1,4-dihydro-4-		1695
(trifluoromethyl)-2H-3,1-benzoxazin-2-one		
(Efavirenz; DMP-266) ($C_{14}H_9ClF_3NO_2$)		
2-Chloro-2',3'-dideoxy-adenosine (2-ClDDA)	281	
$(C_{10}H_{12}CIN_5O_2)$		
7-Chloro-4-epitetracycline ($C_{22}H_{23}ClN_2O_8$)	493-494	
Chlorophenols	see 231	
N ¹ -4-Chlorophenyl-N ⁵ -alkylbiguanides	282	
N ¹ -4-Chlorophenyl-N ⁵ -methylbiguanide	282	
$(C_9H_{12}ClN_5)$		
N ¹ -4-Chlorophenyl-N ⁵ -ethylbiguanide	282	
$(C_{10}H_{14}CIN_5)$		
N ¹ -4-Chlorophenyl-N ⁵ -propylbiguanide	282	
$(C_{11}H_{16}CIN_5)$	_0_	
N ¹ -4-Chlorophenyl-N ⁵ -n-butylbiguanide	282	
$(C_{12}H_{18}CIN_5)$	_0_	
3-(4-Chlorophenyl)-5,6-dihydro-2-ethylimidazo	283	
[2,1-b]thiazole (C ₁₃ H ₁₃ ClN ₂ S)	200	
3-(4-Chlorophenyl)-2-ethyl-2,3,5,6-	284	
tetrahydroimidazo[2,1-b]thiazol-3-ol	201	
$(C_{13}H_{15}CIN_2OS)$		
1-(2-Chlorophenyl)piperazine (C ₁₀ H ₁₃ ClN ₂)	90	
1-(3-Chlorophenyl)piperazine (C10H13ClN2)	90	
1-(4-Chlorophenyl)piperazine ($C_{10}H_{13}ClN_2$)	90 90	
Chloroprocaine ($C_{13}H_{19}CIN_2O_2$)	741	
Chloroquine ($C_{13}H_{26}CIN_3$)	285–286	1696
Chloroquine phosphate ($C_{18}H_{26}CIN_3$, H_3PO_4)	200 200	1690
Chloroquine phosphate ($C_{18}H_{29}CIN_3O_4P$)		1697
Chlorothen ($C_{14}H_{18}CIN_3S$)		1698
8-Chlorotheophylline (C ₇ H ₇ ClN ₄ O ₂)	287	1699–1701
Chlorothiazide ($C_7H_6ClN_3O_4S_2$)	288-289	1702–1701
Cinorounaziae (C/116Cinv3O402)	200-209	1702-1703

Chlorpheniramine ($C_{16}H_{19}ClN_2$)	290	1704–1708
Chlorphentermine ($C_{10}H_{14}ClN$)		1709
Chlorpromazine ($C_{17}H_{19}ClN_2S$)	291–300,	1710
	984–985	
Chlorpromazine sulfoxide ($C_{17}H_{19}ClN_2OS$)		1711
Chlorpropamide ($C_{10}H_{13}ClN_2O_3S$)		1712–1713
Chlorprothixene (C ₁₈ H ₁₈ ClNS)		1714
Chlortetracycline ($C_{22}H_{23}ClN_2O_8$)	301-306	1715
Chlorthalidone ($C_{14}H_{11}ClN_2O_4S$)	307	1716
Chlorzoxazone ($C_7H_4ClNO_2$)		1717
Cholic acid ($C_{24}H_{40}O_5$)		1718
Chromonar ($C_{20}H_{27}NO_5$)		1719
Cimetidine $(C_{10}H_{16}N_6S)$	308-309	1720-1721
Cinchocaine $(C_{20}H_{29}N_3O_2)$	406-407	
Cinchonidine $(C_{19}H_{22}N_2O)$	310	
Cinchonine $(C_{19}H_{22}N_2O)$	311	1722-1723
Cinnamic acid $(C_9H_8O_2)$	252, 312	
Cinnarizine ($C_{26}H_{28}N_2$)	313	
Cinnopentazone ($C_{22}H_{22}N_2O_2$)	314	
Cinoxacin ($C_{12}H_{10}N_2O_5$)	315	
Ciprofloxacin ($C_{12}H_{10}$, $T_{2}O_{3}$)	316, 1227–	1724, 2167
Ciprono/ment (Ci/11811(303)	1228	1, 21, 210,
Cisplatin degradation product (H7ClN2OPt)	317	
Citalopram ($C_{20}H_{21}FN_2O$)	017	1725
Citric acid ($C_6H_8O_7$)	318-319	1720
Clarithromycin ($C_{38}H_{69}NO_{13}$)	320–321	
Clindamycin ($C_{18}H_{33}CIN_2O_5S$)	322-325	
Clindamycin, 1'-demethyl-4'-pentyl	325	
$(C_{19}H_{35}ClN_2O_5S)$	323	
Clindamycin-2-palmitate (C ₃₄ H ₆₃ ClN ₂ O ₆ S)	326	
Clindamycin-2-phosphate (C ₁₈ H ₃₅ ClN ₂ O ₈ SP)	327	
Clioquinol (C ₉ H ₅ ClINO)	328–332	
Clofazimine ($C_{27}H_{22}Cl_2N_4$)	333–335	
Clofazimine analogue, des-iso-propyl (C ₂₄ H ₁₆ Cl ₂ N ₄)	334	
Clofazimine analogue, N-diethylamino-2-ethyl	334	
$(C_{30}H_{29}Cl_2N_5)$	001	
Clofazimine analogue, N-diethylamino-4-	334	
(1-methylbutyl) (C ₃₅ H ₄₁ Cl ₂ N ₅)	001	
Clofazimine analogue, N-diethylamino-3-propyl	334	
$(C_{31}H_{31}Cl_2N_5)$	001	
Clofazimine analogue, 4-piperidinylmethyl	334	
$(C_{33}H_{33}Cl_2N_5)$	004	
Clofazimine analogue, N-piperidinyl-3-propyl	334	
$(C_{35}H_{37}Cl_2N_5)$	554	
$(\sim_{35^{1}}1_{37}\sim_{12^{1}}N_{5})$		

Clofazimine analogue, N-pyrrolidinyl-3-propyl (C ₃₄ H ₃₅ Cl ₂ N ₅)	334	
Clofezone	336	
Clofluperol (C ₂₂ H ₂₂ ClF ₄ NO ₂)	1273	
Clomethiazole (Chlormethiazole) (C_6H_8CINS)		1726–1728
Clomipramine ($C_{19}H_{23}ClN_2$)		1729
Clonazepam ($C_{15}H_{10}ClN_3O_3$)		1730
Clonidine $(C_9H_9Cl_2N_3)$	337–338	1731–1734
Clopenthixol ($C_{22}H_{25}ClN_2OS$)	339	1735
Clorazepate $(C_{16}H_{11}ClN_2O_3)$		1736
Clorindione $(C_{15}H_9ClO_2)$	340	
Clotrimazole $(C_{22}H_{17}ClN_2)$	341	
Cloxacillin ($C_{19}H_{18}CIN_3O_5S$)	342, 962	
Clozapine ($C_{18}H_{19}ClN_4$)	343–344	1737–1738
Cobefrin (Nordefrin) (C ₉ H ₁₃ NO ₃)	345, 906	2032-2033
Cocaine $(C_{17}H_{21}NO_4)$	214, 346–	1739–1744,
	347	1988
Codeine (C ₁₈ H ₂₁ NO ₃)	9, 348–353	
Colchicine $(C_{22}H_{25}NO_6)$	354	1745–1746
Conhydrine $(C_8H_{17}NO)$	479	
Coniine $(C_8H_{17}N)$	479	
Coumermycin A_1 ($C_{55}H_{59}N_5O_{20}$)	355	
Coumetarol $(C_{21}H_{16}O_7)$	637	
Creatine $(C_4H_9N_3O_2)$	356	
Creatinine $(C_4H_7N_3O)$	357	
Cresol red ($C_{21}H_{18}O_5S$)	358	
Cromolyn ($C_{23}H_{16}O_{11}$)		1747
Cyanocobalamin ($C_{63}H_{88}CoN_{14}O_{14}P$)	359	
2-Cyanoguanidinophenytoin $(C_{16}H_{12}N_4O)$	360	
Cyanopromazine ($C_{18}H_{19}N_3S$)		1748
Cyclacillin ($C_{15}H_{23}N_3O_4S$)	361-362	1749
Cyclamic acid ($C_6H_{13}NO_3S$)	363	
Cyclazocine ($C_{18}H_{25}NO$)		1750
Cycliramine $(C_{18}H_{15}ClN_2)$	364	
Cyclizine ($C_{18}H_{22}N_2$)	365-366	1751
Cyclobarbital ($C_{12}H_{16}N_2O_3$)	150	
Cyclobenzaprine ($C_{20}H_{21}N$)		1752
α -Cyclodextrin (C ₃₆ H ₆₀ O ₃₀)	367	
Cyclohexaamylose (α -cyclodextrin) (C ₃₆ H ₆₀ O ₃₀)	367	
1-Cyclohexyl-2-aminopropane (C ₉ H ₁₉ N)	368	
Cyclopentamine ($C_9H_{19}N$)	369	1753
Cyclopentolate ($C_{17}H_{25}NO_3$)	370	
D-Cycloserine $(C_3H_6N_2O_2)$	371	1754
<i>iso</i> -Cyclosporin A ($C_{62}H_{111}N_{11}O_{12}$)	372	

Cyclothiazide ($C_{14}H_{16}ClN_3O_4S_2$)	197, 373– 374	1755
Cyproheptadine ($C_{21}H_{21}N$)	574	1756
Cysteine ($C_3H_7NO_2$)	375, 955	1750
Cytarabine ($C_9H_{13}CIN_3O_5$)	0,0,000	1757
		1,0,
D		
Dacarbazine ($C_6H_{10}N_6O$)		1758
Dantrolene (C ₁₄ H ₁₀ N ₄ O ₅)		1759–1760
Dapsone ($C_{12}H_{12}N_2O_2S$)	1395	1761
Daunorubicin ($C_{27}H_{29}NO_{10}$)	376–377	
Deacetoxycephalosporin C (C ₁₄ H ₁₉ N ₃ O ₇ S)	270	
Deacetoxycephalosporin C, N-chloroacetyl	270	
$(C_{16}H_{20}ClN_3O_8S)$		
Debrisoquin (C ₁₀ H ₁₃ N ₃)		1762–1763
Decyl carnitine ($C_{17}H_{33}NO_4$)	378	
Deferoxamine ($C_{25}H_{48}N_6O_8$)	384	
Dehydrocholic acid ($C_{24}H_{34}O_5$)		1764–1765
6-Dehydroestrone (C ₁₈ H ₂₀ O ₂)	379	
Demeclocycline (6-demethyl-7-chlorotetracycline)	380-381	1766
$(C_{21}H_{21}ClN_2O_8)$		
6-Demethyl-7-chlorotetracycline (C ₂₁ H ₂₁ ClN ₂ O ₈)	380-381	1766
Demoxepam ($C_{15}H_{12}N_2O_2$)		1767
4-Deoxyacyclovir ($C_8H_{13}N_5O_2$)	20	
Deoxycholic acid ($C_{24}H_{40}O_4$)		1768
Deoxyepinephrine (Epinine) ($C_9H_{13}NO_2$)	382	
2'-Deoxyuridine (C ₉ H ₁₂ N ₂ O ₅)		1769
Deprenyl ($C_{13}H_{17}N$)	1272	
Deramciclane ($C_{19}H_{31}NO$)	383	
Deserpidine ($C_{32}H_{38}N_2O_8$)		1770–1771
Desethylamiodarone ($C_{23}H_{25}I_2NO_3$)	53	
Desferrioxamine ($C_{25}H_{48}N_6O_8$)	384	
8-Desfluorolomefloxacin (C ₁₇ H ₂₀ FN ₃ O ₃)	1229	
Desipramine ($C_{18}H_{22}N_2$)	385–387	1772
Desmethyldiazepam ($C_{15}H_{11}ClN_2O$)	205	
Desmethyldoxepin ($C_{18}H_{19}NO$)	388	
Desmethylpheniramine ($C_{15}H_{18}N_2$)	389	
Desmycosin ($C_{39}H_{65}NO_{14}$)	390	
Desmycarosylcarbomycin A (C ₃₈ H ₇₂ N ₂ O ₁₂)	391	
Desoxyephedrine (methamphetamine) ($C_{10}H_{15}N$)		1773
Dexamethasone-21-phosphate ($C_{22}H_{30}FO_8P$)	392	
Dexamphetamine ($\hat{C}_9H_{13}N$)	393	1774
Dextran	394	
Dextromethorphan (C ₁₈ H ₂₅ NO)		1775
Dextromoramide ($C_{25}H_{32}N_2O_2$)		1776

Dextrose (glucose) (C ₆ H ₁₂ O ₆)	395–396, 596	1777
Dovuoranamil(C, H, N, O)	1495–1498	
Dexverapamil ($C_{27}H_{38}N_2O_4$)		
3,5-Diacetamido-1,2,4-triazole (Guanazole prodrug) (C ₄ H ₉ N ₅ O ₂)	602	
Diamorphine (heroin) ($C_{21}H_{23}NO_5$)	397–398	1778–1779
Dial $(C_{10}H_{12}N_2O_3)$	158-160	
4,4-Diaminodiphenylsulfone (C ₁₂ H ₁₂ N ₂ O ₂ S)	1395	
2,4-Diaminopyridine, 5-(2-bromo-4,5-	216	
methylenedioxybenzyl)- $(C_{12}H_{11}BrN_4O_2)$		
2,4-Diaminopyridine, 5-(3,5-bis(dimethylamino)-4-	216	
methylbenzyl)- ($C_{16}H_{24}N_6$)		
2,4-Diaminopyridine, 5-(3,5-bis(methylamino)-4-	216	
methoxy-6-acetylbenzyl)- $(C_{18}H_{26}N_6O_2)$		
2,4-Diaminopyridine, 5-(2,6-dichloro-3,5-	216	
dimethoxybenzyl)- ($C_{13}H_{14}Cl_2N_4O_2$)		
2,4-Diaminopyridine, 5-(3,5-diethoxy-4-(2'-	216	
hydroxy-2'-propyl)benzyl)- (C ₁₈ H ₂₆ N ₄ O ₃)		
2,4-Diaminopyridine, 5-(3,5-diethoxy-4-	216	
pyrrolidinylbenzyl)- $(C_{19}H_{23}N_5O_2)$		
2,4-Diaminopyridine, 5-(3,5-dihydroxy-4-	216	
methoxybenzyl)- $(C_{14}H_{18}N_4O_3)$		
2,4-Diaminopyridine, 5-(3,5-dimethoxy-4-	216	
aminobenzyl)- ($C_{13}H_{17}N_5O_2$)		
2,4-Diaminopyridine, 5-(3,4-dimethoxy-5-	216	
benzoylbenzyl)- ($C_{20}H_{20}N_4O_3$)		
2,4-Diaminopyridine, 5-(3,5-dimethoxy-4-(2-	216	
methoxyethyl)benzyl)- ($C_{16}H_{22}N_4O_3$)		
2,4-Diaminopyridine, 5-(2,4-dimethoxy-3-	216	
pyridylbenzyl)- ($C_{18}H_{19}N_5O_2$)		
2,4-Diaminopyridine, 5-(3,5-dimethoxy-4-	216	
pyridylbenzyl)- ($C_{18}H_{19}N_5O_2$)		
2,4-Diaminopyridine, 5-(3,5-dimethoxy-4-	216	
pyrrolidinylbenzyl)- (C ₁₇ H ₁₉ N ₅ O ₂)		
2,4-Diaminopyridine, 5-(3,5-dimethoxy-4-	216	
thiomethylbenzyl)- ($C_{14}H_{18}N_4O_2S$)		
2,4-Diaminopyridine, 5-(3-methoxy-4,5-	216	
dihydroxybenzyl)- ($C_{12}H_{14}N_4O_3$)		
2,4-Diaminopyridine, 5-(3-methoxy-4,5-	216	
methylenedioxybenzyl)- (C ₁₃ H ₁₄ N ₄ O ₃)		
2,4-Diaminopyridine, 5-(4,5-	216	
methylenedioxybenzyl)- (C ₁₂ H ₁₂ N ₄ O ₂)		
2,4-Diaminopyridine, 5-substituted-benzyl	216	
derivatives (C ₁₁ H ₁₂ N ₄ O ₄)		

2,4-Diaminopyridine, 5-(2,4,5-trimethoxybenzyl)- (C ₁₄ H ₁₈ N ₄ O ₃)	216	
$(C_{14}\Pi_{18}\Pi_4 C_3)$ 2,4-Diaminopyridine, 5-(3,4,5-trimethoxybenzyl)- $(C_{14}\Pi_{18}\Pi_4 C_3)$	216	
Diatrizoic acid $(C_{11}H_9I_3N_2O_4)$		1780
Diazepam ($C_{16}H_{13}CIN_2O$)	204, 399–	1781-1782
1 (10 10 2)	402	
Diazoxide ($C_8H_7ClN_2O_2S$)	403	1783
3,5-Dibenzamido-1,2,4-triazole (Guanazole	602	
prodrug) ($C_{16}H_{13}N_5O_2$)		
Dibenzepine ($C_{18}H_{21}N_3O$)	404-405	
Dibucaine (Cinchocaine) ($C_{20}H_{29}N_3O_2$)	406-407,	1784–1785
	741	
Dibucaine O-methyl homologue (C ₁₇ H ₂₃ N ₃ O ₂)	407	
Dibucaine O-ethyl homologue (C ₁₈ H ₂₅ N ₃ O ₂)	407	
Dibucaine O-propyl homologue (C ₁₉ H ₂₇ N ₃ O ₂)	407	
Dibucaine O-butyl homologue (C ₂₀ H ₂₉ N ₃ O ₂)	407	
Dibucaine O-pentyl homologue (C ₂₁ H ₃₁ N ₃ O ₂)	407	
Dibucaine O-hexyl homologue (C ₂₂ H ₃₃ N ₃ O ₂)	407	
3,5-Dichlorophenol ($C_6H_4Cl_2O$)	408	
Dichlorphenamide ($C_6H_6Cl_2N_2O_4S_2$)		1786
Diclofenac (C ₁₄ H ₁₁ Cl ₂ NO ₂)	409-413	1787
Dicloxacillin (C ₁₉ H ₁₇ Cl ₂ N ₃ O ₅ S)	414, 962	1788
Dicumarol (bishydroxycoumarin) (C ₁₉ H ₁₂ O ₆)		1789
Dicyclomine (C ₁₉ H ₃₅ NO ₂)	415	
Didanosine ($C_{10}H_{12}N_4O_3$)	416	
2', $3'$ -Dideoxyadenosine (C ₁₀ H ₁₃ N ₅ O ₂)	417	
Didesmethylpheniramine ($C_{14}H_{16}N_2$)	418	
Diethazine ($C_{18}H_{22}N_2S$)	9	1790
Diethylamine ($C_4H_{11}N$)	9	
4-Diethylaminobenzoic acid (C ₁₁ H ₁₅ NO ₂)	649	
4-Diethylaminosalicylic acid ($C_{11}H_{15}NO_3$)	649	
Diethylcarbamazine ($C_{10}H_{21}N_3O$)	110	1791
Diethylstilbestrol ($C_{18}H_{20}O_2$)	419	
Diethylsulfanilamide ($C_{10}H_{16}N_2O_2S$)	38	
Difloxacin ($C_{21}H_{19}F_2N_3O_3$)	1230	
Diflunisal ($C_{13}H_8F_2O_3$)	420-421	
α -(2,4-Difluorophenyl)- α -[1-(2-(2-pyridyl)-	422	
phenylethenyl)]-1H-1,2,4-triazole-1-ethanol		
(XD405, bis-mesylate salt) ($C_{13}H_8F_2O_3$)	402	
Dihydroarecaidine ($C_7H_{13}NO_2$)	423	
Dihydroarecaidine methyl ester ($C_8H_{15}NO_2$)	424 425	
Dihydrocodeine ($C_{18}H_{23}NO_3$)	423	1700
Dihydrocodeinone (C ₁₈ H ₂₁ NO ₄) Dihydrodesoxycodeine (C ₁₈ H ₂₃ NO ₂)	426	1792
Diryurouesoxycouerre (C18112311O2)	420	

Dihydrodesoxynorcodeine ($C_{17}H_{21}NO_2$)	427	
Dihydroequilin, 17α -(C ₁₈ H ₂₂ O ₂)	428	
Dihydroequilinen, 17β -(C ₁₈ H ₂₂ O ₂)	429	
Dihydroergocornine (C ₃₁ H ₄₁ N ₅ O ₅)	430	
Dihydroergocriptine (C ₃₂ H ₄₃ N ₅ O ₅)	431	
Dihydroergocristine ($C_{35}H_{41}N_5O_5$)	432	
Dihydroergonovine ($C_{19}H_{23}N_3O_2$)	433	
Dihydroergotamine (C ₃₃ H ₃₇ N ₅ O ₅)	434	1793
Dihydroergotoxine	435	
Dihydrofolic acid ($C_{19}H_{21}N_7O_6$)	436	
Dihydromorphine ($C_{17}H_{21}NO_3$)	437	1794
Dihydromorphinone ($C_{17}H_{19}NO_4$)		1795
Dihydrostreptomycin ($C_{21}H_{41}N_7O_{12}$)		1796–1797
2,8-Dihydroxyadenine ($C_5H_5N_5O_2$)	438	
<i>m</i> , <i>p</i> -Dihydroxyphenylethylamine ($C_8H_{11}NO_2$)	1085	
<i>m,p</i> -Dihydroxyphenylethylamine, N-methyl	1086	
$(C_9H_{13}NO_2)$		
3,5-Di-iodo-L-tyrosine (C ₉ H ₉ I ₂ NO ₃)	439	
Dilazep ($C_{31}H_{44}N_2O_{10}$)	440-441	
Dilevolol $(C_{19}H_{24}N_2O_3)$		1798
Diltiazem ($C_{22}H_{26}N_2O_4S$)	442	1799–1800
Dimedrol	9	1.77 1000
Dimethadione ($C_5H_7NO_3$)		1801
Dimethisoquin ($C_{17}H_{24}N_2O$)		1802
Dimethoxyamphetamine ($C_{11}H_{17}NO_2$)	443	1002
1-(3,4-Dimethoxyphenyl)-2-N-	444	
methylaminopropane ($C_{12}H_{19}NO_2$)		
4-Dimethylaminobenzoic acid (C ₉ H ₁₁ NO ₂)	649	
4-Dimethylaminosalicylic acid ($C_9H_{11}NO_3$)	649	
Dimethylamphetamine ($C_{11}H_{17}N$)	447-449	
Dimethylhydantoin ($C_5H_8N_2O_2$)	11, 11,	1803
(3,4-Dimethyl-5-isoxazolyl)-4-amino-1,2-	445	1000
naphthoquinone ($C_{15}H_{12}N_2O_3$)	110	
Dimethyloxytetracycline ($C_{24}H_{28}N_2O_9$)	450	
Dimethylsulfanilamide ($C_8H_{12}N_2O_2S$)	38	
4',6'-Dimethylsulfapyridine-1-oxide (C ₁₃ H ₁₄ N ₃ O ₃ S)	1381	
$5,5$ -Dimethyl- $3-(\alpha,\alpha,\alpha, 4$ -tetrafluoro- <i>m</i> -tolyl)	446	
hydantoin ($C_{12}H_{10}F_4N_2O_2$)	110	
3,5-Di(p-nitrobenzamido)-1,2,4-triazole (Guanazole	602	
prodrug) ($C_{16}H_{11}N_7O_6$)	002	
Dinoprost (prostaglandin $F_{2\alpha}$) (C ₂₀ H ₃₄ O ₅)	451	
Dinoprostone (prostaglandin $E_{2\alpha}$) (C ₂₀ H ₃₄ O ₅)	101	1804
1,2-Dioleoylphosphatidylethanolamine (DOPE)	452	1004
$(C_{41}H_{77}NO_8P)$	702	
(C4111771NO81) Dionine	9	
Divinie)	

Dipeptides Tripeptides	453, 483 483	
Diperodon ($C_{22}H_{27}N_3O_4$)		1805
Diphenhydramine ($C_{17}H_{21}NO$)	454-456	1806
Diphenhydramine analogues	455	1000
Diphenic acid $(C_{14}H_{10}O_4)$	457	1007 1000
Diphenoxylate ($C_{30}H_{32}N_2O_2$)	458	1807-1808
Diphenylpyraline ($C_{19}H_{23}NO$)	459	1809
Dipipanone ($C_{24}H_{31}NO$)		1810–1812,
		2116
Dipivefrine (C ₁₉ H ₂₉ NO ₅)		1813
3,5-Dipropionamido-1,2,4-triazole (Guanazole	602	
prodrug) (C ₆ H ₁₃ N ₅ O ₂)		
Dipyridamole ($C_{24}H_{40}N_8O_4$)		1814
Disopyramide $(C_{21}H_{29}N_3O)$	460-462	
3,5-Di(trifluoroacetamido)-1,2,4-triazole (Guanazole	602	
prodrug) ($C_4H_3F_6N_5O_2$)	002	
DMP-266 ($C_{14}H_9ClF_3NO_2$)		1695
DMP-777 (elastase inhibitor) $(C_{31}H_{40}N_4O_6)$	463	1070
Dobutamine ($C_{18}H_{23}NO_3$)	100	1815
Domperidone ($C_{12}H_{24}$ (ClN_5O_2)		1816
	464 407	1817–1818
DOPA, L-(Levodopa) ($C_9H_{11}NO_4$)	464, 497	1017-1010
Dopamine ($C_8H_{11}NO_2$)	465, 497	
DOPE ($C_{41}H_{78}NO_8P$)	452	
Dorzolamide ($C_{10}H_{16}N_2O_4S_3$)		1819
Dosulepine ($C_{19}H_{21}NS$)	466	
Dothiepin (dosulepine) ($C_{19}H_{21}NS$)	466	
Doxepin ($C_{19}H_{21}NO$)	467-468	1820
Doxorubicin (adriamycin) (C ₂₇ H ₂₉ NO ₁₁)	469-470	1821-1822
Doxycycline $(C_{22}H_{24}N_2O_8)$	471	1823
Doxylamine $(C_{17}H_{22}N_2O)$		1824
Droperidol ($C_{22}H_{22}FN_3O_2$)		1825
-		1020
E		
$E2001 (C_{24}H_{22}FNO_2)$		1873
Ebifuramin ($C_{19}H_{22}N_4O_7$)	472	
Ecgonine ($C_9H_{15}NO_3$)	473-474	
Ecgonine methyl ester ($C_{10}H_{17}NO_3$)	475	
Edetic acid (EDTA) ($C_{10}H_{16}N_2O_8$)	476	
Efavirenz ($C_{14}H_9ClF_3NO_2$)	1.0	1695
Elastase inhibitor (DMP-477) ($C_{31}H_{40}N_4O_6$)	477	1075
Emetine $(C_{29}H_{40}N_2O_4)$	478-480	
Enalapril ($C_{20}H_{28}N_2O_5$)	481–482	
Enalaprilat ($C_{18}H_{24}N_2O_5$)		1826
Enkephalin (met-enkephalin) ($C_{28}H_{37}N_5O_7$)	483	
Enoxacin ($C_{15}H_{17}FN_4O_3$)	1231	

Ephedrine (C ₁₀ H ₁₅ NO)	9, 484–490, 1178	1827–1829
Epianhydrotetracycline (anhydro-4-epitetracycline) (C ₂₂ H ₂₂ N ₂ O ₇)	491–492	
Epichlortetracycline (7-chloro-4-epitetracycline) $(C_{22}H_{23}ClN_2O_8)$	493–494	
Epicillin ($C_{16}H_{21}N_3O_4S$)	495	
Epinastine $(C_{16}H_{15}N_3)$	496	
Epinephrine (adrenaline) ($C_9H_{13}NO_3$)	497-502	
Epinine ($C_9H_{13}NO_2$)	382	
Epiquinidine $(C_{20}H_{24}N_2O_2)$	1221	
Epiquinine $(C_{20}H_{24}N_2O_2)$	1221	
4-Epitetracycline ($C_{22}H_{24}N_2O_8$)	503	
Equilenin $(C_{18}H_{18}O_2)$	504	
Equilin $(C_{18}H_{20}O_2)$	505	
Ergometrine ($C_{19}H_{23}N_3O_2$)		1830
Ergonovine $(C_{19}H_{23}N_3O_2)$	506-507	1831
Ergostine ($C_{35}H_{39}N_5O_5$)	508-509	
Ergot alkaloids	see 506	
Ergotamine ($C_{33}H_{35}N_5O_5$)	510-511	1832–1833
Ergotaminine ($C_{33}H_{35}N_5O_5$)	512-513	
Erythromycin ($C_{37}H_{67}NO_{13}$)	514-519	1834
Erythromycin estolate ($C_{52}H_{97}NO_{18}S$)		1835
Erythromycin lactobionate (C ₃₇ H ₆₇ NO ₁₃) (salt with		1836
lactobiono-δ-lactone)		
Erythromycyclamine ($C_{37}H_{70}N_2O_{12}$)	520	
Erythromycyclamine-11,12-carbonate	521	
$(C_{38}H_{68}N_2O_{13})$		
Estazolam ($C_{16}H_{11}ClN_4$)	522	
Estradiol, 17α -(C ₁₈ H ₂₄ O ₂)	523	
Estradiol, 17β -(C ₁₈ H ₂₄ O ₂)	523	
Estriol ($C_{18}H_{24}O_3$)	524	
Estrone ($C_{18}H_{22}O_2$)	525	
Ethacrynic acid ($C_{13}H_{12}Cl_2O_4$)		1837–1838
Ethambutol ($C_{10}H_{24}N_2O_2$)	526	
Ethinylestradiol ($C_{20}H_{24}O_2$)	527-528	1839
Ethionamide ($C_8H_{10}N_2S$)	529	
Ethionine ($C_6H_{13}NO_2S$)	955	
Ethoheptazine ($C_{16}H_{23}NO_2$)		1840
Ethopropazine ($C_{19}H_{24}N_2S$)	530	1841
Ethosuximide ($C_7H_{11}NO_2$)		1842–1843
Ethoxazolamide (C ₉ H ₁₀ N ₂ O ₃ S ₂)	531	
4-Ethoxybenzoic acid ($C_9H_{10}O_3$)	649	
4-Ethoxysalicylic acid ($C_9H_{10}O_4$)	649	
Ethoxzolamide ($C_9H_{10}N_2O_3S_2$)	531	

Ethyl 4-aminobenzoate (C ₉ H ₁₁ NO ₂)	38	
Ethylamphetamine ($C_{11}H_{17}N$)		1844
α-Ethyl n-amylpenilloate	532–533	
Ethyl biscoumacetate ($C_{10}H_{24}O_8$)	637	1845–1847
Ethylenediamine ($C_2H_8N_2$)		1848
Ethylhydrocupreine ($C_{21}H_{28}N_2O_2$)	398	
2-Ethylmercapto-4-hydroxypyrimidine (C ₆ H ₈ N ₂ OS)		1849
Ethylmorphine ($C_{19}H_{23}NO_3$)	536	1850-1851
Ethylnorepinephrine ($C_{10}H_{15}NO_3$)		1852
α -Ethylphenethylamine (C ₁₀ H ₁₅ N)		1853
Ethylphenylephrine ($C_{10}H_{15}NO_2$)	538	
Ethylphenylhydantoin ($C_{11}H_{12}N_2O_2$)		1854
α-Ethylphenylpenilloate	534–535	
6'-Ethylsulfapyridine-1-oxide (C ₁₃ H ₁₄ N ₃ O ₃ S)	1381	
Etidocaine ($C_{17}H_{28}N_2O$)	537	1855–1856
Etilefrine (ethylphenylephrine) ($C_{10}H_{15}NO_2$)	538	
Etodolac $(C_{17}H_{21}NO_3)$		1857
Etomidate $(C_{14}H_{16}N_2O_2)$	539	
Etoposide $(C_{29}H_{32}O_{13})$	540	
β -Eucaine (C ₁₅ H ₂₁ NO ₂)	398, 541	
Eugenol $(C_{10}H_{12}O_2)$,	1858
F		
Famotidine ($C_8H_{15}N_7O_2S_3$)	542-543	
Fenbufen ($C_{16}H_{14}O_3$)	544	1050
Fencamfamine ($C_{15}H_{21}N$)		1859
Fenclofenac ($C_{14}H_{10}Cl_2O_3$)	- 4 -	1860
Fendiline $(C_{23}H_{25}N)$	545	10/1
Fenfluramine $(C_{12}H_{16}F_3N)$	- 14	1861
Fenoprofen ($C_{15}H_{14}O_3$)	546	1862
Fenoterol ($C_{17}H_{21}NO_4$)		1863–1864
Fentanyl ($C_{22}H_{28}N_2O$)	547	1865
Flavoxate ($C_{24}H_{25}NO_4$)	548	10.44
Flecainide ($C_{17}H_{20}F_6N_2O_3$)	1000	1866
Fleroxacin ($C_{17}H_{18}F_3N_3O_3$)	1232	
Floxuridine ($C_9H_{11}FN_2O_5$)		1867
Flucloxacillin ($C_{19}H_{17}ClFN_2O_5S$)	962	1868
Fluconazole ($C_{13}H_{12}F_2N_6O$)	549	
Flucytosine ($C_4H_4FN_3O$)		1869
Fludiazepam ($C_{16}H_{12}ClFN_2O$)	550	
Flufenamic acid ($C_{14}H_{10}F_3NO_2$)	551-554	1870
Flumequine ($C_{14}H_{12}FNO_3$)	555-557	
Flumethiazide ($C_8H_6F_3N_3O_4S_2$)	197, 558	
Flumizole ($C_{18}H_{15}F_3N_2O_2$)		1871
Flunitrazepam ($C_{16}H_{12}FN_3O_3$)	559–560	1872
Fluopromazine ($C_{18}H_{19}F_3N_2S$)	574	

Fluorescein (C ₂₀ H ₁₂ O ₅)	561	
2-(4-(p-Fluorobenzoyl)piperidin-1-yl)-2'-	1873	
acetonaphthone hydrochloride (E2001)		
$(C_{24}H_{22}FNO_2)$		
8-Fluoro-norfloxacin ($C_{16}H_{17}F_2N_3O_3$)	1233	
8-Fluoro-pefloxacin ($C_{17}H_{19}F_2N_3O_3$)	1234	
1-(4-Fluorophenyl)piperazine ($C_{10}FH_{13}N_2$)	90	
1-(5-Fluoro-2-pyrimidinyl)piperazine ($C_{10}FH_{11}N_4$)	90	
5-Fluorouracil ($C_4H_3FN_2O_2$)	562	
5-Fluorouracil, 1-acetyloxymethyl (C ₇ H ₇ FN ₂ O ₄)	569	
5-Fluorouracil, 3-acetyloxymethyl ($C_7H_7FN_2O_4$)	570	
5-Fluorouracil, 3-ethyloxycarbonyl ($C_7H_7FN_2O_4$	564	
5-Fluorouracil, 1-ethyloxycarbonyloxymethyl	565	
$(C_8H_9FN_2O_5)$		
5-Fluorouracil, 3-ethyloxycarbonyloxymethyl	566	
$(C_8H_9FN_2O_5)$	000	
5-Fluorouracil, 1-methyloxycarbonyl ($C_6H_5FN_2O_4$)	563	
5-Fluorouracil, 1-phenyloxycarbonyloxymethyl	567	
$(C_{12}H_9FN_2O_5)$	007	
5-Fluorouracil, 3-phenyloxycarbonyloxymethyl	568	
$(C_{12}H_9FN_2O_5)$	000	
Fluoxetine	96	
Flupenthixol ($C_{23}H_{25}F_3N_2OS$)	571	1874
Fluphenazine ($C_{22}H_{26}F_3N_3OS$)	572–573	1074
Fluphenazine enanthate ($C_{29}H_{38}F_3N_3O_2S$)	572-575	1875
Fluphenazine decanoate ($C_{29}I_{38}I_{31}N_{3}O_{2}S$)		1875
	574	1070
Flupromazine ($C_{18}H_{19}F_3N_2S$)	574	1877–1878
Flurazepam ($C_{21}H_{23}ClFN_3O$)	575	1877–1878
Flurbiprofen ($C_{15}H_{13}FO_2$)	575	
Fluvoxamine $(C_{15}H_{21}F_3N_2O_2)$	576	1880
Folic acid $(C_{19}H_{19}N_7O_6)$	576	1881
Folic acid analogues	577	
Folinic acid (leucovorin) ($C_{20}H_{23}N_7O_7$)	578-579	
Formic acid (CH_2O_2)	580	
3-Formylazuloic acid ($C_{12}H_8O_3$)	115	4004 400-
Frusemide ($C_{12}H_{11}CIN_2O_5S$)	581–586	1884–1885
Fumaric acid $(C_4H_4O_4)$		1882
Furaltadone ($C_{13}H_{16}F_3N_4O_6$)		1883
Furosemide (frusemide) ($C_{12}H_{11}CIN_2O_5S$)	581–586	1884–1885
Fusidic acid ($C_{31}H_{48}O_6$)		1886
G		
	270	
$GABA (C_4H_9NO_2)$	378	1007
Galanthamine $(C_{17}H_{21}NO_3)$	E07	1887
Gallic acid $(3,4,5-\text{trihydroxybenzoic acid})$ (C ₇ H ₆ O ₅)	587	
$GBB (C_7 H_{15} NO_2)$	378	

Gelatin	588	
Gentamicin C1 ($C_{21}H_{43}N_5O_7$)		1888
Gentamicin C1a ($C_{19}H_{39}N_5O_7$)		1888
Gentamicin C2 ($C_{20}H_{41}N_5O_7$)		1888
Glafenine ($C_{19}H_{17}ClN_2O_4$)	589	
Glibenclamide (glyburide)	590-592	1889, 1895
$(C_{23}H_{28}CIN_{3}O_{5}S)$		
Glipizide (C ₂₁ H ₂₇ N ₅ O ₄ S)		1890
Gluconic acid ($C_6H_{12}O_7$)	593	
D-Glucosamine ($C_6H_{13}NO_5$)	594	
D-Glucosamine-6-phosphate	595	
$(C_6H_{14}NO_8P)$		
Glucose ($C_6H_{12}O_6$)	395–396,	1777
	596	
D-Glucuronic acid ($C_6H_{10}O_7$)		1891
Glutarimide ($C_5H_7NO_2$)		1892
Glutethimide ($C_{13}H_{15}NO_2$)	597	1893–1894
Glyburide (C ₂₃ H ₂₈ ClN ₃ O ₅ S)	590–592	1889, 1895
Glycerol ($C_3H_8O_3$)	598	
Glycine xylidide ($C_{10}H_{14}N_2O$)	599	
Glycocholic acid ($C_{26}H_{43}NO_6$)	600	1896
Glycodeoxycholic acid (C ₂₆ H ₄₃ NO ₅)	601	1897
Glycyclamide (C ₁₄ H ₂₀ N ₂ O ₃ S)		1898
Gly-Gly (C ₄ H ₈ N ₂ O ₃)	453	
$Gly-Phe (C_{11}H_{14}N_2O_3)$	453	
Gly-Trp ($C_{13}H_{15}N_3O_3$)	453	
Guanabenz ($C_8H_8Cl_2N_4$)		1899
Guanazole prodrug (3-amino-5-	602	
heptafluorobutyramido-1,2,4-triazole)		
$(C_6H_4F_7N_5O)$		
Guanazole prodrug (3,5-diacetamido-1,2,4-triazole)	602	
$(C_4H_9N_5O_2)$		
Guanazole prodrug (3,5-dibenzamido-1,2,4-triazole)	602	
$(C_{16}H_{13}N_5O_2)$		
Guanazole prodrug (3,5-dipropionamido-1,2,4-	602	
triazole) ($C_6H_{13}N_5O_2$)		
Guanazole prodrug (3,5-di(<i>p</i> -nitrobenzamido)-1,2,4-	602	
triazole) $(C_{16}H_{11}N_7O_6)$	(a.	
Guanazole prodrug (3,5-di(trifluoroacetamido)-	602	
1,2,4-triazole) (C ₄ H ₃ F ₆ N ₅ O ₂)		1000 1001
Guanethidine ($C_{10}H_{22}N_4$)		1900–1901
Guanidine (CH_5N_3)	0.11	1902
Guanine $(C_5H_5N_5O)$	241	1000
Guanoxan ($C_{10}H_{13}N_3O_2$)		1903
Guluronic acid ($C_6H_{10}O_7$)		1546

Н		
Haloperidol (C ₂₁ H ₂₃ ClFNO ₂)	603-604	1904–1906
Harmol $(C_{12}H_{10}N_2O)$		1907
Heliotridane ($C_8H_{15}N$)	605	
Heliotridene ($C_8H_{13}N$)	606	
n-Heptylpenicillin	959	
Heroin $(C_{21}H_{23}NO_5)$	397-398	1778–1779
Hexachlorophene ($C_{13}H_6Cl_6O_2$)	607-609	
Hexamethylmelamine ($C_9H_{18}N_6$)		1551
Hexetidine ($C_{21}H_{45}N_3$)	610–611	
Hexobarbital ($C_{12}H_{16}N_2O_3$)	125	
Hexobendine ($C_{30}H_{44}N_2O_{10}$)	612–613	
Hexylcaine ($C_{16}H_{23}NO_2$)		1908–1909
Hexylresorcinol ($C_{12}H_{18}O_2$)		1910
Hippuric acid (C ₉ H ₉ NO ₃)		1911
Histamine ($C_5H_9N_3$)	614–615	
Histamine, diiodo (C ₅ H ₇ I ₂ N ₃)	617	
Histamine, monoiodo ($C_5H_8IN_3$)	616	
Histapyrrodine ($C_{19}H_{24}N_2$)	618	
Histidine ($C_6H_9N_3O_2$)	1481	
HNB-1 ($C_{27}H_{26}NO_4$)	619	
HNB-5 ($C_{26}H_{25}N_2O_4$)	620	
Homatropine ($C_{16}H_{21}NO_3$)	398	1912–1913
Hycanthone ($C_{20}H_{24}N_2O_2S$)		1914
Hydantoin ($C_3H_4N_2O_2$)		1915
Hydralazine ($C_8H_8N_4$)	621–622	
Hydrochlorothiazide (C ₇ H ₈ ClN ₃ O ₄ S ₂)	197, 623–	1916
	626	
Hydrocodone ($C_{18}H_{21}NO_3$)	398	1917
Hydrocortisone hydrogen succinate ($C_{25}H_{34}O_8$)	627	
Hydrocortisone, imidazole-1-carboxylic acid	628	
$prodrug (C_{25}H_{32}N_2O_6)$		
Hydroflumethiazide ($C_8H_8F_3N_3O_4S_2$)	197, 629–	
	631	
Hydrogen peroxide (H_2O_2)	632	
Hydromorphone ($C_{17}H_{19}NO_3$)	398	1918–1919
Hydroquinone ($C_6H_6O_2$)	633	1920
β-Hydroxy- γ -aminobutyric acid (C ₄ H ₉ NO ₃)	378	
N-hydroxyamphetamine ($C_9H_{13}NO$)	634	1001 1000
4-Hydroxyamphetamine (Paredrine) ($C_9H_{13}NO$)	635	1921–1922
2-Hydroxybenzoic acid ($C_7H_6O_3$)	252, 649,	
	1264-	
$2 \mathbf{H}_{\mathbf{a}}$	1269	
3-Hydroxybenzoic acid $(C_7H_6O_3)$	252	
4-Hydroxybenzoic acid (C ₇ H ₆ O ₃)	252, 649	

	050	
p-Hydroxybenzylpenicillin (C ₁₆ H ₁₈ N ₂ O ₅ S)	959	
2-Hydroxycinnamic acid $(C_9H_8O_3)$	252	
10-Hydroxycodeine ($C_{18}H_{21}NO_4$)	636	
4-Hydroxycoumarin ($C_9H_6O_3$)	637	
4-Hydroxycoumarin derivatives	637	
14-cis-Hydroxydihydrocodeinone (C ₁₈ H ₂₁ NO ₄)	638	
10-cis-Hydroxydihydrodesoxycodeine (C ₁₈ H ₂₃ NO ₃)	639	
10-trans-Hydroxydihydrodesoxycodeine (C ₁₈ H ₂₃ NO ₃)	640	
10-cis-Hydroxydihydronorcodeine (C ₁₇ H ₂₁ NO ₄)	641	
10-trans-Hydroxydihydronorcodeine (C ₁₇ H ₂₁ NO ₄)	642	
4-(2-Hydroxy-3-iso-propylaminopropoxy)indole	643	
$(C_{14}H_{20}N_2O_2)$		
3-Hydroxy-α-(methylamino)	644	
methylbenzenemethanol ($C_9H_{13}NO_2$)		
5-[1-Hydroxy-2-[(1-methylethyl)amino]-ethyl]-1,3-	645	
benzenediol (metaproterenol) ($C_{11}H_{17}NO_3$)		
4-Hydroxynorephedrine ($C_9H_{13}NO_2$)	647	
<i>N</i> -Hydroxyphentermine ($C_{10}H_{15}NO$)	646	
D-(-)-4-Hydroxy-4-phenylbutanoic acid	762	
<i>m</i> -Hydroxyphenylethylamine, 2-hydroxy	1081	
$(C_8H_{11}NO_2)$		
<i>m</i> -Hydroxyphenylethylamine, 2-hydroxy, <i>N</i> -methyl	1082	
$(C_9H_{13}NO_2)$		
<i>p</i> -Hydroxyphenylethylamine (C ₈ H ₁₁ NO)	1083	
<i>p</i> -Hydroxyphenylethylamine, <i>N</i> -methyl (C ₉ H ₁₃ NO)	1084	
<i>p</i> -Hydroxyphenylethylamine, 2-hydroxy	1087	
$(C_8H_{11}NO_2)$		
<i>p</i> -Hydroxyphenylethylamine, 2-hydroxy, <i>N</i> -methyl	1088	
$(C_9H_{13}NO_2)$		
7-(2-Hydroxypropyl)theophylline ($C_{10}H_{14}N_4O_3$)	648	
4-Hydroxysalicylic acid $(C_7H_6O_4)$	649	
Hydroxyzine ($C_{21}H_{27}CIN_2O_2$)	650-651	1923–1924
Hyoscine	652	1/20 1/21
Hyoscyamine ($C_{17}H_{23}NO_3$)	652	1925–1926
Hypoxanthine ($C_5H_4N_4O$)	241, 653	1725 1720
11yp0xattume (C51141V4O)	241,000	
Ι		
Ibuprofen (C ₁₃ H ₁₈ O ₂)	654-664	
Idarubicin $(C_{26}H_{27}NO_9)$	376, 665	
Idoxuridine $(C_9H_{11}IN_2O_5)$	666	1927–1928
Imidazole $(C_3H_4N_2)$	667–668	
Imidazole, N-acetyl ($C_5H_6N_2O$)	669	
Imipenem ($C_{12}H_{17}N_3O_4S$)	670	
Imipramine ($C_{19}H_{24}N_2$)	671–674	
Indapamide ($C_{16}H_{16}$ (CIN_3O_3S)	675	
1 (10 10 (0 - 0 -)		

Indicators	676	
Indinavir (C ₃₆ H ₄₇ N ₅ O ₄)	677	
Indomethacin (C ₁₉ H ₁₆ ClNO ₄)	678–683	
D-Indoprofen (C ₁₇ H ₁₅ NO ₃)		1929–1931
Indoramin ($C_{22}H_{25}N_3O$)		1932
Insulin, A21-aspartyl	684-685	
Iocetamic acid $(C_{12}H_{13}I_3N_2O_3)$		1933
Iodamide ($C_{12}H_{11}I_3N_2O_4$)	686-687	
Iodipamide ($C_{20}H_{14}I_6N_2O_6$)	688	1934
Iodoquinol ($C_9H_5I_2NO$)		1935
Iodoxamic acid ($C_{26}H_{26}I_6N_2O_{10}$)	689	
Iopamidol ($C_{17}H_{22}I_3N_3O_8$)	690	
Iopanoic acid $(C_{11}H_{12}I_3NO_2)$	691	
Iophenoxic acid $(C_{11}H_{11}I_3O_3)$	692	
Iprindole (C ₁₉ H ₂₈ N ₂)		1936
Ipronidazole $(C_7H_{11}N_3O_2)$		1937
Irgafen ($C_{15}H_{16}N_2O_3S$)	1327	
Isocarboxazid ($C_{12}H_{13}N_3O_2$)	693	
Isochlorotetracycline ($C_{22}H_{23}ClN_2O_8$)	694–695	
Isolysergic acid $(C_{16}H_{16}N_2O_2)$	696	
DL-Isomethadone ($C_{21}H_{27}NO$)	697–698	
Isoniazid ($C_6H_7N_3O$)	699	
Isonicotinamide ($C_6H_6N_2O$)	699	
Isonicotinic acid ($C_6H_5NO_2$)	700, 881,	
$(\mathbf{e}_0^{-1}\mathbf{f}_1^{-1}\mathbf{e}_2)$	884	
Isonicotinic acid (non-aqueous titration) ($C_6H_5NO_2$)	194	
1-Isonicotinoyl-1-methylhydrazine ($C_7H_9N_3O$)	699	
1-Isonicotinoyl-2-methylhydrazine $(C_7H_9N_3O)$	699	
Isopilocarpine ($C_{11}H_{16}N_2O_2$)	701	
Isopropylamphetamine ($C_{12}H_{19}N$)	, 01	1938
Isopropylnorepinephrine ($C_{12}H_{13}V$)	497	1700
Isoproterenol (DL-isoprenaline) ($C_{11}H_{17}NO_3$)	702–706	
Isopyridoxal ($C_8H_9NO_3$)	702 700	
Isopyridoxal-4-phosphate (C ₈ H ₁₀ NO ₆ P)	707	
Isoxsuprine ($C_{18}H_{23}NO_3$)	707	1939–1940
Itanoxone ($C_{17}H_{13}$ (ClO ₃)	708	1757-1740
	700	
J		
Juvenimicin (C ₃₁ H ₅₁ NO ₉)	1258	
Κ		
Kanamycin A (C ₁₈ H ₃₆ N ₄ O ₁₁)	709	
Ketamine ($C_{13}H_{16}CINO$)	710–711	
Ketobemidone ($C_{15}H_{21}NO_2$)	712–713	
Ketoconazole ($C_{26}H_{28}Cl_2N_4O_4$)	714	
Ketoprofen ($C_{16}H_{14}O_3$)	715–716	
KHL 8430 ($C_{25}H_{29}NO_2$)	717	
·		

651

I		
1		

L		
Labetalol (C ₁₉ H ₂₄ N ₂ O ₃)	718-720	
Lactic acid, $D(-)$ ($C_3H_6O_3$)	721	
Lactic acid, $L(+)$ (C ₃ H ₆ O ₃)	722	
Lactic acid, (\pm) (C ₃ H ₆ O ₃)	723–724	
Lansoprazole ($C_{16}H_{14}F_3N_3O_2S$)		1941
Lauric acid $(C_{12}H_{24}O_2)$	725	
Leu-His $(C_{12}H_{20}N_4O_3)$	453	
Leu-Phe $(C_{15}H_{22}N_2O_3)$	453	
Leu-Tyr $(C_{15}H_{22}N_2O_4)$	453	
Levallorphan tartrate ($C_{19}H_{25}NO.C_4H_6O_6$)	726	
Levallorphan tartrate $(C_{23}H_{31}NO_7)$	726	
Levallorphan ($C_{19}H_{25}NO$)	727–728	
Levarterenol (l-noradrenaline; l-norepinephrine)	729–731	
$(C_8H_{11}NO_3)$		
Levarterenol bitartrate ($C_8H_{11}NO_3.C_4H_6O_6$)		2035
Levarterenol bitartrate $(C_{12}H_{17}NO_9)$		2035
Levobunolol $(C_{17}H_{25}NO_3)$	1167	1641–1642
Levodopa ($C_9H_{11}NO_4$)	464, 732-	1817–1818
	733	
Levomepromazine ($C_{19}H_{24}N_2OS$)	799–800,	
1 (1) 21 2)	992	
Levomethadyl acetate (C ₂₃ H ₃₁ NO ₂)	14	
Levomethorphan ($C_{18}H_{25}NO$)		1942
Levomoramide $(C_{25}H_{32}N_2O_2)$		1943–1944
Levorphanol ($C_{17}H_{23}NO$)	734–736	
Levothyroxine $(C_{15}H_{11}I_4NO_4)$	1443	
Levulinic acid $(C_5H_8O_3)$	737	
Lidocaine (lignocaine; xylocaine) ($C_{14}H_{22}N_2O$)	738–746	
Lidocaine homologues	746	
Lignocaine ($C_{14}H_{22}N_2O$)	738–746	
Lincomycin ($C_{18}H_{34}N_2O_6S$)	747-748	
Linoleic acid ($C_{18}H_{32}O_2$)	749	
Liothyronine ($C_{15}H_{12}I_3NO_4$)		1945
Lisinopril ($C_{21}H_{31}N_3O_5$)	750-751	
Lisuride (C ₂₀ H ₂₆ N ₄ O)	752	
Lithium carbonate (CO_3Li_2)		1946
Lomefloxacin ($C_{17}H_{19}F_2N_3O_3$)	1235-1236	
Lonazolac ($C_{17}H_{13}ClN_2O_2$)	753	
Loperamide ($C_{29}H_{33}CIN_2O_2$)	754	
Lorazepam ($C_{15}H_{10}Cl_2N_2O_2$)	204, 755-	
· · · · · · · · · · · · · · · · · · ·	756	
Loxapine (C ₁₈ H ₁₈ ClN ₃ O)		1947
Lysergic acid $(C_{16}H_{16}N_2O_2)$	757	

Lysergic acid derivatives Lysergide ($C_{20}H_{25}N_3O$)	433	1948
M		
Magnamycin A (C ₄₂ H ₆₇ NO ₁₆)	250	
Maleic acid $(C_4H_4O_4)$	252, 758	
Malic acid $(C_4H_6O_5)$	759	
Malonic acid $(C_3H_4O_4)$	252, 760	
Mandelhydroxamic acid ($C_8H_9NO_3$)		1949
Mandelic acid ($C_8H_8O_3$)	761	1950–1951
D-(-)-Mandelic acid and analogues	762	
Mannitol ($C_6H_{14}O_6$)	763	
Mannuronic acid ($C_6H_{10}O_7$)		1546
Maprotiline ($C_{20}H_{23}N$)		1952
Mazindol ($C_{16}H_{13}CIN_2O$)		1953
Mebendazole (C ₁₆ H ₁₃ ClN ₃ O ₃)	764	
Mebeverine (C ₂₅ H ₃₅ NO ₅)	765	
Mebhydroline (C ₁₉ H ₂₀ N ₂)	766	
Mecamylamine ($C_{11}H_{21}N$)	767	
Mechlorethamine ($C_5H_{11}Cl_2N$)		1954
Mecillinam (C ₁₅ H ₂₃ N ₃ O ₃ S)	31	1556
Meclizine ($C_{25}H_{27}ClN_2$)	768–769	
Meclofenamic acid (C ₁₄ H ₁₁ Cl ₂ NO ₂)		1955
Medazepam (C ₁₆ H ₁₅ ClN ₂)	204, 770–	
	771	
Mefenamic acid ($C_{15}H_{15}NO_2$)	772–774	
Mefloquine ($C_{17}H_{16}F_6N_2O$)		1956
Melphalan ($C_{13}H_{18}Cl_2N_2O_2$)	775	1957
Mepazine (pecazine) ($C_{19}H_{22}N_2S$)	776, 952–	
	953, 1002	
Meperidine (pethidine) (C ₁₅ H ₂₁ NO ₂)	777,968	1958
Mephentermine ($C_{11}H_{17}N$)	778–779	1959
Mephenytoin ($C_{12}H_{14}N_2O_2$)		1960
Mepindolol ($C_{15}H_{22}N_2O_2$)		1961
Mepivacaine ($C_{15}H_{22}N_2O$)	741,780-	1962
-	781	
Mercaptomerin (C ₁₆ H ₂₇ HgNO ₆ S)		1963
6-Mercaptopurine ($C_5H_4N_4S$)	782–783	
Mesalamine ($C_7H_7NO_3$)		1964
Mesna (2-mercaptoethanesulfonic acid) ($C_2H_6O_3S_2$)		1965
Metaclazepam ($C_{18}H_{18}BrClN_2O$)	784	
Metaproterenol (orciprenaline) ($C_{11}H_{17}NO_3$)	645, 785-	1966
• • • • • • • • • • • • • • • • • • • •	786	
Metaraminol (C ₉ H ₁₃ NO ₂)		1967
Met-enkephalin ($C_{28}H_{37}N_5O_7$)	483	
Metformin ($C_4H_{11}N_5$)	787	

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methacycline ($C_{22}H_{22}N_2O_8$)		1968
Methadone analogues 788 Methamphetamine (methylamphetamine) 789–790 1773, 1973– (C ₁₀ H ₁₅ N) Methamphetamine, 4-hydroxy (C ₁₀ H ₁₅ NO) 791 Methamphetamine, N-(2-cyano)ethyl (C ₁₃ H ₂₅ N ₂) see 905 Methaphenilene (C ₁₄ H ₁₄ N ₅ S) 1976–1977 Methapyrilene (C ₁₄ H ₁₄ N ₂ O) 793 Metharbital (C ₅ H ₄ N ₄ O ₅ S) 1976–1977 Methaarbital (C ₄ H ₁₄ N ₂ O) 793 Methalzalnei (C ₆ H ₂₀ N ₅ S) 1977 Methalizaine (C ₈ H ₂₀ N ₅ S) 1978 Metholizzine (C ₈ H ₂₀ N ₅ S) 1979 Methoninie (C ₅ H ₁₂ N ₄) 1980–1982 Methicillin (C ₁₇ H ₂₀ N ₂ O,S) 794, 961 1983 Methoine (C ₁₄ H ₁₄ N ₂ O) 1609 1985 (C ₁₈ H ₂₂ N ₂ OS) 1985 1986 D [*] Methorphinan (C ₁₇ H ₂₃ NO) 1775 1986–1987 Methotrexate (C ₂₀ H ₂₂ N ₈ O ₅) 795–798 1986–1987 Methotrexate (C ₂₀ H ₂₂ N ₈ O ₅) 795–798 1986–1987 Methotrexate esters 798 1986–1987 Methotrexate esters 798 1986–1987			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		788	_, ,, _, _, _
Methamphetamine, 4-hydroxy (C10H15NO) 791 Methamphetamine, N-(2-cyano)ethyl (C13H25N2) see 905 Methapprilene (C14H14N2S) 792 Methapyrilene (C16H14N2S) 793 Metharbital (C3H414N2O) 793 Metharbital (C3H414N2O) 793 Metharbital (C3H414N2O) 1978 Methalazine (C18H20N2S) 1979 Methanine (C4H12N4) 1980–1982 Methicillin (C17H20N2O6S) 794, 961 1983 Methonexial (C14H18N2O) 1609 1609 Methoperomazine (methoxypromazine) 1985 1619 Methorphan (C18H2NO) 1775 1886 Methorphan (C19H2NO) 2176 1986 Methoryaposi 795–798 1986–1987 Methoryaposi 992 1986 Methoryaposi 252 2-4 Methoryaposi <			1773, 1973–
$\begin{array}{llllllllllllllllllllllllllllllllllll$			1975
Methaphenilene ($C_{15}H_{20}N_2S$) 792 Methapyrilene ($C_{14}H_{19}N_5$) 1976–1977 Methapyrilene ($C_{16}H_{14}N_2O$) 793 Metharbital ($C_{9}H_{14}N_2O_3$) 132 Methazolamide ($C_{5}H_8N_4O_3S_2$) 1978 Methadilazine ($C_{18}H_{20}N_2S$) 1979 Methenamine ($C_{6}H_{12}N_4$) 1980–1982 Methicillin ($C_{17}H_{20}N_2O_6S$) 794, 961 Methopromazine (methoxypromazine) 1985 ($C_{18}H_{22}N_2OS$) 1975 Methorphan ($C_{18}H_{25}NO$) 1775 Methotrize ($C_{20}H_{22}N_8O_5$) 795–798 Nethotrize ($C_{20}H_{22}N_8O_5$) 795–798 Methotrime reazine (levomepromazine) 799–800, ($C_{13}H_{24}N_2OS$) 992 Methoxamine ($C_{11}H_{17}NO_3$) 801–802 4-Methoxymphetamine ($C_{10}H_{15}NO$) 803 2-Methoxybenzoic acid ($C_{8}H_{6}O_3$) 252 3-Methoxycinnamic acid ($C_{10}H_{10}O_3$)			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		792	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methapyrilene (C ₁₄ H ₁₉ N ₃ S)		1976–1977
$\begin{array}{llllllllllllllllllllllllllllllllllll$		793	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Metharbital ($C_9H_{14}N_2O_3$)	132	1603–1604
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methazolamide ($C_5H_8N_4O_3S_2$)		1978
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methdilazine ($C_{18}H_{20}N_2S$)		1979
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methenamine ($C_6H_{12}N_4$)		1980–1982
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methicillin (C ₁₇ H ₂₀ N ₂ O ₆ S)	794, 961	1983
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methionine ($C_5H_{11}NO_2S$)	955	1984
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methohexital ($C_{14}H_{18}N_2O_3$)		1609
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Methopromazine (methoxypromazine)		1985
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$(C_{18}H_{22}N_2OS)$		
Methotrexate $(C_{20}H_{22}N_8O_5)$ 795–7981986–1987Methotrexate esters798Methotrimeprazine (levomepromazine)799–800, ($C_{19}H_{24}N_2OS$)992Methoxamine $(C_{11}H_{17}NO_3)$ 801–8024-Methoxyamphetamine $(C_{10}H_{15}NO)$ 8032-Methoxybenzoic acid $(C_8H_8O_3)$ 2523-Methoxycinnamic acid $(C_{10}H_{10}O_3)$ 2523-Methoxycinnamic acid $(C_{10}H_{10}O_3)$ 2523-Methoxycinnamic acid $(C_{10}H_{10}O_3)$ 2524-Methoxyphenamine $(C_{11}H_{17}NO)$ 8041-(2-Methoxyphenyl)piperazine $(C_{11}H_{16}N_2O)$ 90N-(3'-Methoxyphenyl)piperazine $(C_{11}H_{16}N_2O)$ 90N-(3'-Methoxyphenyl)anthranilic acid $(C_{14}H_{13}NO_3)$ 552–553Methoxypromazine $(C_{18}H_{22}N_2OS)$ 1985Methylomethiazide $(C_9H_{11} (Cl_2N_3O_4S_2))$ 805–806Methylamine (CH_5N) 9Methylamine (CH_5N) 9Methylamine (CH_5N) 9Methylamine $(C_{10}H_{15}NO_3)$ 807Methylamino-5-chlorobenzophenone808 $(C_{14}H_{12}CINO)$ 789–790Methylamphetamine $(C_{10}H_{15}N)$ 789–790	D-Methorphan ($C_{18}H_{25}NO$)		1775
Methotrexate $(C_{20}H_{22}N_8O_5)$ 795–7981986–1987Methotrexate esters798Methotrimeprazine (levomepromazine)799–800, ($C_{19}H_{24}N_2OS$)992Methoxamine $(C_{11}H_{17}NO_3)$ 801–8024-Methoxyamphetamine $(C_{10}H_{15}NO)$ 8032-Methoxybenzoic acid $(C_8H_8O_3)$ 2523-Methoxycinnamic acid $(C_{10}H_{10}O_3)$ 2523-Methoxycinnamic acid $(C_{10}H_{10}O_3)$ 2523-Methoxycinnamic acid $(C_{10}H_{10}O_3)$ 2524-Methoxyphenamine $(C_{11}H_{17}NO)$ 8041-(2-Methoxyphenyl)piperazine $(C_{11}H_{16}N_2O)$ 90N-(3'-Methoxyphenyl)piperazine $(C_{11}H_{16}N_2O)$ 90N-(3'-Methoxyphenyl)anthranilic acid $(C_{14}H_{13}NO_3)$ 552–553Methoxypromazine $(C_{18}H_{22}N_2OS)$ 1985Methylomethiazide $(C_9H_{11} (Cl_2N_3O_4S_2))$ 805–806Methylamine (CH_5N) 9Methylamine (CH_5N) 9Methylamine (CH_5N) 9Methylamine $(C_{10}H_{15}NO_3)$ 807Methylamino-5-chlorobenzophenone808 $(C_{14}H_{12}CINO)$ 789–790Methylamphetamine $(C_{10}H_{15}N)$ 789–790	Methorphinan ($C_{17}H_{23}NO$)		2176
$\begin{array}{llllllllllllllllllllllllllllllllllll$		795–798	1986–1987
$\begin{array}{lll} (C_{19}H_{24}N_2OS) & 992 \\ \mbox{Methoxamine} (C_{11}H_{17}NO_3) & 801-802 \\ \mbox{4-Methoxyamphetamine} (C_{10}H_{15}NO) & 803 \\ \mbox{2-Methoxybenzoic} acid (C_8H_8O_3) & 252 \\ \mbox{3-Methoxybenzoic} acid (C_8H_8O_3) & 252 \\ \mbox{3-Methoxycinnamic} acid (C_{10}H_{10}O_3) & 252 \\ \mbox{3-Methoxycinnamic} acid (C_{10}H_{10}O_3) & 252 \\ \mbox{4-Methoxycinnamic} acid (C_{10}H_{10}O_3) & 252 \\ \mbox{4-Methoxyphenamine} (C_{11}H_{17}NO) & 804 \\ \mbox{1-(2-Methoxyphenyl)piperazine} (C_{11}H_{16}N_2O) & 90 \\ \mbox{N-(3'-Methoxyphenyl)piperazine} (C_{11}H_{16}N_2O) & 90 \\ \mbox{Methoxypromazine} (C_{18}H_{22}N_2OS) & 1985 \\ \mbox{Methoxycinnamic} (C_{18}H_{22}N_2OS) & 1985 \\ \mbox{Methyclothiazide} (C_{9}H_{11} (Cl_2N_3O_4S_2) & 805-806 \\ \mbox{Methyladrenaline} (C_{10}H_{15}NO_3) & 807 \\ \mbox{Methylamine} (CH_5N) & 9 \\ \mbox{Methylamine} (C_{14}H_{12}ClNO) & 90 \\ \mbox{Methylamphetamine} (C_{10}H_{15}N) & 789-790 & 1773, 1973- \\ \end{tabular}$		798	
$\begin{array}{lll} (C_{19}H_{24}N_2OS) & 992 \\ \mbox{Methoxamine} (C_{11}H_{17}NO_3) & 801-802 \\ \mbox{4-Methoxyamphetamine} (C_{10}H_{15}NO) & 803 \\ \mbox{2-Methoxybenzoic} acid (C_8H_8O_3) & 252 \\ \mbox{3-Methoxybenzoic} acid (C_8H_8O_3) & 252 \\ \mbox{3-Methoxycinnamic} acid (C_{10}H_{10}O_3) & 252 \\ \mbox{3-Methoxycinnamic} acid (C_{10}H_{10}O_3) & 252 \\ \mbox{4-Methoxycinnamic} acid (C_{10}H_{10}O_3) & 252 \\ \mbox{4-Methoxyphenamine} (C_{11}H_{17}NO) & 804 \\ \mbox{1-(2-Methoxyphenyl)piperazine} (C_{11}H_{16}N_2O) & 90 \\ \mbox{N-(3'-Methoxyphenyl)piperazine} (C_{11}H_{16}N_2O) & 90 \\ \mbox{Methoxypromazine} (C_{18}H_{22}N_2OS) & 1985 \\ \mbox{Methoxycinnamic} (C_{18}H_{22}N_2OS) & 1985 \\ \mbox{Methyclothiazide} (C_{9}H_{11} (Cl_2N_3O_4S_2) & 805-806 \\ \mbox{Methyladrenaline} (C_{10}H_{15}NO_3) & 807 \\ \mbox{Methylamine} (CH_5N) & 9 \\ \mbox{Methylamine} (C_{14}H_{12}ClNO) & 90 \\ \mbox{Methylamphetamine} (C_{10}H_{15}N) & 789-790 & 1773, 1973- \\ \end{tabular}$	Methotrimeprazine (levomepromazine)	799–800,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		992	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		801-802	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		803	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		252	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		804	
$\begin{array}{lll} N-(3'-\text{Methoxyphenyl}) anthranilic acid (C_{14}H_{13}NO_3) & 552-553 \\ \\ \text{Methoxypromazine (C_{18}H_{22}N_2OS) & 1985 \\ \\ \text{Methyclomethiazide (C_9H_{11} (Cl_2N_3O_4S_2) & 805-806 \\ \\ \text{Methyclothiazide (C_9H_{11} (Cl_2N_3O_4S_2) & 197 \\ \\ \text{DL-N-Methyladrenaline (C_{10}H_{15}NO_3) & 807 \\ \\ \text{Methylamine (CH_5N) & 9 \\ \\ \text{Methyl 4-aminobenzoate (C_8H_9NO_2) & 38 \\ \\ 2-\text{Methylamino-5-chlorobenzophenone } & 808 \\ (C_{14}H_{12}\text{CINO}) & \\ \\ \text{Methylamphetamine (C_{10}H_{15}N) & 789-790 & 1773, 1973- \\ \end{array}$		90	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		552-553	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			1985
$\begin{array}{llllllllllllllllllllllllllllllllllll$		805-806	
$\begin{array}{ccc} DL-N-Methyladrenaline (C_{10}H_{15}NO_3) & 807 \\ Methylamine (CH_5N) & 9 \\ Methyl 4-aminobenzoate (C_8H_9NO_2) & 38 \\ 2-Methylamino-5-chlorobenzophenone & 808 \\ (C_{14}H_{12}CINO) & \\ Methylamphetamine (C_{10}H_{15}N) & 789-790 & 1773, 1973- \end{array}$		197	
Methylamine (CH ₅ N) 9 Methyl 4-aminobenzoate (C ₈ H ₉ NO ₂) 38 2-Methylamino-5-chlorobenzophenone 808 $(C_{14}H_{12}CINO)$ 789–790 Methylamphetamine (C ₁₀ H ₁₅ N) 789–790			
Methyl 4-aminobenzoate $(C_8H_9NO_2)$ 38 2-Methylamino-5-chlorobenzophenone 808 $(C_{14}H_{12}CINO)$ 789–790 Methylamphetamine $(C_{10}H_{15}N)$ 789–790			
2-Methylamino-5-chlorobenzophenone 808 $(C_{14}H_{12}CINO)$ 808 Methylamphetamine ($C_{10}H_{15}N$) 789–790 1773, 1973–		38	
$(C_{14}H_{12}CINO)$ 789–7901773, 1973–Methylamphetamine ($C_{10}H_{15}N$)789–7901773, 1973–			
Methylamphetamine (C ₁₀ H ₁₅ N) 789–790 1773, 1973–			
		789–790	1773, 1973–

N-Methyl-1-benzoyl ecgonine ($C_{17}H_{21}NO_4$) α-Methyl benzylpenilloate ($C_{16}H_{22}N_2O_3S$)	809	1988
Methylcaffeine ($C_9H_{12}N_4O_2$)	9	1989
	9	
Methyldihydromorphinone (metopon) ($C_{18}H_{21}NO_3$)	110(1990
5-Methyl-4,4-diphenyl-6-piperidino-3-hexanone	1126	
$(C_{24}H_{31}NO)$		1010 1010
6-Methyl-4,4-diphenyl-6-piperidino-3-hexanone		1810–1812,
$(C_{24}H_{31}NO)$		2116
L- α -Methyldopa (C ₁₀ H ₁₃ NO ₄)	810-812	
D- α -Methyldopamine (C ₉ H ₁₃ NO ₂)	813	
Methylenedioxyamphetamine (MDA) (C ₁₂ H ₁₉ NO ₂)	814	
1-(3,4-Methylenedioxybenzyl)-4-(2-pyrimidinyl)	1128	
piperazine (C ₁₆ H ₁₈ N ₄ O ₂)		
N-Methylephedrine (C ₁₁ H ₁₇ NO)	815 <i>,</i> 1178	1991
Methylergonovine ($C_{20}H_{25}N_3O_2$)	816	
Methylethylamphetamine ($C_{12}H_{19}N$)		1992
<i>N</i> -Methylglucamine ($C_7H_{17}NO_5$)	817	1993
Methylhexaneamine $(C_7H_{17}N)$	818	
1-Methyl-1H-imidazole ($C_4H_6N_2$)	819	
Methylisopropylamphetamine ($C_{12}H_{21}N$)	• = /	1994
Methyl nicotinate ($C_7H_7NO_2$)		1995
Methylparaben ($C_8H_8O_3$)	820	1996
α -Methylphenethylamine (C ₉ H ₁₃ N)	020	1997
<i>N</i> -Methylphenethylamine (C ₉ H ₁₃ N)	821	1997
Methylphenidate ($C_{14}H_{19}NO_2$)	822-823	
N-(3'-Methylphenyl)anthranilic acid (C ₁₄ H ₁₃ NO ₂)	552–553	
1-(2-Methylphenyl)piperazine ($C_{11}H_{16}N_2$)	90	
<i>N</i> -Methylpseudoephedrine ($C_{11}H_{17}NO$)	1178	
Methylprednisolone-21-phosphate ($C_{22}H_{31}O_8P$)	824	0001 0000
Methylpromazine ($C_{18}H_{22}N_2S$)		2331-2332
Methyl salicylate ($C_8H_8O_3$)		1998
4-Methylsulfadiazine ($C_{11}H_{12}N_4O_2S$)	1373–1374	2256
3'-Methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
4′-Methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
5'-Methylsulfapyridine-1-oxide ($C_{12}H_{12}N_3O_3S$)	1381	
6'-Methylsulfapyridine-1-oxide (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
5-Methyl-2-thiouracil ($C_5H_6N_2OS$)		1999
6-Methylthiouracil ($C_5H_6N_2OS$)		2000-2001
Methyprylon ($C_{10}H_{17}NO_2$)		2002
Methysergide ($C_{21}H_{27}N_3O_2$)	825-826	
Met-Leu $(C_{11}H_{22}N_2O_3S)$	453	
Metoclopramide ($C_{14}H_{22}ClN_3O_2$)	827-828	
Metolazone ($C_{16}H_{16}ClN_3O_3S$)		2003
Metopon (methyldihydromorphinone) ($C_{18}H_{21}NO_3$)		1990, 2004
		,

Metoprolol (C ₁₅ H ₂₅ NO ₃)	829–830,	
	1167	
Metronidazole ($C_6H_9N_3O_3$)	831-832	
Metyrosine ($C_{10}H_{13}NO_3$)		2005
Mexiletine ($C_{11}H_{17}NO$)	833-834	
Mezlocillin (C ₂₁ H ₂₅ N ₅ O ₈ S ₂)	835	
Mianserin ($C_{18}H_{20}N_2$)	836	
Miconazole ($C_{18}H_{14}Cl_4N_2O$)	837	2006
Midazolam (C ₁₈ H ₁₃ ClFN ₃)	838	2007
Minocycline (C ₂₃ H ₂₇ N ₃ O ₇)		2008
Minoxidil (C ₉ H ₁₅ N ₅ O)	839	
Mirtazepine (C ₁₇ H ₁₉ N ₃)	840	
Mitomycin C ($C_{15}H_{18}N_4O_5$)	841-844	
Mitoxantrone ($C_{22}H_{28}N_4O_6$)		2009
Molindone ($C_{16}H_{24}N_2O_2$)	845	
Monodesmethylpheniramine ($C_{15}H_{18}N_2$)	418	
Monoethylglycine xylidide (C ₁₂ H ₁₈ N ₂ O)	846	
Morizicine ($C_{22}H_{24}N_3O_4S$)	847	
Morphine ($C_{17}H_{19}NO_3$)	9,848-857	2010
Morphine-3-glucuronide (C ₂₃ H ₂₇ NO ₉)	858-859	
Morphine-6-glucuronide (C ₂₃ H ₂₇ NO ₉)	860-861	
Morphine- <i>N</i> -oxide ($C_{17}H_{19}NO_4$)		2011
Moxalactam ($C_{20}H_{20}N_6O_9S$)		2012
Moxonidine	96	
Muroctasin (Romurtide) ($C_{43}H_{78}N_6O_{13}$)	862	
5-O-Mycaminosyltylonolide (OMT) ($C_{31}H_{51}NO_{10}$)	863	
Ν		
Nabilone (C ₂₄ H ₃₆ O ₃)		2013
Nadolol ($C_{17}H_{27}O_4$)	1167	2014-2015
Nafcillin (C ₂₁ H ₂₂ N ₂ O ₅ S)	864	
Nalbuphine (C ₂₁ H ₂₇ NO ₄)		2016
Nalidixic acid (C ₁₂ H ₁₂ N ₂ O ₃)	865–866,	
	1237–	
	1238	
Nalmefene ($C_{21}H_{25}NO_3$)		2017
Nalorphine ($C_{19}H_{21}NO_3$)	867	2018
Naloxone ($C_{19}H_{21}NO_4$)	868	
Naltrexone ($C_{20}H_{23}NO_4$)	869	
Naphazoline (C ₁₄ H ₁₄ N ₂)	870-871	
2-Naphthol (C ₁₀ H ₈ O)	252	
Naproxen (C ₁₄ H ₁₄ O ₃)	872-874	
Narcotine ($C_{22}H_{23}NO_7$)	920–922	2041-2042
Natamycin ($C_{33}H_{47}NO_{13}$)		2019
Nebivolol ($C_{22}H_{25}F_2NO_4$)	875	
Nefazodone (C ₂₅ H ₃₂ ClN ₅ O ₂)		2020

Neostigmine ($C_{12}H_{19}N_2O_2$)		2021
Neo-synephrine ($C_{12}H_{13}NO_2$)	1077	2021
Neurophysin I	876	
Niacinamide ($C_6H_6N_2O$)	870	
Nicorandil ($C_8H_9N_3O_4$)	077	2022
Nicotinamide (niacinamide) ($C_6H_6N_2O$)	877	2022
Nicotine ($C_{10}H_{14}N_2$)	878-880	2023-2026
Nicotine methiodide ($C_{11}H_{17}IN_2$)	070-000	2023-2020
Nicotine analogues	880	2027
Nicotinic acid ($C_6H_5NO_2$)	881-883	
Nicotinic acid (non-aqueous titration) ($C_6H_5NO_2$)	194	
iso-Nicotinic acid ($C_6H_5NO_2$)	884	
Nicotinovlhydrazine ($C_6H_7N_3O$)	699	
	885-886	
Nifedipine $(C_{17}H_{18}N_2O_6)$	887-889	
Niflumic acid $(C_{13}H_9F_3N_2O_2)$		
Nikethamide ($C_{10}H_{14}N_2O$)	890	
Nimesulide ($C_{13}H_{12}N_2O_5S$)	891-893	
Nimetazepam ($C_{16}H_{13}N_3O_3$)	894	
Nitrazepam ($C_{15}H_{11}N_3O_3$)	204, 895–	
N''_{1}	899	
Nitrazepam, 7-acetamido ($C_{17}H_{13}N_3O_4$)	205	
Nitrazepam, 7-amino ($C_{15}H_{12}N_4O_3$)	205	
3-Nitroazuloic acid ($C_{11}H_7NO_4$)	115	
2-Nitrobenzoic acid ($C_7H_5NO_4$)	252	
3-Nitrobenzoic acid ($C_7H_5NO_4$)	252	
4-Nitrobenzoic acid ($C_7H_5NO_4$)	252	
p-Nitrobenzoylhydrazine (C ₇ H ₇ N ₃ O ₃)	699	
Nitrofurantoin ($C_8H_6N_4O_5$)		2028–2029
Nitrofurazone ($C_6H_6N_4O_4$)	900	
4-Nitrophenol ($C_6H_5NO_3$)	252	
8-Nitrotheophylline ($C_7H_7N_5O_4$)	901-902	1699
Nizatidine ($C_{12}H_{21}N_5O_2S_2$)	96	2030-2031
l-Noradrenaline ($C_8H_{11}NO_3$)	729–731,	
	908–910	
Norcarnitine ($C_6H_{13}NO_3$)	378	
Norcodeine (C ₁₇ H ₁₉ NO ₃)	903–904	
Norcodeine, N-(2-cyano)ethyl (C ₂₀ H ₂₂ N ₂ O ₃)	905	
Nordefrin (Cobefrin) (C ₉ H ₁₃ NO ₃)	345, 906	2032-2033
Norephedrine ($C_9H_{13}NO$)	907	2034
l-Norepinephrine (C ₈ H ₁₁ NO ₃)	497, 729–	
	731, 908–	
	910	
Norepinephrine bitartrate (levarterenol bitartrate)		2035
$(C_8H_{11}NO_3.C_4H_6O_6)$		

Norepinephrine bitartrate (levarterenol bitartrate) (C ₁₂ H ₁₇ NO ₉)		2035
Norfenefrine ($C_8H_{11}NO_2$)	911	
Norfloxacin ($C_{16}H_{18}FN_3O_3$)	1239–1242	
Norfloxacin ($C_{16}H_{18}H_{3}O_{3}$) Norfloxacin ethyl ester ($C_{18}H_{22}FN_3O_3$)	1237 1242	
Norhyoscyamine ($C_{16}H_{21}NO_3$)	652, 912	
Norketamine ($C_{12}H_{14}CINO$)	002, 712	2036
Norketobemidone ($C_{12}H_{19}NO_2$)	913	2000
Normethadone ($C_{20}H_{25}NO$)	710	2037-2038
Normorphine ($C_{16}H_{17}NO_3$)	914–915	2007 2000
Norparamethadione ($C_6H_9NO_3$)	916	
Norpseudoephedrine ($C_9H_{13}NO$)	917	2039
Nortrimethadione ($C_5H_7NO_3$)	918	2007
Nortriptyline ($C_{19}H_{21}N$)	919	2040
Noscapine (narcotine) ($C_{22}H_{23}NO_7$)	920-922	2041-2042
Novobiocin ($C_{31}H_{36}NO_{11}$)	/_0 /	2043
Novocaine	9	2010
Nystatin ($C_{47}H_{75}NO_{17}$)	,	2044
-		_011
0		
Octodrine ($C_8H_{19}N$)	923	
Octopamine ($C_8H_{11}NO_2$)		2045
Ofloxacin ($C_{18}H_{20}FN_3O_4$)	1244–1245	
Olanzapine	96	
Oleandomycin (C ₃₅ H ₆₁ NO ₁₂)	924–925	
Oleic acid ($C_{18}H_{34}O_2$)	926	
Omeprazole (C ₁₇ H ₁₉ N ₃ O ₃ S)	927	
OMT $(C_{31}H_{51}NO_{10})$	863	
Ondansetron ($C_{18}H_9N_3O$)		2046
Opipramol (C ₂₃ H ₂₉ N ₃ O)	928	
Orbifloxacin ($C_{19}H_{20}F_3N_3O_3$)	1246	
Orciprenaline ($C_{11}H_{17}NO_3$)	785–786,	1966
	929	
Ornidazole ($C_7H_{10}ClN_3O_3$)		2047
Orphenadrine ($C_{18}H_{23}NO$)		2048
Oxacillin (C ₁₉ H ₁₉ N ₃ O ₅ S)	962	2049-2050
Oxamniquine (C ₁₄ H ₂₁ N ₃ O ₃)	930	
Oxazepam ($C_{15}H_{11}ClN_2O_2$)	204, 931–	
	933	
Oxprenolol ($C_{15}H_{23}NO_3$)	1167	2051
Oxybutynin ($C_{22}H_{31}NO_3$)		2052
Oxycodone ($C_{18}H_{21}NO_4$)	398, 934	2053
Oxymorphone ($C_{17}H_{19}NO_4$)		2054
Oxyphenbutazone ($C_{19}H_{20}N_2O_3$)	935–938	

Oxypurinol (C ₅ H ₄ N ₄ O ₂) Oxytetracycline (C ₂₂ H ₂₄ N ₂ O ₉)	939–945	2055
Oxytocin ($C_{43}H_{66}N_{12}O_{12}S_2$)	<i>707</i> 710	2056
Р		
Pachycarpine	9	
Pamaquine (plasmoquin) ($C_{19}H_{29}N_3O$)		2057-2059
Pantoprazole ($C_{16}H_{15}F_2N_3O_4S$)		2060
Papaverine ($C_{20}H_{21}NO_4$)	9, 946–951	
Paracetamol ($C_8H_9NO_2$)	1–7	1528–1530
Paraxanthine ($C_7H_8N_4O_2$)		2061
Paredrine ($C_9H_{13}NO$)	635	
Pargyline ($C_{11}H_{13}N$)		2062
Paromomycin	96	20/2
Paroxetine ($C_{19}H_{20}FNO_3$)		2063
Pecazine ($C_{19}H_{22}N_2S$)	776, 952–	
Defloyagin (C. H. EN. O.)	953, 1002	
Pefloxacin (C ₁₇ H ₂₀ FN ₃ O ₃) Pelargonic acid (C ₉ H ₁₈ O ₂)	1247 954	
Pemoline ($C_9H_8N_2O_2$)	904	2064
Pempidine $(C_{10}H_{21}N)$		2065
Penbutolol ($C_{18}H_{29}NO_2$)	1167	2005
Penicillamine ($C_5H_{11}NO_2S$)	375, 955–	2000
(e ₅ (1))	956	
Penicilloic acid (C ₈ H ₁₄ N ₂ O ₄ S)	957	
Penicillin G (benzylpenicillin) ($C_{16}H_{18}N_2O_4S$)	217, 958–	
	959, 961	
Penicillin V (phenoxymethylpenicillin)	960–962	
$(C_{16}H_{18}N_2O_5S)$		
Pentamidine ($C_{19}H_{24}N_4O_2$)		2067
Pentazocine ($C_{19}H_{27}NO$)	963	2068
Pentobarbitone ($C_{11}H_{18}N_2O_3$)	140–143	
Pentostatin ($C_{11}H_{16}N_4O_4$)	964	
Pentoxiphylline (C ₁₃ H ₁₈ N ₄ O ₃)		2069-2070
Pergolide mesylate (C ₁₉ H ₂₆ N ₂ S.CH ₃ SO ₃ H)		2071
Perhexilene ($C_{19}H_{35}N$)	965	
Perphenazine ($C_{21}H_{26}ClN_3OS$)	966–967	2072
Pethidine $(C_{15}H_{21}NO_2)$	777, 968	1958
Pharmorubicin ($C_{27}H_{29}NO_{11}$)	376, 969	• • • •
Phenacetin ($C_{10}H_{13}NO_2$)	9	2073
Phenadoxone ($C_{23}H_{29}NO_2$)	450	2074–2076
Phe-Gly $(C_{11}H_{14}N_2O_3)$	453	
Phe-Leu $(C_{15}H_{22}N_2O_3)$	453	
Phenazocine ($C_{22}H_{27}NO$)	970 971	
Phenazopyridine ($C_{11}H_{11}N_5$) Phencyclidine ($C_{17}H_{25}N$)	971	2077
1 nencychamie (C171 1251N)		2077

Phendimetrazine ($C_{12}H_{17}NO$)		2078
Phenethicillin ($C_{17}H_{20}N_2O_5S$)	961, 972	2070
Phenoxypropylpenicillin ($C_{18}H_{22}N_2O_5S$)	1007	2017
α -Phenethylamine (1-amino-1-phenylethane)	973	
$(C_8H_{11}N)$	975	
Phenformin ($C_{10}H_{15}N_5$)	974	
Phenindamine $(C_{19}H_{19}N)$	975	2080
Phenindione $(C_{10}H_{15}O_2)$	976	2000
Pheniramine ($C_{10}H_{20}N_2$)	977	2081-2083
Phenmetrazine ($C_{16}H_{20}V_{2}$)		2084-2085
Phenobarbital ($C_{12}H_{12}N_2O_3$)	173–184	1612–1613
Phenolphthalein ($C_{20}H_{14}O_4$)	978-979	1012-1015
· · · · · · · · · · · · · · · · · · ·	978–979 980	2086
Phenol red ($C_{19}H_{14}O_5S$)		2000
Phenols	252	2006
Phenolsulphonphthalein (phenol red) ($C_{19}H_{14}O_5S$)	980	2086
Phenomorphan ($C_{24}H_{29}NO$)	0.01	2087
Phenothiazine ($C_{12}H_9NS$)	981	
Phenothiazine, 10-[N-(4-carbamoyl)piperidinyl]	983	
propyl-2-chloro- (C ₂₁ H ₂₄ ClN ₂ OS)		
Phenothiazine, 2-chloro-10-(3-	984–985	
dimethylaminopropyl)- (C ₁₇ H ₁₉ ClN ₂ S)		
Phenothiazine, 2-chloro-10-[N-(2-hydroxy)ethyl]	986	
piperazinylpropyl- (C ₂₁ H ₂₂ ClN ₃ OS)		
Phenothiazine, 2-chloro-10-[N-methyl]	987–988	
piperazinylpropyl- (C ₂₀ H ₂₄ ClN ₃ S)		
Phenothiazine, 2-chloro-10-[N-(2-propionyloxy)	989–990	
ethyl]piperazinylpropyl- $(C_{24}H_{26}ClN_3O_2S)$		
Phenothiazine derivatives	982	
Phenothiazine, 10-(2-diethylaminoethyl)-	991	
$(C_{18}H_{22}N_2S)$		
Phenothiazine, 10-(2-dimethylaminomethyl)propyl-	992	
2-methoxy- ($C_{19}H_{24}N_2OS$)		
Phenothiazine, 10-(2-dimethylaminopropyl)-	993–994	
$(C_{17}H_{20}N_2S)$		
Phenothiazine, 10-(3-dimethylaminopropyl)-	995	
$(C_{17}H_{20}N_2S)$		
Phenothiazine, 10-(3-dimethylaminopropyl)-2-	996–997	
trifluoromethyl- ($C_{18}H_{19}F_3N_2S$)	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	
Phenothiazine, 10-(N-methyl)piperazinylpropyl-2-	998–999	
trifluoromethyl- $(C_{21}H_{24}F_3N_3S)$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Phenothiazine, 10-[2-(<i>N</i> -methyl)piperidinyl]ethyl-2-	1000–1001	
methylthio- $(C_{21}H_{22}N_2S_2)$	1000-1001	
	1007	
Phenothiazine, 10-(<i>N</i> -methyl)piperidinyl]methyl-	1002	
(mepazine) ($C_{19}H_{22}N_2S$)		

Phenothiazine, 10-(<i>N</i> -pyrrolidinyl)ethyl-	1003	
(pyrathiazine) ($C_{18}H_{20}N_2S$)	1004	
Phenoxyacetic acid ($C_8H_8O_3$)	1004	2000
Phenoxybenzamine ($C_{18}H_{22}$ ClNO)	1005	2088
Phenoxyethylpenicilloic acid ($C_{17}H_{22}N_2O_6S$)	1005	
Phenoxymethylpenicillin ($C_{16}H_{18}N_2O_5S$)	960–962	
Phenoxymethylpenicilloic acid ($C_{16}H_{20}N_2O_6S$)	1006	
Phenoxypropazine ($C_9H_{14}N_2O$)		2089
Phenoxypropylpenicilloic acid (C ₁₈ H ₂₄ N ₂ O ₆ S)	1007	
Phenprocoumon ($C_{18}H_{16}O_3$)	637, 1506	
Phentermine ($C_{10}H_{15}N$)		2090-2091
Phentolamine ($C_{17}H_{19}N_3O$)		2092
N-Phenylanthranillic acid ($C_{13}H_{11}NO_2$)	552, 1008	
Phenylbutazone ($C_{19}H_{20}N_2O_2$)	1009–1018	2093
Phenylbutazone analogs	1018	2094
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one	1019	
$(C_{15}H_{12}N_2O)$		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1075	
7-amino $(C_{15}H_{13}N_3O)$		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1027	
2'-bromo-7-chloro ($C_{15}H_{10}BrClN_2O$)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1070	
1-[butane-2,4-diol]-2'-fluoro-7-chloro		
$(C_{19}H_{18}ClFN_2O_3)$		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1066	
1-[butane-2,4-diol]-2'-fluoro-7-iodo	1000	
$(C_{19}H_{18}FIN_2O_3)$		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1076	
1-[butane-2,4-diol]-7-nitro ($C_{19}H_{19}N_3O_5$)	1070	
	1040	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1040	
7-chloro ($C_{15}H_{11}$ ClN ₂ O)	1055	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1055	
2'-chloro-7-nitro (C ₁₅ H ₁₀ ClN ₃ O ₃)	10/5	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1065	
7-cyano ($C_{16}H_{11}N_3O$)	1000	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1028	
2',7-dichloro (C ₁₅ H ₁₀ Cl ₂ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1050	
2', $6'$ -difluoro-7-chloro (C ₁₅ H ₉ ClF ₂ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1044	
2',6'-difluoro-8-chloro ($C_{15}H_{10}ClF_2N_2O$)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1054	
7-dimethylamino ($C_{17}H_{17}N_3O$)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one, 1,2'-	1037	
dimethyl-7-chloro (C ₁₇ H ₁₅ ClN ₂ O)		

5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1021
1,3-dimethyl-2',7-dichloro ($C_{17}H_{14}Cl_2N_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1069
2',7-dinitro (C ₁₅ H ₁₀ N ₄ O ₅)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1067
1-ethyl-7-amino ($C_{17}H_{17}N_3O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1024
1-ethyl-7-chloro ($C_{17}H_{15}ClN_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1057
4'-fluoro ($C_{15}H_{11}FN_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1058
7-fluoro ($C_{15}H_{11}FN_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1068
2'-fluoro-7-acetyl ($C_{17}H_{13}FN_2O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1049
2'-fluoro-7-chloro ($C_{15}H_{10}ClFN_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1043
4'-fluoro-7-chloro ($C_{15}H_{10}ClF_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1020
2'-fluoro-7,8-dichloro (C ₁₅ H ₉ Cl ₂ FN ₂ O)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1042
2'-fluoro-7-ethyl ($C_{17}H_{15}FN_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1060
3-hydroxy-7-chloro ($C_{15}H_{11}ClN_2O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1056
3-hydroxy-2',7-dichloro ($C_{15}H_{10}Cl_2N_2O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1059
7-methoxy ($C_{16}H_{14}N_2O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1051
2'-methoxy-7-chloro ($C_{16}H_{13}ClN_2O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1030
3'-methoxy-7-chloro (C ₁₆ H ₁₃ ClN ₂ O ₂)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1072
1-methoxymethyl-7-amino ($C_{17}H_{17}N_3O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1074
1-methoxymethyl-2'-fluoro-7-amino	
$(C_{12}H_{16}FN_3O_2)$	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1064
1-methoxymethyl-7-nitro ($C_{17}H_{16}N_3O_4$)	1001
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1045
1-methoxymethyl-7-chloro ($C_{17}H_{15}ClN_2O_2$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1052
7-methyl ($C_{16}H_{14}N_2O$)	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1071
1-methyl-7-amino ($C_{16}H_{15}N_3O$)	10/1
- monty / minino (010110130)	

5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one, 1-methyl-7-chloro (C ₁₆ H ₁₅ ClN ₂ O)	1046	
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1033	
2′-methyl-7-chloro (C ₁₆ H ₁₃ ClN ₂ O) 5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1023	
3-methyl-7-chloro (C ₁₆ H ₁₃ ClN ₂ O) 5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1035	
1-methyl-4'-chloro-7-fluoro ($C_{16}H_{12}ClF_2O$)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1048	
3-methyl-2'-chloro-7-nitro (C ₁₆ H ₁₃ ClN ₃ O ₃)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1032	
1-methyl-2',7-dichloro (C ₁₆ H ₁₂ Cl ₂ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1073	
1-methyl-2'-fluoro-7-amino (C ₁₆ H ₁₄ FN ₃ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1047	
1-methyl-2'-fluoro-7-chloro (C ₁₆ H ₁₂ ClFN ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1031	
1-methyl-2'-fluoro-7-iodo (C ₁₆ H ₁₂ FIN ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1063	
1-methyl-2'-fluoro-7-nitro (C ₁₆ H ₁₃ FN ₃ O ₃)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1029	
1-methyl-4'-methoxy-7-chloro (C ₁₇ H ₁₅ ClN ₂ O ₂)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1061	
1-methyl-7-nitro ($C_{16}H_{13}N_3O_3$)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1039	
1-methyl-7-thiomethyl (C ₁₇ H ₁₆ N ₂ OS)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1036	
1-methyl-2',6',7-trichloro (C ₁₆ H ₁₁ Cl ₃ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1062	
7-nitro (C ₁₅ H ₁₂ N ₃ O ₃)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1041	
7-thiomethyl (C ₁₆ H ₁₄ N ₂ OS)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1038	
2'-thiomethyl-7-chloro (C ₁₆ H ₁₃ ClN ₂ OS)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1053	
2'-trifluoromethyl (C ₁₆ H ₁₁ F ₃ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1025	
3'-trifluoromethyl (C ₁₆ H ₁₁ F ₃ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1022	
4'-trifluoromethyl ($C_{16}H_{11}F_3N_2O$)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1034	
7-trifluoromethyl (C ₁₆ H ₁₁ F ₃ N ₂ O)		
5-Phenyl-1,3-dihydro-1,4-benzodiazepin-2-one,	1026	
2'-trifluoromethyl-7-chloro (C ₁₆ H ₁₀ ClF ₃ N ₂ O)		
Phenylephrine (Neo-synephrine) (C ₉ H ₁₃ NO ₂)	1077	2095–2096

Phenylethylamine ($C_8H_{11}N$)	1078–1079	2097–2098
Phenylethylamine, m_{p} -dihydroxy (C ₈ H ₁₁ NO ₂)	1085	
Phenylethylamine, <i>m</i> , <i>p</i> -dihydroxy, N-methyl	1086	
$(C_9H_{13}NO_2)$		
Phenylethylamine, 2-hydroxy ($C_8H_{11}NO$)	1080	
Phenylethylamine, 2-hydroxy, <i>m</i> -hydroxy	1081	
$(C_8H_{11}NO_2)$	1001	
Phenylethylamine, 2-hydroxy, <i>m</i> -hydroxy,	1082	
N-methyl ($C_9H_{13}NO_2$)	1002	
Phenylethylamine, 2-hydroxy, <i>p</i> -hydroxy	1087	
	1007	
$(C_8H_{11}NO_2)$	1000	
Phenylethylamine, 2-hydroxy, <i>p</i> -hydroxy, N-methyl	1088	
$(C_9H_{13}NO_2)$	1000	
Phenylethylamine, 2-hydroxy, N -methyl (C ₉ H ₁₃ NO)	1089	
Phenylethylamine, p -hydroxy (C ₈ H ₁₁ NO)	1083	
Phenylethylamine, <i>p</i> -hydroxy, <i>N</i> -methyl (C ₉ H ₁₃ NO)	1084	
DL-Phenyllactic acid ($C_9H_{10}O_3$)		2099
3-Phenyloxycarbonyl-5-fluorouracil	564	
Phenylpenilloic acid (C ₁₄ H ₁₇ N ₂ O ₃ S)	1090-1091	
1-Phenylpiperazine ($C_{10}H_{14}N_2$)	90	
Phenylpropanolamine ($C_9H_{13}NO$)	1092-1094	2100-2101
Phenylpropylmethylamine (Vonedrine) ($C_{10}H_{15}N$)	1095-1096	
Phenyltoloxamine ($C_{17}H_{21}NO$)		2102
5-Phenylvaleric acid $(C_{10}H_{14}O_2)$	1097	
Phenyramidol ($C_{13}H_{14}N_2O$)	1098-1099	
Phenyramidol analogues	1099	
Phenytoin ($C_{15}H_{12}N_2O_2$)	1100–1104	
Phe-Phe ($C_{18}H_{20}N_2O_3$)	453	
Phe-Ser $(C_{12}H_{16}N_2O_4)$	453	
Phe-Tyr ($C_{12}H_{16}H_{20}N_2O_4$)	453	
Pholcodine $(C_{23}H_{30}N_2O_4)$	400	2103
	1105–1106	2105
Phosphocreatine ($C_4H_{10}N_3O_5P$)		
2-Phthalic acid ($C_8H_6O_4$)	252, 1107	2104
Phthalimide ($C_8H_5NO_2$)	1100	2104
Physostigmine $(C_{15}H_{21}N_3O_2)$	1109	6 4 0 F
Physostigmine salicylate ($C_{22}H_{27}N_3O_5$)	1108	2105
Picolinic acid ($C_6H_5NO_2$)	881, 1110	
Picolinoylhydrazine ($C_6H_7N_3O$)	699	
Pilocarpine ($C_{11}H_{16}N_2O_2$)	9, 1111–	
	1118	
Piminodine ($C_{23}H_{30}N_2O_2$)		2106
Pimozide ($C_{28}H_{29}F_2N_3O$)		2107-2108
Pinacidil (C ₁₃ H ₁₉ N ₅)		2109
Pinazepam (C ₁₈ H ₁₃ ClN ₂ O)		2110
Pindolol ($C_{14}H_{20}N_2O_2$)		2111-2113
·,		

Pipamazine (C ₂₁ H ₂₄ ClN ₃ OS)	983, 1119	
Pipecuronium bromide (pipecurium bromide) ($C_{35}H_{62}Br_2N_4O_4$)		2114
Piperazine ($C_4H_{10}N_2$)	1120–1121	2115
Piperazine estrone sulfate ($C_{22}H_{32}N_2O_5S$)	1122	
Piperidine ($C_5H_{11}N$)	1123-1124	
6-Piperidino-4,4-diphenylheptan-3-one		1810–1812,
(dipipanone) ($C_{24}H_{31}NO$)		2116
Piperine $(C_{17}H_{19}NO_3)$	1125	
DL-Pipidone (5-methyl-4,4-diphenyl-6-piperidino-3-	1126	
hexanone)		
Pipradol ($\dot{C_{18}H_{21}NO}$)		2117
Pirbuterol $(C_{12}H_{20}N_2O_3)$	1127	2118
Piribedil (1-(3,4-methylenedioxybenzyl)-4-	1128	
$(2-pyrimidinyl)$ piperazine) ($C_{16}H_{18}N_4O_2$)		
Piroxicam $(C_{15}H_{13}N_3O_4S)$	1129–1131	
(O-Pivaloyl)etilefrine ($C_{15}H_{23}NO_3$)	1132	
1-Pivaloyloxymethyl-5-fluorouracil	569	
Pivampicillin (C ₂₂ H ₂₉ N ₃ O ₆ S)		2119
Pizotyline ($C_{19}H_{21}NS$)		2120
Plasmoquin ($C_{19}H_{29}N_3O$)		2057-2059
Platyphylline	9	
Polymyxin B – a mixture of polymyxin B_1	2121	
(C ₅₆ H ₉₈ N ₁₆ O ₁₃) and polymyxin B ₂ (C ₅₅ H ₉₆ N ₁₆ O ₁₃)		
Polymyxin B ₁ ($C_{56}H_{98}N_{16}O_{13}$)		2121
Polymyxin B ₂ ($C_{55}H_{96}N_{16}O_{13}$)		2121
Polythiazide $(C_{11}H_{13}ClF_3N_3O_4S_3)$	197, 1133	
Porfiromycin ($C_{16}H_{20}N_4O_5$)	844, 1134	
Practolol $(C_{14}H_{22}N_2O_3)$,	2122
Pralidoxime chloride ($C_7H_9ClN_2O$)	1135	
Pramoxine $(C_{17}H_{27}NO_3)$		2123
Prazepam ($C_{19}H_{17}CIN_2O$)		2124-2125
Prazosin $(C_{19}H_{21}N_5O_4)$		2126–2127
Prenalterol $(C_{12}H_{19}NO_3)$		2128
Prenylamine $(C_{24}H_{27}N)$	1136	
Prilocaine ($C_{13}H_{20}N_2O$)		2129-2130
Primaquine ($C_{15}H_{21}N_3O$)	1137	
Pristinamycin I _A (vernamycin B α) (C ₄₅ H ₅₄ N ₈ O ₁₀)	1138	
Probenecid ($C_{13}H_{19}NO_4S$)	1139	
Procainamide ($C_{13}H_{21}N_3O$)		2131-2132
Procaine $(C_{13}H_{20}N_2O_2)$	741, 1140–	2133
	1142	
Procarbazine ($C_{12}H_{19}N_3O$)	1143	

Prochlorperazine ($C_{20}H_{24}ClN_3S$)	987–988,	2134
1 (20 21 07)	1144–	
	1147	
Proflavine ($C_{13}H_{11}N_3$)	18	
Progabide ($C_{17}H_{16}ClFN_2O_2$)	1148	
Promazine $(C_{17}H_{20}N_2S)$	995, 1149–	2135
	1152	
Promedol	9	
Promethazine ($C_{17}H_{20}N_2S$)	1153–1156	
Propafenone $(C_{21}H_{27}NO_3)$		2136
Proparacaine $(C_{16}H_{26}N_2O_3)$	1157	
Propicillin ($C_{18}H_{22}N_2O_5S$)	961	2137
Propiomazine ($C_{20}H_{24}N_2OS$)		2138
Propionic acid $(C_3H_6O_2)$	252, 1158	
1-Propionyloxymethyl-5-fluorouracil	569	
Propofol $(C_{12}H_{18}O)$	1159	
Propoxycaine ($C_{16}H_{26}N_2O_3$)		2139
Propoxyphene ($C_{22}H_{29}NO_2$)		2140-2141
Propranolol ($C_{16}H_{21}NO_2$)	1160-1170	2142-2143
Propyl 4-aminobenzoate ($C_{10}H_{13}NO_2$)	38	
Propylamphetamine ($C_{12}H_{19}N$)		2144
Propylhexedrine ($C_{10}H_{21}N$)	1171	2145-2146
Propylparaben ($C_{10}H_{12}O_3$)		2147
6-n-Propyl-2-thiouracil (C ₇ H ₁₀ N ₂ OS)		2148
Prostaglandin E_1 ($C_{20}H_{34}O_5$)	1172	2149
Prostaglandin E_2 ($C_{20}H_{32}O_5$)	1173	1804
Prostaglandin $F_{2\alpha}$ ($C_{20}H_{34}O_5$)	451, 1174	
Pseudoecgonine (C ₉ H ₁₅ NO ₃)	1175	
Pseudoecgonine, methyl ester ($C_{10}H_{17}NO_3$)	1176	
Pseudoephedrine ($C_{10}H_{15}NO$)	1177-1178	2150-2151
Pseudotropine ($C_8H_{15}NO$)	1179	
Pteridine, 2,4-diamino-6-formyl ($C_7H_6N_6O$)	1181	
Pteridine, 2,4-diamino-6-hydroxy ($C_6H_6N_6O$)	1182	
Pteridine, 2,4-diamino-6-methyl ($C_7H_8N_6$)	1180	
Pteridine, 2-amino-4-hydroxy-6-formyl (C ₇ H ₅ N ₅ O ₂)	1183	
Pteridine, 2-amino-4-hydroxy-6-methyl (C ₇ H ₇ N ₅ O)	1184	
Purine $(C_5H_4N_4)$	241	2424
Purine derivatives	783	
Pyramidone	9	
Pyrathiazine ($C_{18}H_{20}N_2S$)	1003, 1185–	
	1186	
Pyrazinamide (C ₅ H ₅ N ₃ O)		2152
Pyrazolic acid (C ₁₇ H ₁₃ ClN ₂ O ₂)	1187	
Pyridine (C_5H_5N)	9	2153
Pyridoxal (C ₈ H ₉ NO ₃)	1188–1190	

Pyridoxal, 3-methoxy (C ₉ H ₁₁ NO ₃) Pyridoxal, <i>N</i> -methyl (C ₉ H ₁₂ NO ₃) Pyridoxal-5-phosphate (C ₈ H ₁₀ NO ₆ P) Pyridoxamine (C ₈ H ₁₂ N ₂ O ₂) Pyridoxamine, 3-methoxy (C ₉ H ₁₄ N ₂ O ₂) Pyridoxamine, <i>N</i> -methyl (C ₉ H ₁₅ N ₂ O ₂) Pyridoxamine-5-phosphate (C ₈ H ₁₃ N ₂ O ₆ P) Pyridoxine (C ₈ H ₁₁ NO ₃) 1,3-bis[(2-Pyridyl)methyleneamino]guanidine (C ₁₃ H ₁₃ N ₇)	$1191 \\ 1192 \\ 1193 \\ 1194-1197 \\ 1198 \\ 1199 \\ 1200-1201 \\ 1202-1206 \\ 1207 \\$	
Pyridylmethyl phosphate esters (C ₆ H ₈ NO ₄ P)	1208	
1-(2-Pyridyl)piperazine ($C_9H_{13}N_3$)	90	
Pyrilamine (C ₁₇ H ₂₃ N ₃ O)		2154–2155
Pyrimethamine ($C_{12}H_{13}ClN_4$)		2156-2158
Pyrimethazine ($C_{12}H_{13}ClN_4$)	00	2159
1-(2-Pyrimidinyl)piperazine ($C_8H_{12}N_4$)	90	21(0
Pyrrobutamine ($C_{20}H_{22}CIN$)	1200	2160
Pyrrolo[2,3-d]pyrimidine derivatives	1209	
Q		
Quinacrine (C ₂₃ H ₃₀ ClN ₃ O)	1210	2161-2163
Quinethazone ($C_{10}H_{12}ClN_3O_3S$)		2164
Quinidine ($C_{20}H_{24}N_2O_2$)	1211–1213,	2165–2166
	1221	
Quinine ($C_{20}H_{24}N_2O_2$)	9, 1214–	
1 (2 Origolizzal) zizarziza (C. H. N.)	1223	
1-(2-Quinolinyl)piperazine ($C_{13}H_{15}N_3$) Quinolone – <i>N</i> -acetylnorfloxacin ($C_{18}H_{20}FN_3O_4$)	90 1224	
Quinolone – N -acetymornoxacin (C ₁₈ H ₂₀ FN ₃ O ₄) Quinolone – amifloxacin (C ₁₆ H ₁₉ FN ₄ O ₃)	1225–1226	
Quinolone – ciprofloxacin ($C_{17}H_{18}FN_3O_3$)	316, 1227–	1723, 2167
	1228	1720, 2107
Quinolone – 8-desfluorolomefloxacin	1229	
$(C_{17}H_{20}FN_3O_3)$		
Quinolone – difloxacin ($C_{21}H_{19}F_2N_3O_3$)	1230	
Quinolone – enoxacin ($C_{15}H_{17}FN_4O_3$)	1231	2168
Quinolone – fleroxacin (C ₁₇ H ₁₈ F ₃ N ₃ O ₃)	1232	2169
Quinolone – 8-fluoro-norfloxacin ($C_{16}H_{17}F_2N_3O_3$)	1233	
Quinolone – 8-fluoro-pefloxacin ($C_{17}H_{19}F_2N_3O_3$)	1234	
Quinolone – lomefloxacin ($C_{17}H_{19}F_2N_3O_3$)	1235–1236	
Quinolone – nalidixic acid ($C_{12}H_{12}N_2O_3$)	1237–1238	2170-2171
Quinolone – norfloxacin ($C_{16}H_{18}FN_3O_3$)	1239–1242	2172–2173
Quinolone – norfloxacin ethyl ester ($C_{18}H_{22}FN_3O_3$)	1243	0174
Quinolone – ofloxacin ($C_{18}H_{20}FN_3O_4$) Quinolone – orbifloxacin ($C_{18}H_{20}FN_3O_4$)	1244–1245 1246	2174
Quinolone – orbifloxacin ($C_{19}H_{20}F_3N_3O_3$) Quinolone – pefloxacin ($C_{17}H_{20}FN_3O_3$)	1246 1247	
Quincione – penovacin $(C_{17}H_{20}FN_3O_3)$ Quincione – quincione carboxylic acid $(C_{12}H_{11}NO_3)$	1247	
Quincione – quincione carboxyne acta $(C_{12}I_{11}I_{11}I_{12}O_3)$ Quincione – temafloxacin $(C_{21}H_{18}F_3N_3O_3)$	1248	
Zumorone comunovacin (C2111181 31 303)	1417	

R

IX		
Racemethorphan ($C_{18}H_{25}NO$)		2175
Racemorphan (methorphinan)		2176
$(C_{17}H_{23}NO)$		
Ramipril ($C_{23}H_{32}N_2O_5$)	1250	
Ranitidine ($C_{13}H_{22}N_4O_3S$)		2177–2179
Remoxipride ($C_{16}H_{23}BrN_2O_3$)	1251	
Repromicin ($C_{38}H_{72}N_2O_{12}$)	1252	
Rescinnamine ($C_{35}H_{42}N_2O_9$)		2180, 2182
Reservine $(C_{33}H_{40}N_2O_9)$		2181-2182
Riboflavine ($C_{17}H_{20}N_4O_6$)	1253-1255	
Rifampin ($C_{43}H_{58}N_4O_{12}$)	1256-1257	
Rifabutine	96	
Rimoterol (rimiterol) (C ₁₂ H ₁₇ NO ₃)		2183
Risperidone ($C_{23}H_{27}FN_4O_2$)		2184
Ritodrine ($C_{17}H_{21}NO_3$)		2185
Rivastigmine $(C_{14}H_{22}N_2O_2)$		2186
Rolitetracycline ($C_{27}H_{33}N_3O_8$)		2187
Romurtide $(C_{43}H_{78}N_6O_{13})$	862	
Rosaramicin (juvenimicin) ($C_{31}H_{51}NO_9$)	1258	
Rotoxamine (l-carbinoxamine) ($C_{16}H_{19}CIN_2O$)		2188
Roxithromycin ($C_{41}H_{76}N_2O_{15}$)	1259	_100
S		
Saccharin (C ₇ H ₅ NO ₃ S)		2189
Salbutamol (C ₁₃ H ₂₁ NO ₃)	27, 1260	1541
Salicylamide ($C_7H_7NO_2$)	1261-1263	
Salicylic acid (2-hydroxybenzoic acid) (C ₇ H ₆ O ₃)	252, 649,	
	1264–	
	1269	
Salicylic acid derivatives	1269	
Salsalate ($C_{14}H_{10}O_5$)		2190
Salsolidine	9	
Salsoline	9	
Sarcolysine II	9	
Scopolamine (C ₁₇ H ₂₁ NO ₄)	398, 1270	2191
Secobarbital ($C_{12}H_{18}N_2O_3$)	157	1608
Seglitide (C ₄₄ H ₅₆ N ₈ O ₇)	1271	
Selegiline (deprenyl) ($C_{13}H_{17}N$)	1272	
Seperidol (Clofluperol) ($C_{22}H_{22}ClF_4NO_2$)	1273	
Serotonin ($C_{10}H_{12}N_2O$)		2192
Sertraline $(C_{17}H_{17}Cl_2N)$	1274	
Ser-Leu $(C_9H_{18}N_2O_4)$	453	
Ser-Phe $(C_{12}H_{16}N_2O_4)$	453	
Sildenafil ($C_{22}H_{30}N_6O_4S$)	200	2193
		_170

Silybin ($C_{25}H_{22}O_{10}$); also Silycristin; Silydianin	1275	
Solasodine ($C_{27}H_{43}NO_2$)		2194
Soluflazine ($C_{28}H_{30}Cl_2FN_5O_2$)	1276	
Sorbic acid $(C_6H_8O_2)$	1277	
Sorbitol $(C_6H_{14}O_6)$	1278	2195
Sotalol $(C_{12}H_{20}N_2O_3S)$	1167, 1279	2196–2197
Sparteine $(C_{15}H_{26}N_2)$,	2198
Spasmolytine	9	
Spectinomycin ($C_{14}H_{24}N_2O_7$)		2199
Spiperone $(C_{23}H_{26}FN_3O_2)$		2200
Stearic acid $(C_{18}H_{36}O_2)$	1280	
Streptomycin A ($C_{21}H_{39}N_7O_{12}$)	1281	
Streptomycin derivatives	1282	
Streptovitacin A degradation products	1283	
Streptozocin ($C_8H_{15}N_3O_7$)		2201
Strychnine $(C_{21}H_{22}N_2O_2)$	1284	2202
Succinic acid $(C_4H_6O_4)$	1285-1287	
Succinimide $(C_4H_5NO_2)$	1288	
Succinylsulfathiazole ($C_{13}H_{13}N_3O_5S_2$)		2203
Sucrose $(C_{12}H_{22}O_{11})$	1289	
Sufentanil ($C_{22}H_{30}N_2O_2S$)		2204-2205
Sulfabenz ($C_{12}H_{12}N_2O_2S$)	1290	2207-2209
Sulfacarbamide ($C_7H_9N_3O_3S$)		2206
Sulfacetamide ($C_8H_{10}N_2O_3S$)	1291-1292	2207-2209
Sulfachloropyridazine ($C_{10}H_9ClN_4O_2S$)		2210-2211
Sulfadiazine ($C_{10}H_{10}N_4O_2S$)	1293-1300	2212-2213
Sulfadiazine, N^4 -acetyl (C ₁₂ H ₁₂ N ₄ O ₃ S)	1301	2214
Sulfadimethoxine (C ₁₂ H ₁₄ N ₄ O ₄ S)	1302	2215-2218
Sulfadimethoxine, N^4 -acetyl (C ₁₄ H ₁₆ N ₄ O ₅ S)		2219
Sulfadimethoxytriazine ($C_{11}H_{13}N_5O_4S$)	1303	
Sulfadimethyloxazole (C ₁₁ H ₁₃ N ₃ O ₃ S)		2220
Sulfadimidine ($C_{12}H_{14}N_4O_2S$)	1304-1308	2221-2224
Sulfaethidole (C ₁₀ H ₁₂ N ₄ O ₂ S)	1309	2225-2226
Sulfafurazole (C ₁₁ H ₁₃ N ₃ O ₃ S)	1310	2227-2228
Sulfaguanidine ($C_7H_{10}N_4O_2S$)	1311	2229
Sulfalene ($C_{11}H_{12}N_4O_3S$)	1312	
Sulfamerazine ($C_{11}H_{12}N_4O_2S$)	1313–1316	2230-2234
Sulfameter ($C_{11}H_{12}N_4O_3S$)	1323	2243
Sulfamethazine ($C_{12}H_{14}N_4O_2S$)	1304–1308	2221-2224
Sulfamethine ($C_{11}H_{12}N_4O_2S$)	1317	
Sulfamethizole (sulfamethylthiadiazole)	1318–1320	2235-2238
$(C_9H_{10}N_4O_2S_2)$		
Sulfamethomidine (C ₁₂ H ₁₄ N ₄ O ₃ S)	1322	
Sulfamethoxazole ($C_{10}H_{11}N_3O_3S$)		2239–2241
Sulfamethoxazole, N^4 -acetyl (C ₁₂ H ₁₃ N ₃ O ₄ S)		2242

Sulfamethoxydiazine (sulfameter) (C ₁₁ H ₁₂ N ₄ O ₃ S)	1323	2243
Sulfamethoxypyridazine (C ₁₁ H ₁₂ N ₄ O ₃ S)	1324–1325	2244–2247
Sulfamethoxypyridazine, N ⁴ -acetyl (C ₁₃ H ₁₄ N ₄ O ₃ S)	1326	2248
Sulfamethyldiazine (C ₁₁ H ₁₂ N ₄ O ₂ S)	1373–1374	2256
Sulfamethylthiadiazole (C ₉ H ₁₀ N ₄ O ₂ S ₂)	1318–1320	
Sulfamethythiazole, N^4 -acetyl (C ₁₁ H ₁₂ N ₄ O ₃ S ₂)	1321	
Sulfamilyl-3,4-xylamide (Irgafen) (C ₁₅ H ₁₆ N ₂ O ₃ S)	1327	
Sulfamonomethoxine ($C_{11}H_{12}N_4O_2S$)		2249
Sulfanilamide ($C_6H_8N_2O_2S$)	1328-1330	2250-2252
Sulfanilamide, N^1 -acetyl (C ₈ H ₁₀ N ₂ O ₃ S)	1331	
Sulfanilamide, N ¹ -p-aminobenzoyl (C ₁₃ H ₁₃ N ₃ O ₃ S)	1332	
Sulfanilamide, N^1 -benzoyl ($C_{13}H_{12}N_2O_3S$)	1333	
Sulfanilamide, N^1 -ethylsulphonyl (C ₈ H ₁₂ N ₂ O ₄ S ₂)	1334	
Sulfanilamide, N^1 -p-aminophenyl ($C_{13}H_{15}N_3O_2S$)	1336	
Sulfanilamide, N^1 -chloroacetyl (C ₈ H ₉ ClN ₂ O ₃ S)	1337	
Sulfanilamide, N^1 , N^1 -dimethyl (C ₈ H ₁₂ N ₂ O ₂ S)	1344	
Sulfanilamide, N^1 -furfuryl (C ₁₁ H ₁₂ N ₂ O ₃ S)	1338	
Sulfanilamide, N^1 -hydroxyethyl (C ₈ H ₁₂ N ₂ O ₃ S)	1345	
Sulfanilamide, N^1 -methyl (C ₇ H ₁₀ N ₂ O ₂ S)	1339	
Sulfanilamide, N^1 -phenyl (C ₁₂ H ₁₂ N ₂ O ₂ S)	1340	
Sulfanilamide, N^1 -sulfanilyl ($C_{12}H_{13}N_3O_4S_2$)	1335	
Sulfanilamide, N^1 -o-tolyl (C ₁₃ H ₁₄ N ₂ O ₂ S)	1341	
Sulfanilamide, N^1 - <i>m</i> -tolyl (C ₁₃ H ₁₄ N ₂ O ₂ S)	1342	
Sulfanilamide, N^1 -p-tolyl (C ₁₃ H ₁₄ N ₂ O ₂ S)	1343	
2-Sulfanilamido-5-aminopyridine ($C_{11}H_{12}N_4O_2S$)	1346	
5-Sulfanilamido-2-aminopyridine ($C_{11}H_{12}N_4O_2S$)	1347	
2-Sulfanilamido-4-aminopyrimidine ($C_{10}H_{11}N_5O_2S$)	1348	
2-Sulfanilamido-5-bromopyridine ($C_{11}H_{10}BrN_3O_2S$)	1349	
5-Sulfanilamido-2-bromopyridine ($C_{11}H_{10}BrN_3O_2S$)	1350	
5-Sulfanilamido-2-chloropyrimidine	1350	
$(C_{10}H_9CIN_4O_2S)$	1001	
2-Sulfanilamido-2,4-dimethylpyrimidine	1389–1390	
$(C_{12}H_{14}N_4O_2S)$	1507-1570	
4-Sulfanilamido-2,6-dimethylpyrimidine	1389–1390	
$(C_{12}H_{14}N_4O_2S)$	1507-1570	
2-Sulfanilamido-4,6-dimethylpyrimidine	1304–1308	
$(C_{12}H_{14}N_4O_2S)$	1504-1500	
3-Sulfanilamido-4,5-dimethylpyrazole		2253
$(C_{11}H_{14}N_4O_2S)$		2255
2-Sulfanilamidoimidazole ($C_9H_{10}N_4O_2S$)	1352	
3-Sulfanilamido-4-methylfurazan ($C_9H_{10}N_4O_2S$)	1352	
5-Sulfanilamido-3-methylisoxazole ($C_{10}H_{11}N_3O_3S$)	1354 1355	
2-Sulfanilamido-5-methyloxadiazole ($C_9H_{10}N_4O_3S$)	1355	

2-Sulfanilamido-4-methylpyrimidine (C ₁₁ H ₁₂ N ₄ O ₂ S)	1313–1316, 1373–	
	1374	
2-Sulfanilamido-5-methylthiadiazole (sulfamethizole) (C ₉ H ₁₀ N ₄ O ₂ S ₂)	1356	
2-Sulfanilamido-4-methylthiazole ($C_{10}H_{11}N_3O_2S_2$)	1357	
2-Sulfanilamido-oxazole (C ₉ H ₉ N ₃ O ₃ S)	1358	
2-Sulfanilamidopyrazine ($C_{10}H_{10}N_4O_2S$)	1359	
3-Sulfanilamidopyridazine ($C_{10}H_{10}N_4O_2S$)	1360	
3-Sulfanilamidopyridine ($C_{11}H_{11}N_3O_2S$)	1361	
4-Sulfanilamidopyrimidine ($C_{10}H_{10}N_4O_2S$)	1362	
5-Sulfanilamidopyrimidine $(C_{10}H_{10}N_4O_2S)$	1363	
2-Sulfanilamido-1,3,4-thiadiazole ($C_8H_8N_4O_2S_2$)	1364	
2-Sulfanilamidothiazole $(C_9H_9N_3O_2S_2)$	1385–1387	2263-2267
4-Sulfanilamido-1,2,4-triazole ($C_8H_9N_5O_2S$)	1365	
2-Sulfanilamido-4,5,6-trimethoxypyrimidine		2254
$(C_{13}H_{16}N_4O_5S)$		
Sulfanilic acid ($C_6H_7NO_3S$)		2255
Sulfanilylaminoguanidine (C ₇ H ₁₁ N ₅ O ₂ S)	1366	
Sulfanilylcyanamide ($C_7H_7N_3O_2S$)	1367	
Sulfanilylglycine ($C_7H_{10}N_2O_2S$)	1368	
Sulfanilylguanidine ($C_7H_{10}N_4O_2S$)	1369	
N^3 -Sulfanilylmetanilamide ($C_{12}H_{13}N_3O_4S_2$)	1370	
N^4 -Sulfanilylsulfanilamide ($C_{12}H_{13}N_3O_4S_2$)	1371	
Sulfanilylurea (C ₇ H ₉ N ₃ O ₃ S)	1372	
Sulfaperine (sulfamethyldiazine;	1373–1374	2256
4-methylsulfadiazine) ($C_{11}H_{12}N_4O_2S$)		
Sulfaphenazole ($C_{15}H_{14}N_4O_2S$)	1375	2257-2260
Sulfapyridine ($C_{11}H_{11}N_3O_2S$)	1376-1380	2261-2262
Sulfapyridine, N ⁴ -acetyl (C ₁₃ H ₁₃ N ₃ O ₃ S)	1383	
Sulfapyridine-1-oxide (C ₁₁ H ₁₀ N ₃ O ₃ S)	1381	
Sulfapyridine-1-oxide, N ⁴ -acetyl, 6'-methyl	1382	
$(C_{14}H_{14}N_3O_4S)$		
Sulfapyridine-1-oxide, 4',6'-dimethyl (C ₁₃ H ₁₄ N ₃ O ₃ S)	1381	
Sulfapyridine-1-oxide, 6'-ethyl (C ₁₃ H ₁₄ N ₃ O ₃ S)	1381	
Sulfapyridine-1-oxide, 3'-methyl (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
Sulfapyridine-1-oxide, 4'-methyl (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
Sulfapyridine-1-oxide, 5'-methyl (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
Sulfapyridine-1-oxide, 6'-methyl (C ₁₂ H ₁₂ N ₃ O ₃ S)	1381	
Sulfasalazine (C ₁₈ H ₁₄ N ₄ O ₅ S)	1384	
Sulfathiazole (2-sulfanilamidothiazole)	1385–1387	2263-2267
$(C_9H_9N_3O_2S_2)$		
Sulfinpyrazone (C ₂₃ H ₂₀ N ₂ O ₃ S)	1388	2268
Sulfisomidine ($C_{12}H_{14}N_4O_2S$)	1389–1390	2269–2273
Sulfisoxazole (C ₁₁ H ₁₃ N ₃ O ₃ S)	1391–1392	2274–2275

Sulfisoxazole, N ⁴ -acetyl (C ₁₃ H ₁₅ N ₃ O ₄ S) Sulfonazole (C ₉ H ₉ N ₃ O ₂ S ₂) Sulfone, bis(4-aminophenyl) (Dapsone; 4,4- diaminodiphenylsulfone) (C ₁₂ H ₁₂ N ₂ O ₂ S) Sulindac (C ₂₀ H ₁₇ FO ₃ S)	1393 1394 1395 1396	2276
Sulpiride ($C_{15}H_{23}N_3O_4S$)	1397	
Sulthiame ($C_{10}H_{14}N_2O_4S_2$)		2277
Sumatriptan (C ₁₄ H ₂₁ N ₃ O ₂ S)		2278
Sympatol (C ₉ H ₁₃ NO ₂)	1398–1399	
Synephrine (Sympatol) ($C_9H_{13}NO_2$)	1398–1399	2279
Т		
Tacrine ($C_{13}H_{14}N_2$)		2280
Talbutal ($C_{11}H_{16}N_2O_3$)	1400	1611
Tamoxifen ($C_{26}H_{29}NO$)	1400	2281-2282
Tartaric acid ($C_4H_6O_6$)	1401	
Taurocholic acid ($C_{26}H_{45}NO_7S$)	1402	
Tecomine (tecomanine) ($C_{11}H_{17}NO$)	1403	
Temafloxacin ($C_{21}H_{18}F_3N_3O_3$)	1249	2283
Temazepam ($C_{16}H_{13}ClN_2O_2$) Teniposide ($C_{32}H_{32}O_{13}S$)	1404	2203
Tenoxicam $(C_{13}H_{11}N_3O_4S_2)$	1404	2284
Terazosin ($C_{19}H_{25}N_5O_4$)	1405	2204
Terbinafine	96	
Terbutaline ($C_{12}H_{19}NO_3$)	1406–1408	2285-2286
Terfenadine ($C_{12}H_{11}NO_2$)	1400–1408	2285-2286
Testosterone, imidazole-1-carboxylic acid prodrug	1409	2207
$(C_{23}H_{30}N_2O_3)$	1410	
Tetracaine ($C_{15}H_{24}N_2O_2$)	741, 1411–	2288-2289
	1412	
Tetracycline ($C_{22}H_{24}N_2O_8$)	1413-1418	2290
Tetracycline methiodide (C ₂₃ H ₂₇ IN ₂ O ₈)	1419	
Tetrahydrocannabinol (C ₂₁ H ₃₀ O ₂)		2291
Tetrahydro- α -morphimethine (C ₁₈ H ₂₅ NO ₃)	1420	
Tetrahydrozoline ($C_{13}H_{16}N_2$)	1421	
Th 1206 (C ₁₂ H ₁₉ NO ₃)	1422	
THAM ($C_4H_{11}NO_3$)	194	2345-2346
Thebaine ($C_{19}H_{21}NO_3$)	1423	2292
Thenalidine ($C_{17}H_{22}N_2S$)	1424	
Thenyldiamine ($C_{14}H_{19}N_3S$)		2293
Theobromine ($C_7H_8N_4O_2$)	9,479,1425–	
	1428	
Theophylline ($C_7H_8N_4O_2$)	9,479,1429–	
This is a set $(C, \mathbf{U}, \mathbf{N}, \mathbf{C})$	1434	2204
Thiabendazole ($C_{10}H_7N_3S$)		2294

Thiamine ($C_{12}H_{17}N_4OS$)		2295–2298
Thiamine-O-monophosphate (C ₁₂ H ₁₈ N ₄ O ₄ PS)		2299
Thiamylal ($C_{12}H_{18}N_2O_2S$)		1610
1-(2-Thiazolyl)piperazine ($C_7H_{11}N_3S$)	90	
Thioglucose ($C_6H_{12}O_5S$)	375	
Thioguanine $(C_5H_5N_5S)$		2300
Thiomalic acid $(C_4H_6O_4S)$	375, 1435	
Thiopentone ($C_{11}H_{18}N_2O_2S$)	144, 1436	1606–1607
Thiopropazate ($C_{23}H_{28}ClN_3O_2S$)	1437–1438	
Thioridazine $(C_{21}H_{26}N_2S_2)$	1439–1442	2301
Thiothixene $(C_{23}H_{29}N_3O_2S)$	110/ 1112	2302
2-Thiouracil ($C_4H_4N_2OS$)		2303
Thonzylamine $(C_{16}H_{22}N_4O)$		2304–2305
L-Thyronine, $(C_{16}H_{22}H_{4}O)$		2304-2305
	1443	2500
Thyroxine, L- (levothyroxine) ($C_{15}H_{11}I_4NO_4$)		
Tiapamil ($C_{26}H_{37}NO_8S_2$)	1444	2207
Tiaprofenic acid (tiprofenic acid) ($C_{14}H_{12}O_3S$)		2307
Ticarcillin ($C_{15}H_{16}N_2O_6S_2$)		2308
Ticrynafen ($C_{13}H_8Cl_2O_4S$)	1445	2309
Tienoxolol ($C_{21}H_{28}N_2O_5S$)	1445	
Tigloidine	652	
Tilmicosin ($C_{46}H_{80}N_2O_{13}$)	1446	
$Timolol (C_{13}H_{24}N_4O_3S)$	1167, 1447	2310
Timoprazole ($C_{13}H_{11}N_3OS$)		2311
Tiotidine ($C_{12}H_{18}N_6S_2$)		2312
Tixanox ($C_{15}H_{10}O_5S$)	1448	
Tobramycin ($C_{18}H_{37}N_5O_9$)		2313
Tocainide ($C_{11}H_{16}N_2O$)	1449	2314
Tolamolol ($C_{20}H_{26}N_2O_4$)		2315–2316
Tolazamide (C ₁₄ H ₂₁ N ₃ O ₃ S)	1450	2317
Tolazoline ($C_{10}H_{12}N_2$)	1451	
Tolbutamide (C ₁₂ H ₁₈ N ₂ O ₃ S)	1452–1453	2318
Tolmetin (C ₁₅ H ₁₅ NO ₃)	1454	
Tolpropamide ($C_{18}H_{23}N$)	1455	
Tolterodine ($C_{22}H_{31}NO$)		2319
p-Toluic acid ($C_8H_8O_2$)	1456	
Tramazoline $(C_{13}H_{17}N_3)$		2320
Tranexamic acid ($C_8H_{15}NO_2$)		2321
Tranylcypromine $(C_9H_{11}N)^2$		2322
Trazodone ($C_{19}H_{22}ClN_5O$)	1457-1459	2323
Triamcinolone-16,17-acetonide-21-phosphate	392	
$(C_{24}H_{32}FO_9P)$	<i></i>	
Triamterene ($C_{12}H_{11}N_7$)		2324
	1460	2021
		2325
Triethylamine ($C_6H_{15}N$)	9	2020
$(C_{6}, 1_{12}, \mathbf{v})$	9	
Triazolam (C ₁₇ H ₁₂ Cl ₂ N ₄) Trichloromethiazide (C ₈ H ₈ Cl ₃ N ₃ O ₄ S ₂)	1460 197, 1461	2325

Trifluoperazine ($C_{21}H_{24}F_3N_3S$)	998–999, 1462–	2326–2327
Trifluopromazine (C ₁₈ H ₁₉ F ₃ N ₂ S)	1467 996–997, 1468– 1469	2329–2330
5-Trifluoromethyl-2'-deoxyuridine ($C_{10}H_{11}F_3N_2O_5$)	1107	1769, 2328
5-Trifluoromethyluracil ($C_5H_3F_3N_2O_2$)		1769
1-(3-Trifluoromethylphenyl)piperazine	90	1,0,
$(C_{11}H_{13}F_3N_2)$	20	
Trimeprazine (methylpromazine) ($C_{18}H_{22}N_2S$)		2331-2332
Trimethobenzamide ($C_{21}H_{28}N_2O_5$)		2333
	1470 1471	
Trimethoprim ($C_{14}H_{18}N_4O_{32}$)	1470–1471	2334–2336
Trimethoprim analogues	1471	0007
Trimethoxy-3,4,5-phenylsulfonyl derivatives		2337
Trimipramine ($C_{20}H_{26}N_2$)		2338–2339
Tripelennamine ($C_{16}H_{21}N_3$)	1472	2340-2342
Tripeptides	483	
Triprolidine ($C_{19}H_{22}N_2$)	1473	2343–2344
$TRIS (C_4H_{11}NO_3)$	1474	2346
TRIS (non-aqueous titration)	194	
$(C_4H_{11}NO_3)$		
Troleandomycin (C ₄₁ H ₆₇ NO ₁₅)		2345
Tromethamine ($C_4H_{11}NO_3$)	194	2346
Tropacocaine ($C_{15}H_{19}NO_2$)	1475-1476	2347-2348
DL-Tropic acid ($C_9H_{10}O_3$)	1477	2349
Tropicamide ($C_{17}H_{20}N_2O_2$)		2350-2351
Tropine ($C_8H_{15}NO$)	1478-1479	
Trp-Gly $(C_{13}H_{15}N_3O_3)$	453	
Trp-Phe ($C_{20}H_{21}N_3O_3$)	453	
Tryptophan ($C_{11}H_{12}N_2O_2$)	1480–1481	
Tuaminoheptane $(C_7H_{17}N)$	1482	
Tylosin ($C_{46}H_{77}NO_{17}$)	1483	
Tyramine (C_8H_{11} NO)	1100	2352-2353
Tyrosine $(C_9H_{11}NO_3)$	1484–1485	2002 2000
	1404-1405	
U		
Uracil ($C_4H_4N_2O_2$)		1769, 2354
Urea (CH_4N_2O)		2355
Uric acid $(C_5H_4N_4O_3)$		2356
Urotropine	9	
Ursodeoxycholic acid (ursodiol) ($C_{24}H_{40}O_4$)	1486	
	1100	
V		
Valeroidine	652	
Val-Gly ($C_7H_{14}N_2O_3$)	453	
, (, 11 <u>2</u> 0)		

1491 1492 1493 1494	2357
1138 1499 1500–1501 1502–1503	2358–2359 2360 2362 2362 2363–2364
1508 1509–1510 1511 1511	2365–2366
241 1513–1515 1516 738–746 1517	2367
200 150	
398, 479	
1518 1519–1520 1521	2368
	1494 1495–1498 1138 1499 1500–1501 1502–1503 1095–1096 637, 1504– 1508 1509–1510 1511 1511 1512 241 1513–1515 1516 738–746 1517 398, 479

CHEMICAL FORMULA INDEX OF DRUGS OR DRUG RELATED COMPOUNDS FOUND IN PK_a DATABASE FILES

Appendix A – pK_a values found with significant data quality information Appendix B – pK_a values found with little or no data quality information

Chemical formula		Appendix A	Appendix B
C ₁			
3-(4-Chlorophenyl)-2-ethyl-2,3,5,6- azo[2,1-b]thiazol-3-ol CHECK	284	
)-5,6-dihydro-2-ethylimidazo	283	
CH_2O_2	Formic acid	580	
CH_2O_3	Carbonic acid	251	1661
CH ₄ N ₂ O	Urea		2355
CH ₅ N	Methylamine	9	
CH ₅ N ₃	Guanidine		1902
CO ₃ Li ₂	Lithium carbonate		1946
C ₂			
$C_2H_3ClO_2$	Chloroacetic acid	252	
$C_2H_3Cl_3O_2$	Chloral hydrate	276-277	
$C_2H_3N_3S$	Aminothiadiazole		1571
$C_2H_4O_2$	Acetic acid	12, 252	
$C_2H_5NO_2$	Acetohydroxamic acid		1536
$C_2H_6O_3S_2$	Mesna		1965
_ 0 0 _	(2-mercaptoethanesulfonic acid)		
$C_2H_8N_2$	Ethylenediamine		1848
C ₃			
$C_3H_4N_2$	Imidazole	667-668	
$C_3H_4N_2O_2$	Hydantoin		1915
$C_3H_4O_4$	Malonic acid	252, 760	
$C_3H_6N_2O_2$	D-Cycloserine	371	1754
$C_3H_6O_2$	Propionic acid	252, 1158	
$C_3H_6O_3$	Lactic acid, (\pm)	723–724	
$C_3H_6O_3$	Lactic acid, $D(-)$	721	
$C_3H_6O_3$	Lactic acid, $L(+)$	722	
$C_3H_7NO_2$	Cysteine	375, 955	
$C_3H_8O_3$	Glycerol	598	
C ₄	-		
$C_4H_2Br_2N_2O_3$	Barbituric acid, 5,5-dibromo	118	
$C_4H_2Cl_2N_2O_3$ $C_4H_2Cl_2N_2O_3$	Barbituric acid, 5,5-dichloro	110	
· · · · · ·			

$C_4H_3F_6N_5O_2$	3,5-Di(trifluoroacetamido)- 1,2,4-triazole (Guanazole	602	
	prodrug)		
$C_4H_3FN_2O_2$	5-Fluorouracil	562	10.00
$C_4H_4FN_3O$	Flucytosine		1869
$C_4H_4N_2OS$	2-Thiouracil		2303
$C_4H_4N_2O_2$	Uracil	445	2354
$C_4H_4N_2O_3$	Barbituric acid	117	1000
$C_4H_4O_4$	Fumaric acid		1882
$C_4H_4O_4$	Maleic acid	252, 758	
$C_4H_5ClN_4O_3S_2$	Chloroacetazolamide	11	
$C_4H_5NO_2$	Succinimide	1288	
$C_4H_6N_2$	1-Methyl-1H-imidazole	819	1500 1505
$C_4H_6N_4O_3S_2$	Acetazolamide	11	1532–1535
$C_4H_6O_4$	Succinic acid	1285–1287	
$C_4H_6O_4S$	Thiomalic acid	375, 1435	
$C_4H_6O_5$	Malic acid	759	
$C_4H_6O_6$	Tartaric acid	1401	
$C_4H_7N_3O$	Creatinine	357	
$C_4H_8N_2O_3$	Gly-Gly	453	
$C_4H_8O_2$	Butyric acid	378	
$C_4H_9N_3O_2$	Creatine	356	
$C_4H_9N_5O_2$	3,5-Diacetamido-1,2,4-triazole (Guanazole prodrug)	602	
$C_4H_9NO_2$	γ-Aminobutyric acid (GABA)	378	
C ₄ H ₉ NO ₃	$β$ -Hydroxy- γ -aminobutyric acid	378	
$C_4H_{10}N_2$	Piperazine	1120-1121	2115
$C_4H_{10}N_3O_5P$	Phosphocreatine	1105-1106	
$C_4H_{11}N$	Diethylamine	9	
$C_4H_{11}NO_3$	TRIS (non-aqueous titration)	194	
$C_4H_{11}NO_3$	Tromethamine (THAM, TRIS)	194	2345-2346
$C_4H_{11}N_5$	Metformin	787	
C ₅			
$C_5H_3F_3N_2O_2$	5-Trifluoromethyluracil		1769
$C_5H_4N_2O_4$	5-Carboxyuracil		1769
$C_{5}H_{4}N_{4}$	Purine	241	2424
$C_5H_4N_4O$	Allopurinol	271	1547–1548
$C_5H_4N_4O$ $C_5H_4N_4O$	Hypoxanthine	241, 653	1547-1540
$C_5H_4N_4O_2$	Oxypurinol	241,000	2055
$C_5H_4N_4O_2$ $C_5H_4N_4O_2$	Xanthine	241	2000
$C_{5}H_{4}N_{4}O_{2}$ $C_{5}H_{4}N_{4}O_{3}$	Uric acid	241	2356
	6-Mercaptopurine	782–783	2550
C ₅ H ₄ N ₄ S C ₅ H ₅ N	1 1	782–783 9	0150
	Pyridine Pyrazinamida	9	2153 2152
$C_5H_5N_3O$	Pyrazinamide	22 241	2152
$C_5H_5N_5$	Adenine	22, 241	

$C_5H_5N_5O$	Guanine	241	
$C_5H_5N_5O_2$	2,8-Dihydroxyadenine	438	
$C_5H_5N_5S$	Thioguanine		2300
$C_5H_6N_2O$	Imidazole, N-acetyl	669	
$C_5H_6N_2OS$	5-Methyl-2-thiouracil		1999
$C_5H_6N_2OS$	6-Methylthiouracil		2000-2001
$C_5H_7I_2N_3$	Histamine, diiodo	617	
$C_5H_7NO_2$	Glutarimide		1892
C ₅ H ₇ NO ₃	Dimethadione		1801
C ₅ H ₇ NO ₃	Nortrimethadione	918	
$C_5H_8IN_3$	Histamine, monoiodo	616	
$C_5H_8N_2O_2$	Dimethylhydantoin		1803
$C_5H_8N_4O_3S_2$	Methazolamide		1978
$C_5H_8O_3$	Levulinic acid	737	
$C_5H_9N_3$	Histamine	614–615	
$C_5H_{11}Cl_2N$	Mechlorethamine		1954
$C_5H_{11}N$	Piperidine	1123–1124	
$C_5H_{11}NO_2S$	Methionine	955	1984
$C_5H_{11}NO_2S$	Penicillamine	375,	
		955–956	
C ₆			
$C_6H_4Cl_2O$	3,5-Dichlorophenol	408	
$C_6H_4F_7N_5O$	3-Amino-5-	602	
-04-703-0	heptafluorobutyramido-1,2,4-		
	triazole (Guanazole prodrug)		
$C_6H_5FN_2O_4$	5-Fluorouracil,	563	
	1-methyloxycarbonyl		
$C_6H_5NO_2$	Isonicotinic acid (non-aqueous titration)	194	
C ₆ H ₅ NO ₂	Isonicotinic acid	700, 881,	
0 0 2		884	
$C_6H_5NO_2$	Nicotinic acid (non-aqueous titration)	194	
C ₆ H ₅ NO ₂	Nicotinic acid	881	883
$C_{6}H_{5}NO_{2}$ $C_{6}H_{5}NO_{2}$	Picolinic acid	881, 1110	005
$C_6H_5NO_2$ $C_6H_5NO_3$	4-Nitrophenol	252	
$C_6H_5NO_3$ $C_6H_6Cl_2N_2O_4S_2$	Dichlorphenamide	252	1786
$C_6H_6C_{12}N_2O_4S_2$ $C_6H_6N_2O$	Isonicotinamide	699	1700
$C_6 H_6 N_2 O$ $C_6 H_6 N_2 O$	Nicotinamide (niacinamide)	877	
		190	
$C_6H_6N_2O_3$	Barbituric acid, -1',5- spiroCyclopropane	190	
$C_6H_6N_4O_4$	Nitrofurazone	900	
$C_6H_6N_6O$	Pteridine, 2,4-diamino-6-	1182	
-01 101 10	hydroxy	1102	
	nyarony		

$C_6H_6O_2$	Hydroquinone	633	1920
C ₆ H ₇ NO ₂ S	Benzenesulfonamide	201	
C ₆ H ₇ NO ₃ S	Sulfanilic acid		2255
C ₆ H ₇ N ₃ O	Isoniazid	699	
C ₆ H ₇ N ₃ O	Nicotinoylhydrazine	699	
C ₆ H ₇ N ₃ O	Picolinoylhydrazine	699	
C ₆ H ₈ ClNS	Clomethiazole		1726–1728
	(Chlormethiazole)		
C ₆ H ₈ ClN ₇ O	Amiloride	32–33	1558
C ₆ H ₈ NO ₄ P	Pyridylmethyl phosphate esters	1208	
C ₆ H ₈ N ₂ OS	2-Ethylmercapto-4-		1849
	hydroxypyrimidine		
$C_6H_8N_2O_2S$	Sulfanilamide	1328-1330	2250-2252
$C_6H_8N_2O_3$	Barbituric acid, 5,5-dimethyl	120-122	
$C_6H_8O_2$	Sorbic acid	1277	
$C_6H_8O_6$	Ascorbic acid	91–93	1585
$C_6H_8O_7$	Citric acid	318-319	
$C_6H_9N_3O_2$	Histidine	1481	
$C_6H_9N_3O_3$	Metronidazole	831-832	
$C_6H_9NO_3$	Norparamethadione	916	
$C_{6}H_{10}N_{6}O$	Dacarbazine		1758
$C_6 H_{10} O_7$	D-Glucuronic acid		1891
$C_6H_{10}O_7$	Guluronic acid		1546
$C_6H_{10}O_7$	Mannuronic acid		1546
$C_6H_{12}N_4$	Methenamine		1980–1982
$C_6H_{12}O_5S$	Thioglucose	375	-/ -/ -/ -/
$C_6H_{12}O_6$	Dextrose (glucose)	395–396,	1777
011200	2 estatobe (gracobe)	596	1
$C_{6}H_{12}O_{7}$	Gluconic acid	593	
$C_6H_{13}N_5O_2$	3,5-Dipropionamido-1,2,4-	602	
0,011,311,302	triazole (Guanazole prodrug)		
$C_6H_{13}NO_2$	e-Aminocaproic acid		1563
$C_6H_{13}NO_2S$	Ethionine	955	1000
$C_6H_{13}NO_2$	Norcarnitine	378	
$C_6H_{13}NO_3S$	Cyclamic acid	363	
$C_6H_{13}NO_5$	D-Glucosamine	594	
$C_6H_{14}NO_8P$	D-Glucosamine-6-phosphate	595	
$C_6H_{14}O_8H$ $C_6H_{14}O_6$	Mannitol	763	
$C_6H_{14}O_6$ $C_6H_{14}O_6$	Sorbitol	1278	2195
$C_6H_{14}O_6$ $C_6H_{15}CIN_2O_2$	Carbachol	1270	1657
$C_6H_{15}CHV_2O_2$ $C_6H_{15}N$	Triethylamine	9	1057
$C_{6}I_{15$	mentylanine	9	
C ₇			
C7H4ClNO2	Chlorzoxazone		1717
$C_7H_5BrO_2$	Benzoic acid, 4-bromo	212	
$C_7H_5ClO_2$	Benzoic acid, 4-chloro	212	
- /			

C ₇ H ₅ FO ₂	Benzoic acid, 4-fluoro	212	
C ₇ H ₅ NO ₃ S	Saccharin		2189
C ₇ H ₅ NO ₄	2-Nitrobenzoic acid	252	
C ₇ H ₅ NO ₄	3-Nitrobenzoic acid	252	
$C_7H_5NO_4$	4-Nitrobenzoic acid	252	
$C_7H_5NO_4$	Benzoic acid, 4-nitro	212	
$C_7H_5N_5O_2$	Pteridine, 2-amino-4-hydroxy-6- formyl	1183	
C7H6ClN3O4S2	Chlorothiazide	288-289	1702-1703
C ₇ H ₆ N ₆ O	Pteridine, 2,4-diamino-6-formyl	1181	
$C_7 H_6 O_2$	Benzoic acid	206–212,	
, 0 2		252, 649,	
		874	
$C_7H_6O_3$	2-Hydroxybenzoic acid	252, 649,	
0/11003		1264–	
		1269	
$C_7H_6O_3$	3-Hydroxybenzoic acid	252	
$C_7H_6O_3$	4-Hydroxybenzoic acid	212, 252,	
C/11603	+-rryuroxyberizoie acid	649	
$C_7H_6O_4$	4-Hydroxysalicylic acid	649	
$C_7H_6O_4$ $C_7H_6O_5$	Gallic acid (3,4,5-	587	
$C_{7116}O_5$	trihydroxybenzoic acid)	507	
C H BrN O		229	
$C_7H_7BrN_4O_2$	8-Bromotheophylline	229 287	1699–1701
$C_7H_7ClN_4O_2$	8-Chlorotheophylline	287	
C ₇ H ₇ ClO	Chlorocresol	F (0)	1694
$C_7H_7FN_2O_4$	5-Fluorouracil, 1-acetyloxymethyl	569	
C ₇ H ₇ FN ₂ O ₄	5-Fluorouracil,	570	
	3-acetyloxymethyl		
$C_7H_7FN_2O_4$	5-Fluorouracil,	564	
, , _ 1	3-ethyloxycarbonyl		
$C_7H_7N_3O_2S$	Sulfanilylcyanamide	1367	
$C_7H_7N_3O_3$	<i>p</i> -Nitrobenzoylhydrazine	699	
$C_7H_7N_5O$	Pteridine, 2-amino-4-hydroxy-6- methyl	1184	
C ₇ H ₇ N ₅ O ₄	8-Nitrotheophylline	901-902	1699
$C_7H_7NO_2$	4-Aminobenzoic acid	35–39, 212	1561-1562
C ₇ H ₇ NO ₂	Methyl nicotinate	,	1995
$C_7H_7NO_2$	Salicylamide	1261-1263	
$C_7H_7NO_3$	4-Aminosalicyclic acid	49	1570
$C_7H_7NO_3$	5-Aminosalicyclic acid	50	
$C_7H_7NO_3$	Mesalamine		1964
$C_7H_8ClN_3O_4S_2$	Hydrochlorothiazide	197, 623–	1916
C/110CH \30402	1. Jaroentorounaziae	626	1/10
$C_7H_8N_2O$	Benzoylhydrazine	699	

$C_7H_8N_2O_3$	Barbituric acid, -1',5-	191	
	spiroCyclobutane		
$C_7H_8N_4O_2$	Paraxanthine		2061
$C_7H_8N_4O_2$	Theobromine	9, 479,	
		1425–	
		1428	
$C_7H_8N_4O_2$	Theophylline	9, 479,	
	1	1429–	
		1434	
$C_7H_8N_6$	Pteridine, 2,4-diamino-6-methyl	1180	
$C_7H_9CIN_2O$	Pralidoxime chloride	1135	
$C_7 H_9 N_3 O$	1-Isonicotinoyl-1-	699	
-7-9-5-	methylhydrazine		
C ₇ H ₉ N ₃ O	1-Isonicotinoyl-2-	699	
-79- (3 -	methylhydrazine		
$C_7H_9N_3O_3S$	Sulfacarbamide, Sulfanilylurea	1372	2206
$C_7H_{10}ClN_3O_3$	Ornidazole	107 -	2047
$C_7H_{10}N_2OS$	6-n-Propyl-2-thiouracil		2148
$C_7H_{10}N_2O_2S$	Sulfanilamide, N ¹ -methyl	1339	2110
$C_7H_{10}N_2O_2S$	Sulfanilylglycine	1368	
$C_7H_{10}N_2O_3$	Barbituric acid, 5-ethyl-5-methyl	123	
$C_7H_{10}N_4O_2S$	Sulfaguanidine	1311, 1369	2229
$C_{7} I_{10} V_4 C_2 S$	(Sulfanilylguanidine)	1511, 1507	
$C_7H_{11}N_3O_2$	Ipronidazole		1937
$C_7H_{11}N_3O_2$ $C_7H_{11}N_3S$	1-(2-Thiazolyl)piperazine	90	1957
$C_7H_{11}N_3S$ $C_7H_{11}N_5O_2S$		1366	
	Sulfanilylaminoguanidine Arecaidine	1300	
$C_7H_{11}NO_2$		00	1010 1010
$C_7H_{11}NO_2$	Ethosuximide	423	1842–1843
$C_7H_{13}NO_2$	Dihydroarecaidine Val Chy		
$C_7H_{14}N_2O_3$	Val-Gly	453	
$C_7H_{15}NO_2$	γ-Butyrobetaine (GBB)	378	
$C_7H_{15}NO_3$	Carnitine	378	
$C_7H_{17}N$	Methylhexaneamine	818	
$C_7H_{17}N$	Tuaminoheptane	1482	1000
$C_7H_{17}NO_5$	N-Methylglucamine	817	1993
C ₈			
$C_8H_5NO_2$	Phthalimide		2104
$C_8H_6F_3N_3O_4S_2$	Flumethiazide	197, 558	
$C_8H_6N_4O_5$	Nitrofurantoin		2028-2029
$C_8H_6O_4$	2-Phthalic acid	252, 1107	
C ₈ H ₇ ClN ₂ O ₂ S	Diazoxide	403	1783
$C_8H_8Cl_2N_4$	Guanabenz		1899
$C_8H_8Cl_3N_3O_4S_2$	Trichloromethiazide	197, 1461	2325
$C_8H_8F_3N_3O_4S_2$	Hydroflumethiazide	197, 629–	
	-	631	

$C_8H_8N_4$	Hydralazine	621-622	
$C_8H_8N_4O_2S_2$	2-Sulfanilamido-1,3,4- thiadiazole	1364	
$C_8H_8O_2$	Benzoic acid, 4-methyl	212, 1456	
$C_8H_8O_3$	2-Methoxybenzoic acid	252	
$C_8H_8O_3$	3-Methoxybenzoic acid	252	
$C_8H_8O_3$	Mandelic acid	761	1950–1951
$C_8H_8O_3$	Methyl salicylate		1998
$C_8H_8O_3$	Methylparaben	820	1996
$C_8H_8O_3$	Phenoxyacetic acid	1004	
$C_8H_8O_3$	Vanillin	1492	
$C_8H_8O_3$	Vanillin, iso	1493	
$C_8H_8O_3$	Vanillin, ortho	1494	
$C_8H_8O_4$	Vanillic acid	1491	
C ₈ H ₉ ClN ₂ O ₃ S	Sulfanilamide, N ¹ -chloroacetyl	1337	
C ₈ H ₉ FN ₂ O ₅	5-Fluorouracil,	565	
	1-ethyloxycarbonyloxymethyl		
C ₈ H ₉ FN ₂ O ₅	5-Fluorouracil,	566	
	3-ethyloxycarbonyloxymethyl		
C ₈ H ₉ NO	Acetanilide (Antifebrin)	8–9	1531
$C_8H_9NO_2$	Acetaminophen (Paracetamol)	1–7	1528-1530
$C_8H_9NO_2$	Methyl 4-aminobenzoate	38	
C ₈ H ₉ NO ₃	Isopyridoxal	707	
C ₈ H ₉ NO ₃	Mandelhydroxamic acid		1949
C ₈ H ₉ NO ₃	Pyridoxal	1188–1190	
$C_8H_9N_3O_4$	Nicorandil		2022
$C_8H_9N_5O_2S$	4-Sulfanilamido-1,2,4-triazole	1365	
C ₈ H ₁₀ AsNO ₅	Acetarsone	10	
$C_8H_{10}NO_6P$	Isopyridoxal-4-phosphate	707	
$C_8H_{10}NO_6P$	Pyridoxal-5-phosphate	1193	
$C_8H_{10}N_2O_3$	Barbituric acid, -1′,5-	192	
	spiroCyclopentane		
$C_8H_{10}N_2O_3S$	Sulfacetamide	1291–1292	2207–2209
$C_8H_{10}N_2O_3S$	Sulfanilamide, <i>N</i> ¹ -acetyl	1331	
$C_8H_{10}N_2S$	Ethionamide	529	
$C_8H_{10}N_4O_2$	Caffeine	9, 241–243	1653
$C_8H_{11}N$	1-Amino-1-phenylethane	973	
$C_8H_{11}N$	Phenylethylamine	1078–1079	2097–2098
$C_8H_{11}N$	α-Phenethylamine (1-Amino-1- phenylethane)	973	
C ₈ H ₁₁ NO	Phenylethylamine, 2-hydroxy	1080	
C ₈ H ₁₁ NO	Phenylethylamine, p-hydroxy	1083	
$C_8H_{11}NO$	Tyramine	497	2352–2353
$C_8H_{11}NO_2$	Dopamine (<i>m</i> , <i>p</i> -	465, 497,	
	Dihydroxyphenylethylamine)	1085	

$C_8H_{11}NO_2$	<i>m</i> -Hydroxyphenylethylamine,	1081	
	2-hydroxy	011	
$C_8H_{11}NO_2$	Norfenefrine	911	
$C_8H_{11}NO_2$	Octopamine		2045
$C_8H_{11}NO_2$	Phenylethylamine, 2-hydroxy, m-hydroxy	1081	
$C_8H_{11}NO_2$	Phenylethylamine, 2-hydroxy,	1087	
	p-hydroxy	1007	
$C_8H_{11}NO_2$	<i>p</i> -Hydroxyphenylethylamine, 2-hydroxy	1087	
$C_8H_{11}NO_3$	Levarterenol (l-noradrenaline;	729–731	
	l-norepinephrine)	1000 1000	
$C_8H_{11}NO_3$	Pyridoxine	1202–1206	
$C_8H_{11}NO_3.$	Norepinephrine bitartrate		2035
$C_4H_6O_6$	(Levarterenol bitartrate)		
$C_8H_{11}N_5O_3$	Acyclovir	20–21	1538
$C_8H_{12}N_2$	Betahistine		1624
$C_8H_{12}N_2O_2$	Pyridoxamine	1194–1197	
$C_8H_{12}N_2O_2S$	Dimethylsulfanilamide	38	
$C_8H_{12}N_2O_2S$	Sulfanilamide, N^1 , N^1 -dimethyl	1344	
$C_8H_{12}N_2O_3$	Barbital	126-131	1602
$C_8H_{12}N_2O_3$	Barbituric acid, 1,5-dimethyl-5-	133	
0811210203	ethyl	100	
$C_8H_{12}N_2O_3$	Barbituric acid, 5,5-diethyl	126-131	1602
C811217203	(barbital)	120 101	1002
$C_8H_{12}N_2O_3$	Barbituric acid, 5-methyl-5-iso-	124	
0 12 2 0	propyl		
$C_8H_{12}N_2O_3S$	6-Aminopenicillanic acid	40	1566
$C_8H_{12}N_2O_3S$	Sulfanilamide, N ¹ -hydroxyethyl	1345	
$C_8H_{12}N_2O_4S_2$	Sulfanilamide, N ¹ -	1334	
	ethylsulphonyl		
$C_8H_{12}N_4$	1-(2-Pyrimidinyl)piperazine	90	
$C_8H_{13}N$	Heliotridene	606	
$C_8H_{13}NO_2$	Arecaidine methyl ester	87	
$C_8H_{13}NO_2$	Arecoline	88-89	
$C_8H_{13}NO_2$	Bemegride		1615
$C_8H_{13}N_2O_6P$	Pyridoxamine-5-phosphate	1200-1201	1010
$C_8H_{13}N_2O_6I$ $C_8H_{13}N_5O_2$	4-Deoxyacyclovir	20	
$C_8H_{13}N_5O_2$ $C_8H_{14}ClN_5$	Atrazine	104	1592
	Penicilloic acid	957	1592
$C_8H_{14}N_2O_4S$			
$C_8H_{15}N$	Heliotridane	605 1170	
$C_8H_{15}NO$	Pseudotropine	1179	
$C_8H_{15}NO$	Tropine	1478–1479	
$C_8H_{15}NO_2$	Dihydroarecaidine methyl ester	424	
$C_8H_{15}NO_2$	Tranexamic acid		2321

$\begin{array}{c} C_8H_{15}N_3O_7\\ C_8H_{15}N_7O_2S_3\\ C_8H_{16}O_2\\ C_8H_{19}N\\ C_8H_{17}N\\ C_8H_{17}NO\\ C_8H_{17}NO\\ C_8H_{21}NO\\ \end{array}$	Streptozocin Famotidine Valproic acid Octodrine Coniine Conhydrine 2-Amino-2-methyl-3- hydroxyoctane	542–543 1487 923 479 479 43	2201
C ₉			
C ₉ H ₅ ClINO C ₉ H ₅ I ₂ NO	Clioquinol Iodoquinol	328–332	1935
$C_9H_6O_3$	4-Hydroxycoumarin	637	1=00
$C_9H_7N_7O_2S$	Azathioprine	110	1598
$C_9H_8N_2$	2-Aminoquinoline	48	
$C_9H_8N_2$	4-Aminoquinaldine	48	• • • • •
$C_9H_8N_2O_2$	Pemoline		2064
$C_9H_8O_2$	Cinnamic acid	252, 312	
$C_9H_8O_3$	2-Hydroxycinnamic acid	252	
$C_9H_8O_4$	Aspirin	95–97	1586–1587
$C_9H_9Cl_2N_3$	Clonidine	337–338	1731–1734
C ₉ H ₉ I ₂ NO ₃	3,5-Di-iodo-1-tyrosine	439	
C ₉ H ₉ NO ₃	Hippuric acid		1911
C ₉ H ₉ NO ₄	N-Acetylaminosalicylic acid	13	
$C_9H_9N_3O_2S_2$	2-Sulfanilamidothiazole	1385, 1387	2263-2267
$C_9H_9N_3O_2S_2$	Sulfathiazole (2-	1385–1387	2263-2267
	sulfanilamidothiazole)		
$C_9H_9N_3O_2S_2$	Sulfonazole	1394	
C ₉ H ₉ N ₃ O ₃ S	2-Sulfanilamido-oxazole	1358	
$C_9H_{10}N_2O_3$	4-Aminohippuric acid		1564-1565
$C_9H_{10}N_2O_3S_2$	Ethoxazolamide	531	
	(Ethoxzolamide)		
$C_9H_{10}N_4O_2S$	2-Sulfanilamidoimidazole	1352	
$C_9H_{10}N_4O_2S_2$	2-Sulfanilamido-5-	1318–1320,	2235-2238
	methylthiadiazole (sulfamethizole;	1356	
	sulfamethylthiadiazole)		
$C_9H_{10}N_4O_3S$	2-Sulfanilamido-5- methyloxadiazole	1355	
$C_9H_{10}N_4O_3S$	3-Sulfanilamido-4- methylfurazan	1353	
$C_9H_{10}O_2$	Benzoic acid, 4-ethoxy (4-Ethoxybenzoic acid)	212, 649	
$C_9H_{10}O_3$	DL-Phenyllactic acid		2099
$C_9H_{10}O_3$ $C_9H_{10}O_3$	DL-Tropic acid	1477	2349
$C_9H_{10}O_3$ $C_9H_{10}O_4$	4-Ethoxysalicylic acid		2049
$C_{91110}C_{4}$	+-EuroxySancyfic aciu	649	

$C_9H_{11}Cl_2N_3O_4S_2$	Methyclomethiazide (Methyclothiazide)	197, 805– 806	
CH EN O	Floxuridine	000	1867
$C_9H_{11}FN_2O_5$	Idoxuridine	666	1927–1928
$C_9H_{11}IN_2O_5$		000	2322
$C_9H_{11}N$	Tranylcypromine	202 202	
$C_9H_{11}NO_2$	Benzocaine Benzoia a il 4 Mathedamina	202–203	1617–1619
$C_9H_{11}NO_2$	Benzoic acid, 4- <i>N</i> -ethylamino	212	
$C_9H_{11}NO_2$	4-Dimethylaminobenzoic acid	37	
$C_9H_{11}NO_2$	Ethyl 4-aminobenzoate	38	
$C_9H_{11}NO_3$	4-Dimethylaminosalicylic acid	649	
$C_9H_{11}NO_3$	Pyridoxal, 3-methoxy	1191	
$C_9H_{11}NO_3$	Tyrosine	497, 1484–	
		1485	
$C_9H_{11}NO_4$	DOPA, <i>L</i> - (Levodopa)	464, 497, 732–733	1817–1818
C ₉ H ₁₂ ClN	4-Chloroamphetamine		1693
$C_9H_{12}ClN_5$	N ¹ -4-Chlorophenyl-N ⁵ - methylbiguanide	282	
$C_9H_{12}NO_3$	Pyridoxal, N-methyl	1192	
$C_9H_{12}N_2O_3$	Barbituric acid, -1',5-spiro	193	
- 9 12 2 - 3	(cyclohexane)		
$C_9H_{12}N_2O_3$	Barbituric acid, 5-allyl-5-ethyl	151	
$C_9H_{12}N_2O_5$	2'-Deoxyuridine		1769
$C_9H_{12}N_4O_2$	Methylcaffeine	9	1989
C ₉ H ₁₃ ClN ₃ O ₅	Cytarabine		1757
$C_9H_{13}N$	Amphetamine	67-68, 393	1575, 1774
	(Dexamphetamine)		
$C_9H_{13}N$	N-Methylphenethylamine	821	
$C_9H_{13}N$	α-Methylphenethylamine		1997
C ₉ H ₁₃ NO	4-Hydroxyamphetamine	635	1921–1922
	(Paredrine)		
$C_9H_{13}NO$	Amphetamine, 4-hydroxy	69	
$C_9H_{13}NO$	N-hydroxyamphetamine	634	
$C_9H_{13}NO$	Norephedrine	907	2034
$C_9H_{13}NO$	Norpseudoephedrine	917	2039
C ₉ H ₁₃ NO	Paredrine	635	
C ₉ H ₁₃ NO	Phenylethylamine, 2-hydroxy, N-methyl	1089	
C ₉ H ₁₃ NO	Phenylethylamine, p-hydroxy, N-methyl	1084	
C ₉ H ₁₃ NO	Phenylpropanolamine	1092-1094	2100-2101
$C_9H_{13}NO$	<i>p</i> -Hydroxyphenylethylamine,	1084	
/ 10 -	N-methyl		
$C_9H_{13}NO_2$	3-Hydroxy-α-(methylamino) methylbenzenemethanol	644	

		(17	
$C_9H_{13}NO_2$	4-Hydroxynorephedrine	647	
$C_9H_{13}NO_2$	Deoxyepinephrine (Epinine)	382	
$C_9H_{13}NO_2$	D-α-Methyldopamine	813	
$C_9H_{13}NO_2$	<i>m,p</i> -	1086	
	Dihydroxyphenylethylamine, N-methyl		
$C_9H_{13}NO_2$	Metaraminol		1967
$C_9H_{13}NO_2$	<i>m</i> -Hydroxyphenylethylamine, 2-hydroxy, <i>N</i> -methyl	1082	
$C_9H_{13}NO_2$	Phenylephrine (Neo- synephrine)	1077	2095–2096
$C_9H_{13}NO_2$	Phenylethylamine, 2-hydroxy, <i>m</i> -hydroxy, <i>N</i> -methyl	1082	
$C_9H_{13}NO_2$	Phenylethylamine, 2-hydroxy, <i>p</i> - hydroxy, <i>N</i> -methyl	1088	
$C_9H_{13}NO_2$	Phenylethylamine, <i>m</i> , <i>p</i> -	1086	
$C_9H_{13}NO_2$	dihydroxy, N-methyl p-Hydroxyphenylethylamine, 2-hydroxy, N-methyl	1088	
$C_9H_{13}NO_2$	Synephrine (Sympatol)	1398–1399	2279
$C_9H_{13}NO_3$	Cobefrin (Nordefrin)	345, 906	2032-2033
$C_9H_{13}NO_3$	Epinephrine (Adrenaline)	25, 497–502	
$C_9H_{13}N_3$	1-(2-Pyridyl)piperazine	90	
$C_9H_{14}N_2O$	Phenoxypropazine		2089
$C_9H_{14}N_2O_2$	Pyridoxamine, 3-methoxy	1198	2007
$C_9H_{14}N_2O_3$	Barbituric acid, 1,5-dimethyl-5-	133	
0911141 (203	iso-propyl	100	
$C_9H_{14}N_2O_3$	Barbituric acid, 5,5-diethyl-1- methyl (Metharbital)	132	1603–1604
$C_9H_{14}N_2O_3$	Barbituric acid, 5-ethyl-5-iso- propyl	134–136	
C ₉ H ₁₅ NO ₃	Ecgonine	473-474	
$C_9H_{15}NO_3$	Pseudoecgonine	1175	
C ₉ H ₁₅ NO ₃ S	Captopril	246	
$C_9H_{15}N_2O_2$	Pyridoxamine, N-methyl	1199	
$C_9H_{15}N_5O$	Minoxidil	839	
$C_9H_{16}N_4S$	Burimamide		1644
$C_9H_{18}N_2O_3$	Ala-Ile	453	
$C_9H_{18}N_2O_3$	Ala-Leu	453	
$C_9H_{18}N_2O_4$	Ser-Leu	453	
$C_9H_{18}N_6$	Altretamine		1551
10- 10	(Hexamethylmelamine)		1001
$C_9H_{18}O_2$	Pelargonic acid	954	
$C_9H_{19}N$	1-Cyclohexyl-2-aminopropane	368	
$C_9H_{19}N$	Cyclopentamine	369	1753

C ₁₀			
$C_{10}H_7Cl_2N_3O$	Anagrelide	79	
$C_{10}H_7 C_{12}V_3 C_{10}H_7 N_3 S_{10}$	Thiabendazole		2294
$C_{10}H_{8}O$	2-Naphthol	252	22,71
$C_{10}H_8C$ $C_{10}H_9CIN_4O_2S$	5-Sulfanilamido-2-	1351	
01011901114020	chloropyrimidine	1001	
$C_{10}H_9CIN_4O_2S$	Sulfachloropyridazine		2210-2211
$C_{10}H_9N_3O_2S$	2-Benzenesulfanil-	199	
-10	amidopyrimidine		
$C_{10}H_{10}N_4O_2S$	2-Sulfanilamidopyrazine	1359	
$C_{10}H_{10}N_4O_2S$	3-Sulfanilamidopyridazine	1360	
$C_{10}H_{10}N_4O_2S$	4-Sulfanilamidopyrimidine	1362	
$C_{10}H_{10}N_4O_2S$	5-Sulfanilamidopyrimidine	1363	
$C_{10}H_{10}N_4O_2S$	Sulfadiazine	1293-1300	2212-2213
$C_{10}H_{10}O_3$	2-Methoxycinnamic acid	252	
$C_{10}H_{10}O_3$	3-Methoxycinnamic acid	252	
$C_{10}H_{10}O_3$	4-Methoxycinnamic acid	252	
$C_{10}H_{11}FN_4$	1-(5-Fluoro-2-pyrimidinyl)	90	
	piperazine		
$C_{10}H_{11}F_3N_2O_5$	5-Trifluoromethyl-2'-		1769, 2328
	deoxyuridine		
$C_{10}H_{11}N_3O_2S_2$	2-Sulfanilamido-4-	1357	
	methylthiazole		
$C_{10}H_{11}N_3O_3S$	5-Sulfanilamido-3-	1354	
	methylisoxazole		0000 00 14
$C_{10}H_{11}N_3O_3S$	Sulfamethoxazole	1010	2239–2241
$C_{10}H_{11}N_5O_2S$	2-Sulfanilamido-4-	1348	
C LL CINO	aminopyrimidine		1 (0 1
$C_{10}H_{12}CINO_2$	Baclofen		1601
$C_{10}H_{12}CIN_3O_3S$	Quinethazone	001	2164
$C_{10}H_{12}ClN_5O_2$	2-Chloro-2',3'-dideoxy-	281	
СИМ	adenosine (2-ClDDA) Tolazoline	1451	
$C_{10}H_{12}N_2$ $C_{10}H_{12}N_2O$	Serotonin	1431	2192
$C_{10}H_{12}N_2O$ $C_{10}H_{12}N_2O_3$		158–160	2192
	Barbituric acid, 5,5-diallyl (Dial; Allobarbital)	156-160	
$C_{10}H_{12}N_2O_7$	5-Carboxy-2'-deoxyuridine		1769
$C_{10}H_{12}N_4O_2S$	Sulfaethidole	1309	2225–2226
$C_{10}H_{12}N_4O_3$	Didanosine	416	10-0
$C_{10}H_{12}O_2$	Eugenol		1858
$C_{10}H_{12}O_3$	Propylparaben	00	2147
$C_{10}H_{13}ClN_2$	1-(2-Chlorophenyl)piperazine	90	
$C_{10}H_{13}ClN_2$	1-(3-Chlorophenyl)piperazine	90	
$C_{10}H_{13}ClN_2$	1-(4-Chlorophenyl)piperazine	90	1710 1710
$C_{10}H_{13}ClN_2O_3S$	Chlorpropamide		1712–1713

		00	
$C_{10}H_{13}FN_2$	1-(4-Fluorophenyl)piperazine	90	
$C_{10}H_{13}NO_2$	Propyl 4-aminobenzoate	38	0.070
$C_{10}H_{13}NO_2$	Phenacetin	9	2073
$C_{10}H_{13}NO_3$	Metyrosine	010 010	2005
$C_{10}H_{13}NO_4$	L-α-Methyldopa	810-812	
$C_{10}H_{13}N_3$	Debrisoquin		1762–1763
$C_{10}H_{13}N_3O_2$	Guanoxan		1903
$C_{10}H_{13}N_5O_2$	2',3'-Dideoxyadenosine	417	
$C_{10}H_{13}N_5O_4$	Adenosine	23	1539
$C_{10}H_{13}N_5O_4$	N2-Acetylacyclovir	20	
$C_{10}H_{13}N_5O_4$	Vidarabine		2360
$C_{10}H_{13}N_5O_4$	Zidovudine	1518	
$C_{10}H_{14}CIN$	Chlorphentermine		1709
$C_{10}H_{14}ClN_5$	N ¹ -4-Chlorophenyl-N ⁵ -	282	
	ethylbiguanide		
$C_{10}H_{14}N_2$	1-Phenylpiperazine	90	
$C_{10}H_{14}N_2$	Nicotine	878-880	2023-2026
$C_{10}H_{14}N_2O$	Glycine xylidide	599	
$C_{10}H_{14}N_2O$	Nikethamide	890	
$C_{10}H_{14}N_2O_3$	Aprobarbital	152–154	
$C_{10}H_{14}N_2O_3$	Barbituric acid, 5-allyl-5-	152-155	
	isopropyl (aprobarbital)		
$C_{10}H_{14}N_2O_3$	Barbituric acid, 5-methyl-5-(3-	161	
10 11 2 0	methyl-but-2-enyl)		
$C_{10}H_{14}N_2O_4S_2$	Sulthiame		2277
$C_{10}H_{14}N_4O_3$	7-(2-Hydroxypropyl)	648	
10 11 1 0	theophylline		
$C_{10}H_{14}O_2$	5-Phenylvaleric acid	1097	
$C_{10}H_{15}N$	2-Amino-4-phenylbutane	44	
$C_{10}H_{15}N$	Methamphetamine	789–790	1773, 1973–
- 10 15	(Desoxyephedrine;		1975
	methylamphetamine)		
$C_{10}H_{15}N$	Phentermine		2090-2091
$C_{10}H_{15}N$	Phenylpropylmethylamine	1095–1096	20/0 20/1
	(Vonedrine)	10/0 10/0	
$C_{10}H_{15}N$	α-Ethylphenethylamine		1853
$C_{10}H_{15}NO$	2-Amino-4-[4'-hydroxyphenyl]	41	1000
C1011151 (C	butane	11	
$C_{10}H_{15}NO$	4-Methoxyamphetamine	803	
$C_{10}H_{15}NO$	Amphetamine, 3-methoxy	70	
$C_{10}H_{15}NO$	Amphetamine, 4-methoxy	71	
$C_{10}H_{15}NO$	Ephedrine	9, 484–490,	1827–1829
10 10 10 1	1	1178	
C ₁₀ H ₁₅ NO	Methamphetamine, 4-hydroxy	791	
$C_{10}H_{15}NO$	N-Hydroxyphentermine	646	
C101 1151 (C	it if allowy predictionine	010	

	D 1 1 1		0150 0151
$C_{10}H_{15}NO$	Pseudoephedrine	1177–1178	2150–2151
$C_{10}H_{15}NO_2$	Ethylphenylephrine	538	
$C_{10}H_{15}NO_2$	Etilefrine (ethylphenylephrine)	538	
$C_{10}H_{15}NO_3$	Butanephrine	240	
$C_{10}H_{15}NO_3$	DL-N-Methyladrenaline	807	
$C_{10}H_{15}NO_3$	Ethylnorepinephrine		1852
$C_{10}H_{15}N_3$	Bethanidine		1627
$C_{10}H_{15}N_5$	Phenformin	974	
$C_{10}H_{15}O_2$	Phenindione	976	
$C_{10}H_{16}N_2O_2S$	Diethylsulfanilamide	38	
$C_{10}H_{16}N_2O_3$	Barbituric acid, 5-ethyl-5-iso-	139	1605
10 10 2 5	butyl (butabarbital)		
$C_{10}H_{16}N_2O_3$	Barbituric acid, 5-ethyl-5-n-butyl	137, 155	
$C_{10}H_{16}N_2O_3$	Barbituric acid, 5-ethyl-5-sec-	138	
	butyl	100	
$C_{10}H_{16}N_2O_3$	Butabarbital	139	1605
$C_{10}H_{16}N_2O_4S_3$	Dorzolamide		1819
$C_{10}H_{16}N_2O_8$	Edetic acid (EDTA)	476	
$C_{10}H_{16}N_6S$	Cimetidine	308-309	1720–1721
$C_{10}H_{17}N$	Amantadine	29–30	1552-1555
$C_{10}H_{17}NO_2$	Methyprylon	_,	2002
$C_{10}H_{17}NO_3$	Ecgonine methyl ester	475	
$C_{10}H_{17}NO_3$	Pseudoecgonine, methyl ester	1176	
$C_{10}H_{21}N$	Pempidine	11/0	2065
$C_{10}H_{21}N$ $C_{10}H_{21}N$	Propylhexedrine	1171	2145-2146
$C_{10}H_{21}N_{3}O$	Diethylcarbamazine	11/1	1791
$C_{10}H_{21}N_{3}O$ $C_{10}H_{22}N_{4}$	Guanethidine		1900–1901
$C_{10}H_{22}N_4$ $C_{10}H_{24}N_2O_2$	Ethambutol	526	1700-1701
$C_{10}H_{24}N_{2}O_{2}$ $C_{10}H_{24}O_{8}$	Ethyl biscoumacetate	637	1845–1847
	Entyi Discountacetate	007	1043-1047
C ₁₁			
$C_{11}H_7BrO_2$	3-Bromoazuloic acid	115	
$C_{11}H_7ClO_2$	3-Chloroazuloic acid	115	
$C_{11}H_7NO_4$	3-Nitroazuloic acid	115	
$C_{11}H_8O_2$	Azuloic acid	115	
$C_{11}H_9I_3N_2O_4$	Diatrizoic acid		1780
$C_{11}H_9NO_2S$	2-Benzenesulfonamidopyridine	200	
$C_{11}H_{10}BrN_3O_2S$	2-Sulfanilamido-5-	1349	
-11 10	bromopyridine		
$C_{11}H_{10}BrN_3O_2S$	5-Sulfanilamido-2-	1350	
11 10 0 2	bromopyridine		
$C_{11}H_{10}N_2O_3$	Barbituric acid, 5-methyl-5-	170-171	
11 10 2 0	phenyl		
$C_{11}H_{10}N_3O_3S$	Sulfapyridine-1-oxide	1381	
$C_{11}H_{11}ClO_3$	Alclofenac		1542–1543
$C_{11}H_{11}I_3O_3$	Iophenoxic acid	692	
	1		

$C_{11}H_{11}N_3O_2S$	3-Sulfanilamidopyridine	1361	
$C_{11}H_{11}N_3O_2S$	Sulfapyridine	1376-1380	2261-2262
$C_{11}H_{11}N_5$	Phenazopyridine	971	
$C_{11}H_{12}I_3NO_2$	Iopanoic acid	691	
$C_{11}H_{12}N_2O$	Antipyrine	9	1582-1584
$C_{11}H_{12}N_2O_2$	Ethylphenylhydantoin	,	1854
$C_{11}H_{12}N_2O_2$	Tryptophan	1480–1481	1004
$C_{11}H_{12}N_2O_2S$	Zileuton	1519–1520	
$C_{11}H_{12}N_2O_2S$ $C_{11}H_{12}N_2O_3S$	Sulfanilamide, N ¹ -furfuryl	1319–1320	
	2-Sulfanilamido-4-	1313–1316,	
$C_{11}H_{12}N_4O_2S$		1313–1310, 1373–	
	methylpyrimidine	1373–	
CILNOC	2 Cultonilancida E		
$C_{11}H_{12}N_4O_2S$	2-Sulfanilamido-5- aminopyridine	1346	
$C_{11}H_{12}N_4O_2S$	4-Methylsulfadiazine	1373–1374	2256
$C_{11}H_{12}N_4O_2S$	5-Sulfanilamido-2-	1347	2200
C1111121 1 4O2O	aminopyridine	1047	
$C_{11}H_{12}N_4O_2S$	Sulfamerazine	1313–1316	2230-2234
$C_{11}H_{12}N_4O_2S$	Sulfamethine	1317	
$C_{11}H_{12}N_4O_2S$	Sulfamethyldiazine	1373–1374	2256
$C_{11}H_{12}N_4O_2S$	Sulfamonomethoxine		2249
$C_{11}H_{12}N_4O_2S$	Sulfaperine (sulfamethyldiazine;	1373–1374	2256
	4-methylsulfadiazine)		
$C_{11}H_{12}N_4O_3S$	Sulfalene	1312	
$C_{11}H_{12}N_4O_3S$	Sulfamethoxydiazine	1323	2243
	(Sulfameter)		
$C_{11}H_{12}N_4O_3S$	Sulfamethoxypyridazine	1324–1325	2244-2247
$C_{11}H_{12}N_4O_3S_2$	Sulfamethythiazole, N ⁴ -acetyl	1321	
$C_{11}H_{12}N_4O_4$	2,4-Diaminopyridine,	216	
	5-substituted-benzyl		
	derivatives		
	$C_{11}H_{13}ClF_3N_3O_4S_3$		
Polythiazide	197, 1133		
$C_{11}H_{13}F_3N_2$	1-(3-Trifluoromethylphenyl) piperazine	90	
$C_{11}H_{13}N$	Pargyline		2062
$C_{11}H_{13}N_3O_3S$	Sulfadimethyloxazole		2220
$C_{11}H_{13}N_3O_3S$	Sulfafurazole	1310	2227-2228
$C_{11}H_{13}N_3O_3S$	Sulfisoxazole	1391-1392	2274-2275
$C_{11}H_{13}N_3S$	1-(1,2-Benzisothiazol-3-yl)	90	
CHUNDS	piperazine Sulfadimathoxytriazino	1303	
$C_{11}H_{13}N_5O_4S$	Sulfadimethoxytriazine		
$C_{11}H_{14}AsNO_3S_2$	Arsthinol Parkituria agid 1 mathul 5	10	
$C_{11}H_{14}N_2O_3$	Barbituric acid, 1-methyl-5,	133	
	5-diallyl		

$C_{11}H_{14}N_2O_3$	Gly-Phe	453	
$C_{11}H_{14}N_2O_3$	Phe-Gly	453	
$C_{11}H_{14}N_4O_2S$	3-Sulfanilamido-4,5-	100	2253
$C_{11} I_{14} I_{4} C_{2} O_{2} O_$	dimethylpyrazole		2255
$C_{11}H_{14}O_3$	Butylparaben		1651–1652
$C_{11}H_{15}NO$	Phenmetrazine		2084-2085
$C_{11}H_{15}NO_2$	Butamben		1647
$C_{11}H_{15}NO_2$	Butyl 4-aminobenzoate	38	
$C_{11}H_{15}NO_2$	4-Diethylaminobenzoic acid	649	
$C_{11}H_{15}NO_3$	4-Diethylaminosalicylic acid	649	
$C_{11}H_{15}NO_3$	Tyrosine ethyl ester	497, 1484–	
01111151103		1485	
$C_{11}H_{16}CIN_5$	N ¹ -4-Chlorophenyl-N ⁵ -	282	
	propylbiguanide	202	
$C_{11}H_{16}N_2$	1-(2-Methylphenyl)piperazine	90	
		90 90	
$C_{11}H_{16}N_2O$	1-(2-Methoxyphenyl)piperazine		0014
$C_{11}H_{16}N_2O$	Tocainide	1449	2314
$C_{11}H_{16}N_2O_2$	Isopilocarpine	701	
$C_{11}H_{16}N_2O_2$	Pilocarpine	9, 1111–	
		1118	1(10
$C_{11}H_{16}N_2O_3$	Barbituric acid, 5-allyl-5-(1- methylpropyl) (Talbutal)		1610
$C_{11}H_{16}N_2O_3$	Barbituric acid, 5-allyl-5-isobutyl	155-156	
$C_{11}H_{16}N_2O_3$	Barbituric acid, 5-ethyl-5-(1-	166–167	
C111161 (203	methylbut-1-enyl)	100 107	
$C_{11}H_{16}N_2O_3$	Barbituric acid, 5-ethyl-5-(3-	162	
C111161 V2O3	methylbut-2-enyl)	102	
$C_{11}H_{16}N_2O_3$	Barbituric acid, 5-methyl-5-(4-	169	
C111161 V2O3	methylpent-1-en-2-yl)	107	
$C_{11}H_{16}N_2O_3$	Talbutal		1610
$C_{11}H_{16}N_2O_3$ $C_{11}H_{16}N_4O_4$	Pentostatin	964	1010
$C_{11}H_{16}V_4C_4$ $C_{11}H_{17}IN_2$	Nicotine methiodide	201	2027
$C_{11}H_{17}N_{2}$ $C_{11}H_{17}N_$	2-Amino-5-phenylpentane	45	2027
$C_{11}H_{17}N$ $C_{11}H_{17}N$	Dimethylamphetamine	447-449	
$C_{11}H_{17}N$ $C_{11}H_{17}N$	Ethylamphetamine	11/-11/	1844
$C_{11}H_{17}N$ $C_{11}H_{17}N$	Mephentermine	778–779	1959
			1959
$C_{11}H_{17}NO$	2-Amino-5-[4'-hydroxyphenyl] pentane	42	
$C_{11}H_{17}NO$	Methoxyphenamine	804	
$C_{11}H_{17}NO$	Mexiletine	833-834	
$C_{11}H_{17}NO$	N-Methylephedrine	815, 1178	1991
$C_{11}H_{17}NO$	N-Methylpseudoephedrine	1178	
$C_{11}H_{17}NO$	Tecomine (tecomanine)	1403	
$C_{11}H_{17}NO_2$	Dimethoxyamphetamine	443	
	Diffectioxyuniprecunitie	110	

C ₁₁ H ₁₇ NO ₃	5-[1-Hydroxy-2-[(1-methylethyl) amino]-ethyl]-1,3-benzenediol	645	
C ₁₁ H ₁₇ NO ₃	Isopropylnorepinephrine	497	
$C_{11}H_{17}NO_3$	Isoproterenol (DL-isoprenaline)	702–706	
$C_{11}H_{17}NO_3$	Metaproterenol (orciprenaline)	645, 785– 786	1966
C ₁₁ H ₁₇ NO ₃	Methoxamine	801-802	
$C_{11}H_{17}NO_3$	Orciprenaline	785–786, 929	1966
$C_{11}H_{17}N_3O_3S$	Carbutamide	253	
$C_{11}H_{18}N_2O_2S$	Barbituric acid, 5-ethyl-5-(1- methylbutyl)-2-thio (Thiopental; Thiopentone)	144, 1436	1606–1607
$C_{11}H_{18}N_2O_3$	Barbituric acid, 1-methyl-5,5-di- n-propyl	133	
$C_{11}H_{18}N_2O_3$	Barbituric acid, 1-methyl-5- ethyl-5-butyl	133	
$C_{11}H_{18}N_2O_3$	Barbituric acid, 1-methyl-5- propyl-5-iso-propyl	133	
$C_{11}H_{18}N_2O_3$	Barbituric acid, 5-ethyl-5-(1-	140–143,	
11 10 2 0	methylbutyl) (Pentobarbital; Pentobarbitone)	155	
$C_{11}H_{18}N_2O_3$	Barbituric acid, 5-ethyl-5-(3- methylbutyl) (Amobarbital; Amylobarbitone)	145–148	
$C_{11}H_{21}N$	Mecamylamine	767	
$C_{11}H_{22}N_2O_3S$	Met-Leu	453	
C ₁₂			
$C_{12}H_8O_3$	3-Formylazuloic acid	115	
$C_{12}H_9FN_2O_5$	5-Fluorouracil, 1-phenyloxy- carbonyloxymethyl	567	
$C_{12}H_9FN_2O_5$	5-Fluorouracil, 3-phenyloxy- carbonyloxymethyl	568	
C ₁₂ H ₉ NS	Phenothiazine	981	
$C_{12}H_{10}F_4N_2O_2$	5,5-Dimethyl-3-(α,α,α, 4-tetrafluoro- <i>m</i> -tolyl) hydantoin	446	
$C_{12}H_{10}N_2O$	Harmol		1907
$C_{12}H_{10}N_2O_5$	Cinoxacin	315	
$C_{12}H_{11}BrN_4O_2$	2,4-Diaminopyridine, 5-(2- bromo-4,5- methylenedioxybenzyl)-	216	
$C_{12}H_{11}CIN_2O_5S$	Furosemide (Frusemide)	581-586	1884–1885
$C_{12}H_{11}I_3N_2O_4$	Iodamide	686–687	
$C_{12}H_{11}NO_3$	Quinolone carboxylic acid	1248	

CHNO	Parhituria acid E athrd E (2	106 107	
$C_{12}H_{11}N_3O_5$	Barbituric acid, 5-ethyl-5-(3- nitrophenyl)	186–187	
$C_{12}H_{11}N_3O_5$	Barbituric acid, 5-ethyl-5-(4- nitrophenyl)	188	
$C_{12}H_{11}N_7$	Triamterene		2324
$C_{12}H_{12}N_2O_2S$	4,4-Diaminodiphenylsulfone (Dapsone)	1395	1761
$C_{12}H_{12}N_2O_2S$	Sulfabenz	1290	2207-2209
$C_{12}H_{12}N_2O_2S$	Sulfanilamide, N ¹ -phenyl	1340	
$C_{12}H_{12}N_2O_2S$	Sulfone, bis(4-aminophenyl) (Dapsone; 4,4- diaminodiphenylsulfone)	1395	
$C_{12}H_{12}N_2O_3$	Barbituric acid, 5-ethyl-5-phenyl (Phenobarbital;	173–184	1612–1613
СЧИО	Phenobarbitone) Nalidixic acid	865 866	2170 2171
$C_{12}H_{12}N_2O_3$	INAHOIXIC ACIO	865–866, 1237–	2170–2171
		1237-	
$C_{12}H_{12}N_3O_3S$	3'-Methylsulfapyridine-1-oxide	1238	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	4'-Methylsulfapyridine-1-oxide	1381	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	5'-Methylsulfapyridine-1-oxide	1381	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	6'-Methylsulfapyridine-1-oxide	1381	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	Sulfapyridine-1-oxide, 3'-methyl	1381	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	Sulfapyridine-1-oxide, 4'-methyl	1381	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	Sulfapyridine-1-oxide, 5'-methyl	1381	
$C_{12}H_{12}N_{3}O_{3}S$ $C_{12}H_{12}N_{3}O_{3}S$	Sulfapyridine-1-oxide, 6'-methyl	1381	
$C_{12}H_{12}N_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O$	2,4-Diaminopyridine, 5-(4,	216	
	5-methylenedioxybenzyl)-	_ 10	
$C_{12}H_{12}N_4O_3S$	Sulfadiazine, N ⁴ -acetyl	1301	2214
$C_{12}H_{13}CIN_4$	Pyrimethamine		2156-2158
$C_{12}H_{13}CIN_4$	Pyrimethazine		2159
$C_{12}H_{13}I_3N_2O_3$	Iocetamic acid		1933
$C_{12}H_{13}N_3O_2$	Isocarboxazid	693	
$C_{12}H_{13}N_3O_4S$	Sulfamethoxazole, N ⁴ -acetyl		2242
$C_{12}H_{13}N_3O_4S_2$	N ³ -Sulfanilylmetanilamide	1370	
$C_{12}H_{13}N_3O_4S_2$	N ⁴ -Sulfanilylsulfanilamide	1371	
$C_{12}H_{13}N_3O_4S_2$	Sulfanilamide, N ¹ -sulfanilyl	1335	
$C_{12}H_{14}CINO$	Norketamine		2036
$C_{12}H_{14}N_2O_2$	Mephenytoin		1960
$C_{12}H_{14}N_4O_2S$	2-Sulfanilamido-2,4-	1389–1390	
	dimethylpyrimidine		
$C_{12}H_{14}N_4O_2S$	2-Sulfanilamido-4,6-	1304–1308	
	dimethylpyrimidine		
$C_{12}H_{14}N_4O_2S$	4-Sulfanilamido-2,6-	1389–1390	
	dimethylpyrimidine		

$\begin{array}{c} C_{12}H_{14}N_4O_2S\\ C_{12}H_{14}N_4O_2S\\ C_{12}H_{14}N_4O_3 \end{array}$	Sulfadimidine (Sulfamethazine) Sulfisomidine 2,4-Diaminopyridine, 5-(3- methoxy-4,5-	1304–1308 1389–1390 216	2221, 2224 2269–2273
$\begin{array}{c} C_{12}H_{14}N_4O_3S\\ C_{12}H_{14}N_4O_4S\\ C_{12}H_{15}N_3O_3S\\ C_{12}H_{16}FN_3O_2 \end{array}$	dihydroxybenzyl)- Sulfamethomidine Sulfadimethoxine Albendazole sulphoxide 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methoxymethyl-2'-fluoro-7-	1322 1302 26 1074	2215–2218
CHEN	amino Fenfluramine		1861
$C_{12}H_{16}F_3N$		452	1861
$\begin{array}{c} C_{12}H_{16}N_2O_3\\ C_{12}H_{16}N_2O_3 \end{array}$	Ala-Phe Barbituric acid, 5-cyclohex-1'- enyl-1,5-dimethyl (hexobarbital)	453 125	
$C_{12}H_{16}N_2O_3$	Cyclobarbital	150	
$C_{12}H_{16}N_2O_3$	Hexobarbital	125	
$C_{12}H_{16}N_2O_4$	Phe-Ser	453	
$C_{12}H_{16}N_2O_4$	Ser-Phe	453	
$C_{12}H_{17}NO$	Phendimetrazine		2078
$C_{12}H_{17}NO_3$	Rimoterol (rimiterol)		2183
$C_{12}H_{17}NO_9$	Levarterenol bitartrate		2035
C ₁₂ H ₁₇ NO ₉	Norepinephrine bitartrate (levarterenol bitartrate)		2035
$C_{12}H_{17}N_3O_4S$	Imipenem	670	
$C_{12}H_{17}N_4OS$	Thiamine		2295-2298
$C_{12}H_{18}ClN_5$	N ¹ -4-Chlorophenyl-N ⁵ -n- butylbiguanide	282	
$C_{12}H_{18}N_2O$	Monoethylglycine xylidide	846	
$C_{12}H_{18}N_2O_2S$	Barbituric acid, 5-allyl-5-(1- methylbutyl)-2-thio (Thiamylal)		1610
$C_{12}H_{18}N_2O_2S$	Thiamylal		1610
$C_{12}H_{18}N_2O_3$	Barbituric acid, 5-allyl-5-(1- methylbutyl) (secobarbital)	157	1608
$C_{12}H_{18}N_2O_3$	Barbituric acid, 5-ethyl-5-(4- methylpent-1-en-2-yl)	168	
$C_{12}H_{18}N_2O_3$	Barbituric acid, 5-iso-propyl-5- (3-methylbut-2-enyl)	163	
$C_{12}H_{18}N_2O_3$	Secobarbital	157	1608
$C_{12}H_{18}N_2O_3S$	Tolbutamide	1452-1453	2318
$C_{12}H_{18}N_4O_4PS$	Thiamine-O-monophosphate		2299
$C_{12}H_{18}N_6S_2$	Tiotidine		2312

C ₁₂ H ₁₈ O	Propofol	1159	
$C_{12}H_{18}O_2$	Hexylresorcinol	1107	1910
$C_{12}H_{18}O_2$ $C_{12}H_{19}N$	Isopropylamphetamine		1910
			1992
$C_{12}H_{19}N$	Methylethylamphetamine		
$C_{12}H_{19}N$	Propylamphetamine		2144
$C_{12}H_{19}NO_2$	1-(3,4-Dimethoxyphenyl)-2-N- methylaminopropane	444	
$C_{12}H_{19}NO_2$	Methylenedioxyamphetamine (MDA)	814	
$C_{12}H_{19}NO_3$	Prenalterol		2128
$C_{12}H_{19}NO_3$	Terbutaline	1406-1408	2285-2286
$C_{12}H_{19}NO_3$	Th 1206	1422	
$C_{12}H_{19}N_2O_2$	Neostigmine		2021
$C_{12}H_{19}N_3O$	Procarbazine	1143	
$C_{12}H_{20}N_2O_3$	Barbituric acid, 5-ethyl-5-(1,3-	149	
	dimethylbutyl)	117	
$C_{12}H_{20}N_2O_3$	Pirbuterol	1127	2118
$C_{12}H_{20}N_2O_3S$	Sotalol	1167, 1279	2196-2197
$C_{12}H_{20}N_4O_3$	Leu-His	453	
$C_{12}H_{21}N$	Methylisopropylamphetamine		1994
$C_{12}H_{21}N_3O_5S_3$	Brinzolamide	226	
$C_{12}H_{21}N_5O_2S_2$	Nizatidine	0	2030-2031
$C_{12}H_{21}O_{11}$	Sucrose	1289	2000 2001
$C_{12}H_{22}O_{11}$ $C_{12}H_{24}N_2O_4$	Carisoprodol	120)	1662
$C_{12}H_{24}O_2$ $C_{12}H_{24}O_2$	Lauric acid	725	1002
	Lauric aciu	725	
C ₁₃			
$C_{13}H_6Cl_6O_2$	Hexachlorophene	607–609	
$C_{13}H_8Cl_2O_4S$	Ticrynafen		2309
$C_{13}H_8F_2O_3$	Diflunisal	420-421	
$C_{13}H_8F_2O_3$	α-(2,4-Difluorophenyl)-α-[1-(2-	422	
10 0 2 0	(2-pyridyl)-phenylethenyl)]-		
	1H-1,2,4-triazole-1-ethanol		
	(XD405, bis-mesylate salt)		
$C_{13}H_9F_3N_2O_2$	Niflumic acid	887-889	
$C_{13}H_{10}N_2$	2-Aminoacridine	19	
$C_{13}H_{10}N_2$	3-Aminoacridine	18	
$C_{13}H_{10}N_2$	9-Aminoacridine	10	1559
$C_{13}H_{10}N_2$	Aminacrine	1)	1559
$C_{13}H_{10}O_{3}$	3-Acetylazuloic acid	115	1557
	5		
$C_{13}H_{11}NO_2$	N-Phenylanthranillic acid Proflavine	552, 1008	
$C_{13}H_{11}N_3$		18	2204
$C_{13}H_{11}N_3O_4S_2$	Tenoxicam		2284
$C_{13}H_{11}N_3OS$	Timoprazole		2311
$C_{13}H_{12}Cl_2O_4$	Ethacrynic acid	= 40	1837–1838
$C_{13}H_{12}F_2N_6O$	Fluconazole	549	

$C_{13}H_{12}N_2O_2$	N-(3'-Aminophenyl)anthranilic acid	552–553	
$C_{13}H_{12}N_2O_3S$	Sulfanilamide, N ¹ -benzoyl	1333	
$C_{13}H_{12}N_2O_5S$	Nimesulide	891-893	
$C_{13}H_{13}CIN_2S$	3-(4-Chlorophenyl)-5,6-dihydro-	283	
0131113011120	2-ethylimidazo[2,1-b]thiazole	200	
$C_{13}H_{13}F_3N_6O_4S_3$	Cefazaflur	255	
	Sulfanilamide, N ¹ -p-	1332	
$C_{13}H_{13}N_3O_3S$	aminobenzoyl		
$C_{13}H_{13}N_3O_3S$	Sulfapyridine, N ⁴ -acetyl	1383	
$C_{13}H_{13}N_3O_5S_2$	Succinylsulfathiazole		2203
$C_{13}H_{13}N_3O_6S$	Cephacetrile		1680
$C_{13}H_{13}N_5O_5S_2$	Ceftizoxime		1674
$C_{13}H_{13}N_7$	1,3-bis[(2-Pyridyl)	1207	
	methyleneamino]guanidine		
$C_{13}H_{14}Cl_2N_4O_2$	2,4-Diaminopyridine, 5-(2,6-	216	
	dichloro-3,5-		
	dimethoxybenzyl)-		
$C_{13}H_{14}N_2$	Tacrine		2280
$C_{13}H_{14}N_2O$	Phenyramidol	1098-1099	
$C_{13}H_{14}N_2O_2S$	Sulfanilamide, N ¹ -m-tolyl	1342	
$C_{13}H_{14}N_2O_2S$	Sulfanilamide, N ¹ -o-tolyl	1341	
	Sulfanilamide, N ¹ n tolyl	1343	
$C_{13}H_{14}N_2O_2S$	Sulfanilamide, N ¹ -p-tolyl	1343	1/14
$C_{13}H_{14}N_2O_3$	Barbituric acid, 1-methyl-5- ethyl-5-phenyl		1614
$C_{13}H_{14}N_3O_3S$	4',6'-Dimethylsulfapyridine-1-	1381	
	oxide		
$C_{13}H_{14}N_3O_3S$	6'-Ethylsulfapyridine-1-oxide	1381	
$C_{13}H_{14}N_3O_3S$	Sulfapyridine-1-oxide, 4',6'-	1381	
	dimethyl		
$C_{13}H_{14}N_3O_3S$	Sulfapyridine-1-oxide, 6'-ethyl	1381	
$C_{13}H_{14}N_4O_3$	2,4-Diaminopyridine, 5-(3-	216	
	methoxy-4,5-		
	methylenedioxybenzyl)-		
$C_{13}H_{14}N_4O_3S$	Sulfamethoxypyridazine, N ⁴ -	1326	2248
-15 14 4-5-	acetyl		
$C_{13}H_{15}CIN_2OS$	3-(4-Chlorophenyl)-2-ethyl-	284	
-1313	2,3,5,6-tetrahydroimidazo[2,1-		
	b]thiazol-3-ol		
$C_{13}H_{15}NO_2$	Glutethimide	597	1893–1894
$C_{13}H_{15}N_3$	1-(2-Quinolinyl)piperazine	90	
$C_{13}H_{15}N_3O_2S$	Sulfanilamide, N ¹ -p-	1336	
- 1010- 10 - 20	aminophenyl	1000	
$C_{13}H_{15}N_3O_3$	Gly-Trp	453	
$C_{13}H_{15}N_3O_3$ $C_{13}H_{15}N_3O_3$	Trp-Gly	453	
C131 1151 V3C3	TTP-OTY	400	

	C = 1	1002	007/
$C_{13}H_{15}N_3O_4S$	Sulfisoxazole, N ⁴ -acetyl	1393	2276
$C_{13}H_{16}CINO$	Ketamine	710–711	1000
$C_{13}H_{16}F_{3}N_{4}O_{6}$	Furaltadone	1401	1883
$C_{13}H_{16}N_2$	Tetrahydrozoline	1421	2254
$C_{13}H_{16}N_4O_5S$	2-Sulfanilamido-4,5,6-		2254
C ₁₃ H ₁₇ N	trimethoxypyrimidine Selegiline (Deprenyl)	1272	
	Tramazoline	1272	2320
$C_{13}H_{17}N_3$	Aminophenazone	46-47	1569
C ₁₃ H ₁₇ N ₃ O C ₁₃ H ₁₇ N ₃ O	Aminopyrine	46-47	1569
$C_{13}I_{17}I_{3}O$	(aminophenazone)	40-47	1509
$C_{13}H_{17}N_5O_2$	2,4-Diaminopyridine, 5-(3,5-	216	
	dimethoxy-4-aminobenzyl)-		
$C_{13}H_{17}N_5O_8S_2$	Aztreonam	114	
C ₁₃ H ₁₈ BrNO ₂	Benzoic acid, 4-bromo,	212	
	diethylaminoethyl ester		
C ₁₃ H ₁₈ ClNO	Bupropion		1643
C ₁₃ H ₁₈ ClNO ₂	Benzoic acid, 4-chloro,	212	
	diethylaminoethyl ester		
$C_{13}H_{18}Cl_2N_2O_2$	Melphalan	775	1957
$C_{13}H_{18}FNO_2$	Benzoic acid, 4-fluoro,	212	
	diethylaminoethyl ester		
$C_{13}H_{18}N_2O_4$	Benzoic acid, 4-nitro,	212	
	diethylaminoethyl ester		
$C_{13}H_{18}N_4O_3$	Pentoxiphylline		2069-2070
$C_{13}H_{18}O_2$	Ibuprofen	654-664	
$C_{13}H_{19}ClN_2O_2$	Chloroprocaine	741	
$C_{13}H_{19}NO_2$	Benzoic acid, diethylaminoethyl ester	212	
C ₁₃ H ₁₉ NO ₃		212	
$C_{13} I_{19} I_{03}$	Benzoic acid, 4-hydroxy, diethylaminoethyl ester	212	
$C_{13}H_{19}NO_4S$	Probenecid	1139	
$C_{13}H_{19}N_5$	Pinacidil		2109
$C_{13}H_{20}N_2O$	Prilocaine		2129-2130
$C_{13}H_{20}N_2O_2$	Benzoic acid, 4-amino,	212, 741,	2133
10 20 2 2	diethylaminoethyl ester	1140–	
	(Procaine)	1142	
$C_{13}H_{20}N_2O_3$	Barbituric acid, 5-t-butyl-5-(3-	164	
- 15 - 20 - 2 - 5	methylbut-2-enyl)		
$C_{13}H_{21}NO_{3}$	Albuterol (Salbutamol)	27, 1260	1541
$C_{13}H_{21}NO_3$	Salbutamol	27, 1260	1541
$C_{13}H_{21}N_{3}O$	Procainamide		2131-2132
$C_{13}H_{22}N_4O_3S$	Ranitidine		2177-2179
$C_{13}H_{24}N_2O_3S$	n-Amylpenilloic acid	77–78	
$C_{13}H_{24}N_4O_3S$	Timolol	1167, 1447	2310
		-	

$C_{13}H_{25}N_2$	Methamphetamine, N-(2-cyano) ethyl	905	
C ₁₄			
C ₁₄ H ₉ ClF ₃ NO ₂	(S)-6-Chloro-4-(cyclo- propylethynyl)-1,4-dihydro- 4-(trifluoromethyl)-2H-3, 1-benzoxazin-2-one (Efavirenz; DMP-266)		1695
$C_{14}H_{10}BrN_3O$	Bromazepam		1629–1630
$C_{14}H_{10}Cl_2O_3$	Fenclofenac		1860
$C_{14}H_{10}F_{3}NO_{2}$	Flufenamic acid	551-554	1870
$C_{14}H_{10}N_4O_5$	Dantrolene		1759–1760
$C_{14}H_{10}O_4$	Diphenic acid	457	
$C_{14}H_{10}O_5$	Salsalate		2190
$C_{14}H_{11}CIN_2O_4S$	Chlorthalidone	307	1716
$C_{14}H_{11}Cl_2NO_2$	Diclofenac	409-413	1787
$C_{14}H_{11}Cl_2NO_2$	Meclofenamic acid		1955
C ₁₄ H ₁₂ ClNO	2-Methylamino-5-	808	
	chlorobenzophenone		
$C_{14}H_{12}FNO_3$	Flumequine	555-557	
$C_{14}H_{12}O_3S$	Tiaprofenic acid (tiprofenic acid)		2307
$C_{14}H_{13}NO_2$	N-(3'-Methylphenyl)anthranilic acid	552–553	
$C_{14}H_{13}NO_3$	N-(3'-Methoxyphenyl) anthranilic acid	552–553	
$C_{14}H_{14}N_2$	Naphazoline	870-871	
$C_{14}H_{14}N_3O_4S$	Sulfapyridine-1-oxide, N ⁴ -acetyl, 6'-methyl	1382	
$C_{14}H_{14}N_8O_4S_3$	Cefazolin	256	1666–1669
$C_{14}H_{14}O_3$	Naproxen	872-874	
$C_{14}H_{15}N_3O_5$	Barbituric acid, 5,5-diethyl-1-(4- nitrophenyl)	132	
$C_{14}H_{16}CIN_{3}O_{4}S_{2}$	Cyclothiazide	197, 373-	1755
	2	374	
$C_{14}H_{16}N_2$	Didesmethylpheniramine	418	
$C_{14}H_{16}N_2O_2$	Etomidate	539	
$C_{14}H_{16}N_2O_3$	Barbituric acid, 5,5-diethyl-1- phenyl	132	
$C_{14}H_{16}N_4O_5S$	Sulfadimethoxine, N4-acetyl		2219
$C_{14}H_{17}N_2O_3S$	Phenylpenilloic acid	1090-1091	
$C_{14}H_{18}BrN_3S$	Bromothen		1634
$C_{14}H_{18}CIN_3S$	Chlorothen		1698
$C_{14}H_{18}N_2O_3$	Barbituric acid, 5-allyl-5-(1- methylpent-2-ynyl)-N-methyl (methohexital)		1609

$C_{14}H_{18}N_2O_5$	Aspartame	94	
$C_{14}H_{18}N_{2}O_{5}$ $C_{14}H_{18}N_{4}O_{2}S$	2,4-Diaminopyridine, 5-(3,	216	
	5-dimethoxy-4-	210	
	thiomethylbenzyl)-		
$C_{14}H_{18}N_4O_3$	2,4-Diaminopyridine, 5-(2,4,	216	
	5-trimethoxybenzyl)-		
$C_{14}H_{18}N_4O_3$	2,4-Diaminopyridine, 5-(3,4,	216	
-1410145	5-trimethoxybenzyl)-		
$C_{14}H_{18}N_4O_3$	2,4-Diaminopyridine, 5-(3,5-	216	
14 10 4 5	dihydroxy-4-methoxybenzyl)-		
$C_{14}H_{18}N_4O_3$	Trimethoprim	1470-1471	2334–2336
$C_{14}H_{19}Cl_2NO_2$	Chlorambucil		1687–1688
$C_{14}H_{19}NO_2$	Methylphenidate	822-823	
$C_{14}H_{19}NO_2$	Norketobemidone	913	
C ₁₄ H ₁₉ N ₃ O ₇ S	Cephalosporin C, deacetoxy	270	
*C ₁₄ H ₁₉ N ₃ O ₇ S	Deacetoxycephalosporin C	270	
$C_{14}H_{19}N_3S$	Methapyrilene		1976–1977
$C_{14}H_{19}N_3S$	Thenyldiamine		2293
$C_{14}H_{20}N_2O_2$	4-[2-Hydroxy-3-(iso-	643	2111-2113
	propylamino)propoxy]indole		
	(Pindolol)		
$C_{14}H_{20}N_2O_3$	Barbituric acid, 5,5-di-(3-	165	
	methylbut-2-enyl)		
$C_{14}H_{20}N_2O_3S$	Glycyclamide		1898
$C_{14}H_{20}N_2O_4$	Val-Tyr	453	
$C_{14}H_{21}NO_2$	Amylocaine	398	
$C_{14}H_{21}NO_2$	Benzoic acid, 4-methyl,	212	
	diethylaminoethyl ester		
$C_{14}H_{21}N_3O_2S$	Sumatriptan		2278
$C_{14}H_{21}N_3O_3$	Oxamniquine	930	
$C_{14}H_{21}N_3O_3S$	Tolazamide	1450	2317
$C_{14}H_{21}N_3O_4S$	1'-Aminocyclopentane-	1511	
	carboxamidopenicillin		
$C_{14}H_{21}N_3O_4S$	WY- 7953 (1'-amino-	1511	
	cyclopentanecar-		
	boxamidopenicillin)	007 000	
$C_{14}H_{22}ClN_3O_2$	Metoclopramide	827-828	
$C_{14}H_{22}N_2O$	Lidocaine (lignocaine; xylocaine)	738-746	
$C_{14}H_{22}N_2O$	Lignocaine	738-746	
$C_{14}H_{22}N_2O$ $C_{14}H_{22}N_2O_2$	Xylocaine Rivastigmine	738–746	2186
$C_{14}H_{22}N_2O_2$ $C_{14}H_{22}N_2O_3$	Atenolol	99–102,	1588–1590
$C_{141} C_{221} N_2 C_3$		1167 June 20	1500-1590
$C_{14}H_{22}N_2O_3$	Practolol	1107	2122
$C_{14}H_{22}N_2O_3$ $C_{14}H_{24}N_2O_7$	Spectinomycin		2122
~14 ¹ 124 ¹ 12 ⁰ /	opeemioniyeni		21/)

C ₁₅		
C ₁₅ H ₉ Cl ₂ FN ₂ O	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- fluoro-7,8-dichloro	1020
$C_{15}H_9ClF_2N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2',6'- difluoro-7-chloro	1050
$C_{15}H_9ClO_2$	Clorindione	340
$C_{15}H_{10}BrClN_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- bromo-7-chloro	1027
C ₁₅ H ₁₀ ClFN ₂ O	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- fluoro-7-chloro	1049
$C_{15}H_{10}ClF_2N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2',6'- difluoro-8-chloro	1044
$C_{15}H_{10}ClF_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 4'- fluoro-7-chloro	1043
$C_{15}H_{10}CIN_3O_3$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- chloro-7-nitro	1055
C ₁₅ H ₁₀ ClN ₃ O ₃	Clonazepam	1730
$C_{15}H_{10}Cl_2N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2',7- dichloro	1028
$C_{15}H_{10}Cl_2N_2O_2$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 3-hydroxy-2',7-dichloro	1056
$C_{15}H_{10}Cl_2N_2O_2$	Lorazepam	204, 755–
$C_{15}H_{10}N_4O_5$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2',7- dinitro	756 1069
$C_{15}H_{10}O_5S$	Tixanox	1448
C ₁₅ H ₁₁ ClN ₂ O	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 7-chloro	1040
$C_{15}H_{11}CIN_2O$	Desmethyldiazepam	205
$C_{15}H_{11}CIN_2O_2$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 3-hydroxy-7-chloro	1060
$C_{15}H_{11}ClN_2O_2$	Chlordiazepoxide lactam	205
$C_{15}H_{11}ClN_2O_2$	Oxazepam	204, 931– 933

C ₁₅ H ₁₁ FN ₂ O	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 4'-	1057	
C ₁₅ H ₁₁ FN ₂ O	fluoro 5-Phenyl-1,3-dihydro-1,4-	1058	
$C_{15}H_{11}I_4NO_4$	benzodiazepin-2-one, 7-fluoro Thyroxine, L- (Levothyroxine)	1443	
$C_{15}H_{11}H_{11}N_{3}O_{3}$	Nitrazepam	204, 895–	
C15111143C3	Muzepun	899	
$C_{15}H_{12}I_3NO_4$	L-Thyronine (Liothyronine)		1945, 2306
$C_{15}H_{12}N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one	1019	
$C_{15}H_{12}N_2O_2$	Demoxepam		1767
$C_{15}H_{12}N_2O_2$	Phenytoin	1100-1104	
$C_{15}H_{12}N_2O_3$	(3,4-Dimethyl-5-isoxazolyl)-4- amino-1,2-naphthoquinone	445	
$C_{15}H_{12}N_3O_3$	5-Phenyl-1,3-dihydro-1,4-	1062	
- 15 12 - 5 - 5	benzodiazepin-2-one, 7-nitro		
$C_{15}H_{12}N_4O_3$	7-Aminonitrazepam	205	
$C_{15}H_{12}N_4O_3$	Nitrazepam, 7-amino	205	
$C_{15}H_{13}FO_2$	Flurbiprofen	575	1879
$C_{15}H_{13}NO_3$	N-(3'-Acetylphenyl)anthranilic	552-553	
10 10 0	acid		
$C_{15}H_{13}N_{3}O$	5-Phenyl-1,3-dihydro-1,4-	1075	
10 10 0	benzodiazepin-2-one, 7-amino		
$C_{15}H_{13}N_3O_4S$	Piroxicam	1129–1131	
C ₁₅ H ₁₄ ClNO ₃	Zomepirac	1521	
$C_{15}H_{14}ClN_3O_4S$	Cefaclor		1664
$C_{15}H_{14}F_3N_3O_4S_2$	Bendroflumethiazide	196–197	
$C_{15}H_{14}N_4O_2S$	Sulfaphenazole	1375	2257-2260
$C_{15}H_{14}O_3$	Fenoprofen	546	1862
$C_{15}H_{15}BrN_2O_4$	Barbituric acid, 5,5-diethyl-1-(2-	132	
	bromobenzoyl)		
$C_{15}H_{15}BrN_2O_4$	Barbituric acid, 5,5-diethyl-1-(3- bromobenzoyl)	132	
$C_{15}H_{15}BrN_2O_4$	Barbituric acid, 5,5-diethyl-1-(4-	132	
10 10 2 1	bromobenzoyl)		
$C_{15}H_{15}ClN_2O_4S$	Xipamide	1516	
$C_{15}H_{15}NO_2$	Mefenamic acid	772–774	
$C_{15}H_{15}NO_3$	Tolmetin	1454	
$C_{15}H_{15}N_3$	Acridine yellow	18	
$C_{15}H_{16}N_2O_3S$	Sulfamilyl-3,4-xylamide (Irgafen)	1327	
$C_{15}H_{16}N_2O_4$	Barbituric acid, 5,5-diethyl-1- benzoyl	132	
$C_{15}H_{16}N_2O_6S_2$	Ticarcillin		2308

701

$C_{15}H_{17}ClN_2O_3$	Barbituric acid, 5,5-diethyl-1-(4- chlorobenzyl)	132	
$C_{15}H_{17}FN_4O_3$	Enoxacin	1231	2168
$C_{15}H_{17}N_3O_5$	Barbituric acid, 5,5-diethyl-1-(4- nitrobenzyl)	132	2100
$C_{15}H_{18}N_2$	Desmethylpheniramine (Monodesmethyl- pheniramine)	389, 418	
$C_{15}H_{18}N_2O_3$	Barbituric acid, 5,5-diethyl-1- benzyl	132	
$C_{15}H_{18}N_4O_5$	Mitomycin C	841-844	
$C_{15}H_{19}NO_2$	Tropacocaine	1475-1476	2347-2348
$C_{15}H_{20}N_2O_3S$	Benzylpenilloic acid	222	
$C_{15}H_{20}N_2S$	Methaphenilene	792	
$C_{15}H_{21}F_3N_2O_2$	Fluvoxamine		1880
$C_{15}H_{21}N$	Fencamfamine		1859
$C_{15}H_{21}NO_2$	Ketobemidone	712–713	
$C_{15}H_{21}NO_2$	Meperidine (Pethidine)	777, 968	1958
$C_{15}H_{21}NO_2$	β-Eucaine	398, 541	1,00
$C_{15}H_{21}N_{3}O$	Primaquine	1137	
$C_{15}H_{21}N_{3}O_{2}$	Physostigmine	1109	
$C_{15}H_{22}N_2O$	Mepivacaine	741, 780-	1962
	Mepivacante	781	1702
$C_{15}H_{22}N_2O_2$	Mepindolol	701	1961
$C_{15}H_{22}N_2O_3$	Leu-Phe	453	1701
$C_{15}H_{22}N_2O_3$	Phe-Leu	453	
$C_{15}H_{22}N_2O_4$	Leu-Tyr	453	
$C_{15}H_{23}NO_2$	Alprenolol	28	1550
$C_{15}H_{23}NO_2$	Benzoic acid, 4-ethoxy,	212	1000
01511231102	diethylaminoethyl ester	212	
$C_{15}H_{23}NO_3$	(O-Pivaloyl)etilefrine	1132	
$C_{15}H_{23}NO_3$	Oxprenolol	1167	2051
$C_{15}H_{23}N_3O_3S$	Amdinocillin (Mecillinam)	31	1556
$C_{15}H_{23}N_3O_4S$	1'-Amino-3'-	1512	
10 20 0 1	methylcyclopentane- carboxamidopenicillin		
$C_{15}H_{23}N_3O_4S$	Cyclacillin	361-362	1749
$C_{15}H_{23}N_3O_4S$	Sulpiride	1397	
$C_{15}H_{23}N_3O_4S$	WŶ- 4508 (1'-amino- cyclohexanecarbox-	1511	
$C_{15}H_{23}N_3O_4S$	amidopenicillin) WY- 8542 (1'-amino-3'- methylcyclopentanecarbox- amidopenicillin)	1512	

Index 703

$C_{15}H_{24}N_2O_2$	Tetracaine	741, 1411– 1412	2288–2289
$\begin{array}{c} C_{15}H_{24}O\\ C_{15}H_{25}NO_{3} \end{array}$	Butylated hydroxytoluene Metoprolol	829–830,	1650
$C_{15}H_{26}N_2$	Sparteine	1167	2198
C ₁₆			
$C_{16}H_{10}ClF_{3}N_{2}O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- trifluoromethyl-7-chloro	1026	
$C_{16}H_{11}CIN_2O_3$	Clorazepate		1736
$C_{16}H_{11}CIN_4$	Estazolam	522	
$C_{16}H_{11}Cl_3N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methyl-2',6',7-trichloro	1036	
$C_{16}H_{11}F_3N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- trifluoromethyl	1053	
$C_{16}H_{11}F_3N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 3'- trifluoromethyl	1025	
$C_{16}H_{11}F_3N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 4'-	1022	
$C_{16}H_{11}F_3N_2O$	trifluoromethyl 5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 7-trifluoromethyl	1034	
$C_{16}H_{11}N_3O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 7-cyano	1065	
$C_{16}H_{11}N_7O_6$	3,5-Di(p-nitrobenzamido)-1,2,4- triazole (Guanazole prodrug)	602	
$C_{16}H_{12}ClF_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methyl-4'-chloro-7-fluoro	1035	
C ₁₆ H ₁₂ ClFN ₂ O	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methyl-2'-fluoro-7-chloro	1047	
C ₁₆ H ₁₂ ClFN ₂ O	Fludiazepam	550	
$C_{16}H_{12}Cl_2N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methyl-2',7-dichloro	1032	
$C_{16}H_{12}FIN_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methyl-2'-fluoro-7-iodo	1031	
$C_{16}H_{12}FN_3O_3$	Flunitrazepam	559–560	1872

$C_{16}H_{12}N_2O_3$	Barbituric acid, 5,5-diphenyl	189	
$C_{16}H_{12}N_4O$	2-Cyanoguanidinophenytoin	360	
$C_{16}H_{12}O_3$	Anisindione	81	
$C_{16}H_{13}CIN_2O$	5-Phenyl-1,3-dihydro-1,4-	1033	
	benzodiazepin-2-one, 2'- methyl-7-chloro		
$C_{16}H_{13}CIN_2O$	5-Phenyl-1,3-dihydro-1,4-	1023	
	benzodiazepin-2-one,		
	3-methyl-7-chloro		
$C_{16}H_{13}CIN_2O$	Diazepam	204, 399–	1781-1782
	•	402	
$C_{16}H_{13}CIN_2O$	Mazindol		1953
$C_{16}H_{13}CIN_2OS$	5-Phenyl-1,3-dihydro-1,4-	1038	
10 10 2	benzodiazepin-2-one, 2'-		
	thiomethyl-7-chloro		
$C_{16}H_{13}CIN_2O_2$	Temazepam		2283
$C_{16}H_{13}CIN_2O_2$	5-Phenyl-1,3-dihydro-1,4-	1051	
10 10 1 1	benzodiazepin-2-one, 2'-		
	methoxy-7-chloro		
$C_{16}H_{13}CIN_2O_2$	5-Phenyl-1,3-dihydro-1,4-	1030	
10 10 2 2	benzodiazepin-2-one, 3'-		
	methoxy-7-chloro		
C ₁₆ H ₁₃ ClN ₃ O ₃	Mebendazole	764	
$C_{16}H_{13}CIN_3O_3$	5-Phenyl-1,3-dihydro-1,4-	1048	
10 10 0 0	benzodiazepin-2-one,		
	3-methyl-2'-chloro-7-nitro		
$C_{16}H_{13}FN_3O_3$	5-Phenyl-1,3-dihydro-1,4-	1063	
10 10 0 0	benzodiazepin-2-one,		
	1-methyl-2′-fluoro-7-nitro		
$C_{16}H_{13}N_3O_3$	Nimetazepam	894	
$C_{16}H_{13}N_3O_3$	5-Phenyl-1,3-dihydro-1,4-	1061	
	benzodiazepin-2-one,		
	1-methyl-7-nitro		
$C_{16}H_{13}N_5O_2$	3,5-Dibenzamido-1,2,4-triazole	602	
	(Guanazole prodrug)		
C ₁₆ H ₁₄ ClN ₃ O	Chlordiazepoxide	204, 279	1690–1691
$C_{16}H_{14}FN_3O$	5-Phenyl-1,3-dihydro-1,4-	1073	
	benzodiazepin-2-one,		
	1-methyl-2′-fluoro-7-amino		
$C_{16}H_{14}F_3N_3O_2S$	Lansoprazole		1941
$C_{16}H_{14}N_2O$	5-Phenyl-1,3-dihydro-1,4-	1052	
	benzodiazepin-2-one,		
	7-methyl		
$C_{16}H_{14}N_2O$	Methaqualone	793	

$C_{16}H_{14}N_2OS$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one,	1041	
	7-thiomethyl		
$C_{16}H_{14}N_2O_2$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 7-methoxy	1059	
$C_{16}H_{14}O_3$	Fenbufen	544	
$C_{16}H_{14}O_3$	Ketoprofen	715–716	
$C_{16}H_{15}ClN_2$	Medazepam	204, 770– 771	
C ₁₆ H ₁₅ ClN ₂ O	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1-methyl-7-chloro	1046	
$C_{16}H_{15}F_2N_3O_4S$	Pantoprazole		2060
$C_{16}H_{15}N_3$	Epinastine	496	
$C_{16}H_{15}N_{3}O$	5-Phenyl-1,3-dihydro-1,4-	1071	
10 10 0	benzodiazepin-2-one, 1-methyl-7-amino		
$C_{16}H_{15}N_5O_7S_2$	Cefixime		1670
$C_{16}H_{15}N_5O_7S_2$	Cephradine		1685
$C_{16}H_{16}CIN_3O_3S$	Indapamide	675	1000
$C_{16}H_{16}CIN_{3}O_{3}S$	Metolazone	0,0	2003
$C_{16}H_{16}O_{1$	Isolysergic acid	696	2000
$C_{16}H_{16}N_2O_2$ $C_{16}H_{16}N_2O_2$	Lysergic acid	757	
$C_{16}H_{16}N_2O_2$ $C_{16}H_{16}N_2O_6S_2$	Cephalothin	271–272	1683
	Cefuroxime	2/1-2/2	1677
$C_{16}H_{16}N_4O_8S$			2368
$C_{16}H_{17}BrN_2$	Zimeldine (zimelidine)	1000	2308
$C_{16}H_{17}F_2N_3O_3$	8-Fluoro-norfloxacin	1233	1(01 1(0)
$C_{16}H_{17}N_3O_4S$	Cephalexin	259-262	1681–1682
$C_{16}H_{17}N_3O_5S$	Cefadroxil	254	
$C_{16}H_{17}N_{3}O_{7}S$	Cephalosporin derivative	268	1 (20
$C_{16}H_{17}N_3O_7S_2$	Cefoxitin	057	1672
$C_{16}H_{17}N_5O_7S_2$	Cefotaxime	257	
$C_{16}H_{17}NO_3$	Normorphine	914–915	
$C_{16}H_{18}FN_3O_3$	Norfloxacin	1239–1242	2172–2173
$C_{16}H_{18}N_2O_4$	Barbituric acid, 5,5-diethyl-1-(2- methylbenzoyl)	132	
$C_{16}H_{18}N_2O_4$	Barbituric acid, 5,5-diethyl-1-(3- methylbenzoyl)	132	
$C_{16}H_{18}N_2O_4$	Barbituric acid, 5,5-diethyl-1-(4- methylbenzoyl)	132	
$C_{16}H_{18}N_2O_4S$	Benzylpenicillin (Penicillin G)	217, 958–	
- 1010- +2 + 40	(- e-meninit C)	959, 961	
$C_{16}H_{18}N_2O_5$	Barbituric acid, 5,5-diethyl-1-(2- methoxybenzoyl)	132	

$C_{16}H_{18}N_2O_5$	Barbituric acid, 5,5-diethyl-1-(3- methoxybenzoyl)	132	
$C_{16}H_{18}N_2O_5$	Barbituric acid, 5,5-diethyl-1-(4-	132	
C161 1181 (205	methoxybenzoyl)	102	
$C_{16}H_{18}N_2O_5S$	<i>p</i> -Hydroxybenzylpenicillin	959	
$C_{16}H_{18}N_2O_5S$	Phenoxymethylpenicillin	960–962	
	(Penicillin V)		
$C_{16}H_{18}N_4O_2$	1-(3,4-Methylenedioxybenzyl)-4- (2-pyrimidinyl)piperazine	1128	
$C_{16}H_{18}N_4O_2$	Piribedil (1-(3,4-	1128	
	methylenedioxybenzyl)-4-(2- pyrimidinyl)piperazine)		
$C_{16}H_{19}BrN_2$	Brompheniramine	230	1635–1636
$C_{16}H_{19}ClN_2$	Chlorpheniramine	290	1704–1708
$C_{16}H_{19}CIN_2O$	Rotoxamine (l-Carbinoxamine)	_>0	2188
$C_{16}H_{19}EN_4O_3$	Amifloxacin	1225-1226	2100
$C_{16}H_{19}N$ $C_{16}H_{19}N$	Benzylamphetamine	1220 1220	1623
$C_{16}H_{19}NO_4$	Benzoylecgonine	213	1020
$C_{16}H_{19}N_{3}O_{4}S$	Ampicillin	72–76	
$C_{16}H_{19}N_{3}O_{4}S$ $C_{16}H_{19}N_{3}O_{5}S$	Amoxicillin	61–66	1574
	Cefroxadine	258	1574
$C_{16}H_{19}N_3O_5S$			
*C ₁₆ H ₂₀ ClN ₃ O ₈ S	Deacetoxycephalosporin C, N- chloroacetyl	270	
$C_{16}H_{20}CIN_{3}O_{8}S$	N-Chloroacetyldeacetoxyce-	270	
	phalosporin C		
$C_{16}H_{20}N_2$	Pheniramine	977	2081-2083
$C_{16}H_{20}N_2O_5S$	Benzylpenicilloic acid	218-219	
$C_{16}H_{20}N_2O_6S$	Phenoxymethylpenicilloic acid	1006	
$C_{16}H_{20}N_4O_2$	Azapropazone (Apazone)	108-109	
$C_{16}H_{20}N_4O_5$	Porfiromycin	844, 1134	
$C_{16}H_{21}NO_2$	Propranolol	1160–1170	2142-2143
$C_{16}H_{21}NO_3$	Homatropine	398	1912–1913
$C_{16}H_{21}NO_3$	Norhyoscyamine	652, 912	
$C_{16}H_{21}N_3$	Tripelennamine	1472	2340-2342
$C_{16}H_{21}N_3O_4S$	Epicillin	495	2010 2012
$C_{16}H_{21}N_{3}O_{4}S$ $C_{16}H_{21}N_{3}O_{8}S$	Cephalosporin C	270	
$C_{16}H_{21}N_{3}O_{8}O_{8}O_{16}H_{22}N_{2}O_{3}O_{3}O_{8}O_{16$	α-Methyl benzylpenilloate	809	
$C_{16}H_{22}N_{2}O_{3}O$ $C_{16}H_{22}N_{4}O$	Thonzylamine	007	2304-2305
$C_{16}H_{22}N_4O_3$	2,4-Diaminopyridine, 5-(3,5-	216	2004-2000
C ₁₆ , 1 ₂₂ , 4 ₀ 3	dimethoxy-4-(2- methoxyethyl)benzyl)-	210	
$C_{16}H_{22}N_4O_8S$	Cephalosporin, 5-amino-5-	269	
-1022- 140.00	carboxyvaleramido,	20)	
	O-carbamoyl		
$C_{16}H_{23}BrN_2O_3$	Remoxipride	1251	
C101123D111203	icinosipilite	1201	

$C_{16}H_{23}NO_2$	Alphaprodine		1549
$C_{16}H_{23}NO_2$	Betaprodine	11/8	1625
$C_{16}H_{23}NO_2$	Bufuralol	1167	1638–1639
$C_{16}H_{23}NO_2$	Ethoheptazine		1840
$C_{16}H_{23}NO_2$	Hexylcaine		1908–1909
$C_{16}H_{24}N_2$	Xylometazoline	1517	
$C_{16}H_{24}N_2O_2$	Molindone	845	
$C_{16}H_{24}N_{6}$	2,4-Diaminopyridine, 5-(3,5-bis (dimethylamino)-4- methylbenzyl)-	216	
$C_{16}H_{24}N_{10}O_4$	Aminophylline		1567
		398	1507
$C_{16}H_{26}N_2O_2$	Amydricaine (Alypine)		
$C_{16}H_{26}N_2O_3$	Proparacaine	1157	0100
$C_{16}H_{26}N_2O_3$	Propoxycaine		2139
C ₁₆ H ₂₇ HgNO ₆ S	Mercaptomerin		1963
C ₁₇			
$C_{17}H_{12}Cl_2N_4$	Triazolam	1460	
$C_{17}H_{13}ClN_2O_2$	Lonazolac	753	
$C_{17}H_{13}ClN_2O_2$	Pyrazolic acid	1187	
$C_{17}H_{13}ClO_3$	Itanoxone	708	
$C_{17}H_{13}FN_2O_2$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 2'- fluoro-7-acetyl	1068	
C-H-NO	7-Acetamidonitrazepam	205	
$C_{17}H_{13}N_3O_4$		205	
$C_{17}H_{13}N_3O_4$	Nitrazepam, 7-acetamido		
$C_{17}H_{14}Cl_2N_2O$	5-Phenyl-1,3-dihydro-1,4- benzodiazepin-2-one, 1,3- dimethyl-2',7-dichloro	1021	
C ₁₇ H ₁₅ ClN ₂ O	5-Phenyl-1,3-dihydro-1,4-	1037	
C1/11/3011 (20	benzodiazepin-2-one, 1,2'- dimethyl-7-chloro	1007	
C ₁₇ H ₁₅ ClN ₂ O	5-Phenyl-1,3-dihydro-1,4-	1024	
- 17 - 15 2 -	benzodiazepin-2-one, 1-ethyl- 7-chloro		
$C_{17}H_{15}ClN_2O_2$	5-Phenyl-1,3-dihydro-1,4-	1045	
17 10 2 2	benzodiazepin-2-one, 1-methoxymethyl-7-chloro		
$C_{17}H_{15}ClN_2O_2$	5-Phenyl-1,3-dihydro-1,4-	1029	
17 15 2 2	benzodiazepin-2-one, 1-methyl-4'-methoxy-7-chloro		
$C_{17}H_{15}FN_2O$	5-Phenyl-1,3-dihydro-1,4-	1042	
1, 10 -	benzodiazepin-2-one, 2'- fluoro-7-ethyl		
C ₁₇ H ₁₅ NO ₃	D-Indoprofen		1929–1931
$C_{17}H_{16}ClFN_2O_2$	Progabide	1148	
	<i></i>		

$C_{17}H_{16}CIN_3O$	Amoxapine		1573
$C_{17}H_{16}F_6N_2O$	Mefloquine	1000	1956
$C_{17}H_{16}N_2OS$	5-Phenyl-1,3-dihydro-1,4-	1039	
	benzodiazepin-2-one,		
	1-methyl-7-thiomethyl		
$C_{17}H_{16}N_3O_4$	5-Phenyl-1,3-dihydro-1,4-	1064	
	benzodiazepin-2-one,		
	1-methoxymethyl-7-nitro		
$C_{17}H_{17}CIN_6O_3$	Zopiclone	1522	
$C_{17}H_{17}Cl_2N$	Sertraline	1274	
$C_{17}H_{17}NO_2$	Apomorphine	82-84	
$C_{17}H_{17}N_3O$	5-Phenyl-1,3-dihydro-1,4-	1067	
	benzodiazepin-2-one, 1-ethyl-		
	7-amino		
$C_{17}H_{17}N_3O$	5-Phenyl-1,3-dihydro-1,4-	1054	
	benzodiazepin-2-one,		
	7-dimethylamino		
$C_{17}H_{17}N_3O_2$	5-Phenyl-1,3-dihydro-1,4-	1072	
	benzodiazepin-2-one,		
	1-methoxymethyl-7-amino		
$C_{17}H_{17}N_3O_6S_2$	Cephapirin	273	1684
$C_{17}H_{18}FN_3O_3$	Ciprofloxacin	316, 1227–	1724, 2167
		1228	
$C_{17}H_{18}F_3N_3O_3$	Fleroxacin	1232	2169
$C_{17}H_{18}N_2O_6$	Nifedipine	885-886	
$C_{17}H_{18}N_2O_6S$	Carbenicillin	962	1658
C ₁₇ H ₁₉ ClN ₂ OS	Chlorpromazine sulfoxide		1711
$C_{17}H_{19}CIN_2S$	Chlorpromazine	291–300,	1710
	-	984–985	
$C_{17}H_{19}CIN_2S$	Phenothiazine, 2-chloro-10-(3-	984–985	
	dimethylaminopropyl)-		
$C_{17}H_{19}F_2N_3O_3$	8-Fluoro-pefloxacin	1234	
$C_{17}H_{19}F_2N_3O_3$	Lomefloxacin	1235-1236	
C ₁₇ H ₁₉ NO ₃	Hydromorphone	398	1918–1919
C ₁₇ H ₁₉ NO ₃	Morphine	9,848-857	2010
C ₁₇ H ₁₉ NO ₃	Norcodeine	903-904	
C ₁₇ H ₁₉ NO ₃	Piperine	1125	
C ₁₇ H ₁₉ NO ₄	Dihydromorphinone		1795
$C_{17}H_{19}NO_4$	Morphine-N-oxide		2011
C ₁₇ H ₁₉ NO ₄	Oxymorphone		2054
$C_{17}H_{19}N_3$	Acridine orange	18	
$C_{17}H_{19}N_3$	Antazoline		1579–1581
$C_{17}H_{19}N_3$	Mirtazepine	840	
$C_{17}H_{19}N_3O$	Phentolamine		2092
$C_{17}H_{19}N_3O_3S$	Omeprazole	927	
	-		

$C_{17}H_{19}N_5O_2$	2,4-Diaminopyridine, 5-(3,5- dimethoxy-4-	216	
	pyrrolidinylbenzyl)-		
C ₁₇ H ₂₀ BrNO	Bromodiphenhydramine		1633
$C_{17}H_{20}FN_3O_3$	8-Desfluorolomefloxacin	1229	
$C_{17}H_{20}FN_3O_3$	Pefloxacin	1247	
$C_{17}H_{20}F_6N_2O_3$	Flecainide		1866
$C_{17}H_{20}N_2O_2$	Tropicamide		2350-2351
$C_{17}H_{20}N_2O_5S$	Bumetanide	232-233	1640
$C_{17}H_{20}N_2O_5S$	Phenethicillin	961, 972	2079
$C_{17}H_{20}N_2O_6S$	Methicillin	794, 961	1983
$C_{17}H_{20}N_2S$	Phenothiazine, 10-(2- dimethylaminopropyl)-	993–994	
$C_{17}H_{20}N_2S$	Phenothiazine, 10-(3-	995	
СИМС	dimethylaminopropyl)- Promazine	005 1140	2125
$C_{17}H_{20}N_2S$	Fromazine	995, 1149–	2135
CILNC	Dream at la seine a	1152	
$C_{17}H_{20}N_2S$	Promethazine Riboflavine	1153-1156	
$C_{17}H_{20}N_4O_6$		1253–1255	1(20
$C_{17}H_{21}N$	Benzphetamine Diahar bardramina	454 456	1620
$C_{17}H_{21}NO$	Diphenhydramine Phanaltalauamina	454-456	1806
$C_{17}H_{21}NO$	Phenyltoloxamine		2102
$C_{17}H_{21}NO \cdot HCl$	Atomoxetine	407	1591
$C_{17}H_{21}NO_2$	Dihydrodesoxynorcodeine	427	1704
$C_{17}H_{21}NO_3$	Dihydromorphine	437	1794
$C_{17}H_{21}NO_3$	Etodolac		1857
$C_{17}H_{21}NO_3$	Galanthamine		1887
$C_{17}H_{21}NO_3$	Ritodrine		2185
$C_{17}H_{21}NO_4$	10-cis-	641	
	Hydroxydihydronorcodeine		
$C_{17}H_{21}NO_4$	10-trans-	642	
	Hydroxydihydronorcodeine		
$C_{17}H_{21}NO_4$	Benzoylecgonine methyl ester	214, 346–	1739–1744,
	(Cocaine)	347	1988
$C_{17}H_{21}NO_4$	Fenoterol		1863–1864
$C_{17}H_{21}NO_4$	N-Methyl-1-benzoyl ecgonine		1988
$C_{17}H_{21}NO_4$	Scopolamine	398, 1270	2191
C ₁₇ H ₂₂ ClNO	Atomoxetine		1591
$C_{17}H_{22}I_3N_3O_8$	Iopamidol	690	
$C_{17}H_{22}N_2O$	Doxylamine		1824
$C_{17}H_{22}N_2O_6S$	Phenoxyethylpenicilloic acid	1005	
$C_{17}H_{22}N_2S$	Thenalidine	1424	
$C_{17}H_{23}NO$	Levorphanol	734–736	
$C_{17}H_{23}NO$	Racemorphan (Methorphinan)		2176
$C_{17}H_{23}NO_3$	Atropine (non-aqueous titration)	194	

C ₁₇ H ₂₃ NO ₃	Atropine	9, 105–107	1593–1596
$C_{17}H_{23}NO_3$	Hyoscyamine	652	1925–1926
$C_{17}H_{23}N_{3}O$	Pyrilamine		2154-2155
$C_{17}H_{23}N_3O_2$	Dibucaine O-methyl homologue	407	
C ₁₇ H ₂₃ N ₃ O ₈ S	Cephalosporin, 5-amino-5-	269	
	carboxyvaleramido, O-acetyl		
$C_{17}H_{24}N_2O$	Dimethisoquin		1802
$C_{17}H_{24}N_4O_9S$	Cephalosporin, 5-amino-5-	269	
-1/ 24 4-9-	carboxyvaleramido,		
	7-methoxy, O-carbamoyl		
C ₁₇ H ₂₅ N	Phencyclidine		2077
$C_{17}H_{25}NO_3$	Bunolol (levobunolol)	1167	1641–1642
$C_{17}H_{25}NO_3$	Cyclopentolate	370	1011 1012
$C_{17}H_{25}NO_3$	Levobunolol	1167	1641–1642
$C_{17}H_{27}NO_2$	Venlafaxine	1107	2357
$C_{17}H_{27}NO_3$	Pramoxine		2123
$C_{17}H_{27}O_4$	Nadolol	1167	2014–2015
$C_{17}H_{28}N_2O$	Etidocaine	537	1855–1856
$C_{17}H_{28}N_{2}O$ $C_{17}H_{33}NO_{4}$	Decyl carnitine	378	1055-1050
C ₁₇ 1 1 ₃₃ 1 VO ₄	Decyreanntne	570	
C ₁₈			
C ₁₈ H ₉ N ₃ O	Ondansetron		2046
C ₁₈ H ₁₃ ClFN ₃	Midazolam	838	2007
$C_{18}H_{13}CIN_2O$	Pinazepam		2110
$C_{18}H_{14}Cl_4N_2O$	Miconazole	837	2006
$C_{18}H_{14}N_2O_4$	Barbituric acid, 5-methyl-5-	172	
10 11 2 1	phenyl-1-benzoyl		
$C_{18}H_{14}N_4O_5S$	Sulfasalazine	1384	
$C_{18}H_{15}CIN_2$	Cycliramine	364	
$C_{18}H_{15}F_3N_2O_2$	Flumizole		1871
$C_{18}H_{16}O_3$	Phenprocoumon	637	
$C_{18}H_{18}BrClN_2O$	Metaclazepam	784	
$C_{18}H_{18}CINS$	Chlorprothixene		1714
$C_{18}H_{18}CIN_{3}O$	Loxapine		1947
$C_{18}H_{18}N_6O_5S_2$	Cefamandole		1665
$C_{18}H_{18}N_8O_7S_3$	Ceftriaxone		1675–1676
$C_{18}H_{18}O_2$	Equilenin	504	10/0 10/0
$C_{18}H_{19}CIN_4$	Clozapine	343–344	1737–1738
$C_{18}H_{19}F_{3}N_{2}S$	Fluopromazine	574	1757 1750
$C_{18}H_{19}F_{3}N_{2}S$	Flupromazine	574	
$C_{18}H_{19}F_{3}N_{2}S$	Phenothiazine, 10-(3-	996–997	
C181 1191 31 120	dimethylaminopropyl)-2-	<i>))</i> 0 <i>))</i> 1	
	trifluoromethyl-		
$C_{18}H_{19}F_3N_2S$	Trifluopromazine	996–997,	2329–2330
~181 1191 31 N2O	muopromuzine	1468–	2027-2000
		1469	
		1407	

C H NO	Deemethyldevenin	200	
$C_{18}H_{19}NO$	Desmethyldoxepin	388	
$C_{18}H_{19}N_3O_6S$	Cephaloglycin	263–265	1740
$C_{18}H_{19}N_{3}S$	Cyanopromazine	01.(1748
$C_{18}H_{19}N_5O_2$	2,4-Diaminopyridine, 5-(2,4- dimethoxy-3-pyridylbenzyl)-	216	
$C_{18}H_{19}N_5O_2$	2,4-Diaminopyridine, 5-(3,5- dimethoxy-4-pyridylbenzyl)-	216	
C ₁₈ H ₂₀ FN ₃ O ₄	N-Acetylnorfloxacin	1224	
$C_{18}H_{20}FN_{3}O_{4}$ $C_{18}H_{20}FN_{3}O_{4}$	Ofloxacin	1244–1245	2174
$C_{18}H_{20}N_{3}C_{4}$ $C_{18}H_{20}N_{2}$	Mianserin	836	2174
	Phe-Phe	453	
$C_{18}H_{20}N_2O_3$	Phe-Tyr	453	
$C_{18}H_{20}N_2O_4$	Methdilazine	400	1979
$C_{18}H_{20}N_2S$		1002 1105	1979
$C_{18}H_{20}N_2S$	Phenothiazine, 10-(N-	1003, 1185–	
	pyrrolidinyl)ethyl-	1186	
6 H 6	(Pyrathiazine)	270	
$C_{18}H_{20}O_2$	6-Dehydroestrone	379	
$C_{18}H_{20}O_2$	Diethylstilbestrol	419	
$C_{18}H_{20}O_2$	Equilin	505	
$C_{18}H_{21}CIN_2$	Chlorcyclizine	278	1689
$C_{18}H_{21}NO$	Pipradol		2117
$C_{18}H_{21}NO_3$	Codeine	9, 348–353	
$C_{18}H_{21}NO_3$	Hydrocodone	398	1917
$C_{18}H_{21}NO_3$	Methyldihydromorphinone (Metopon)		1990, 2004
$C_{18}H_{21}NO_4$	10-Hydroxycodeine	636	
$C_{18}H_{21}NO_4$	14-cis-	638	
0101211104	Hydroxydihydrocodeinone	000	
$C_{18}H_{21}NO_4$	Dihydrocodeinone		1792
$C_{18}H_{21}NO_4$	Oxycodone	398, 934	2053
$C_{18}H_{21}N_{3}O$	Dibenzepine	404-405	2000
$C_{18}H_{21}C_{18}H_{30}C_{18}H_{22}CIN_{3}O_{9}S$	Cephalosporin C,	270	
C ₁₈₁ 1 ₂₂ Cli v ₃ C ₉₀	N-chloroacetyl	270	
*C ₁₈ H ₂₂ ClN ₃ O ₉ S	N-Chloroacetylcephalosporin C	270	
$C_{18}H_{22}CINO$	Phenoxybenzamine		2088
$C_{18}H_{22}FN_3O_3$	Norfloxacin ethyl ester	1243	
$C_{18}H_{22}N_2$	Cyclizine	365–366	1751
$C_{18}H_{22}N_2$	Desipramine	385–387	1772
$C_{18}H_{22}N_2OS$	Methopromazine		1985
-1022122	(methoxypromazine)		
$C_{18}H_{22}N_2OS$	Methoxypromazine		1985
$C_{18}H_{22}N_2O_5S$	Propicillin	961	2137
$C_{18}H_{22}N_2S$	Diethazine	9	1790
$C_{18}H_{22}N_2S$	Phenothiazine, 10-(2-	991	
	diethylaminoethyl)-		

711

$C_{18}H_{22}N_2S$	Trimeprazine (Methylpromazine)		2331–2332
$C_{18}H_{22}O_2$	Dihydroequilin, 17α-	428	
$C_{18}H_{22}O_2$	Dihydroequilinen, 17β-	429	
$C_{18}H_{22}O_2$	Estrone	525	
$C_{18}H_{23}N$	Tolpropamide	1455	
$C_{18}H_{23}NO$	Orphenadrine		2048
$C_{18}H_{23}NO_2$	Diĥydrodesoxycodeine	426	
$C_{18}H_{23}NO_3$	10-cis-Hydroxydihydro- desoxycodeine	639	
C ₁₈ H ₂₃ NO ₃	10-trans-Hydroxydihydro- desoxycodeine	640	
$C_{18}H_{23}NO_{3}$	Dihydrocodeine	425	
$C_{18}H_{23}NO_3$	Dobutamine		1815
$C_{18}H_{23}NO_3$	Isoxsuprine		1939–1940
$C_{18}H_{24}N_2O_5$	Enalaprilat		1826
$C_{18}H_{24}N_2O_6S$	Phenoxypropylpenicilloic acid	1007	
$C_{18}H_{24}O_2$	Estradiol, 17α-	523	
$C_{18}H_{24}O_2$	Estradiol, 17β-	523	
$C_{18}H_{24}O_3$	Estriol	524	
$C_{18}H_{25}NO$	Cyclazocine		1750
$C_{18}H_{25}NO$	Dextromethorphan		1775
$C_{18}H_{25}NO$	D-Methorphan		1775
$C_{18}H_{25}NO$	Levomethorphan		1942
$C_{18}H_{25}NO$	Racemethorphan		2175
$C_{18}H_{25}NO_3$	Tetrahydro-α-morphimethine	1420	
$C_{18}H_{25}N_3O_2$	Dibucaine O-ethyl homologue	407	
$C_{18}H_{25}N_3O_9S$	Cephalosporin, 5-amino-5- carboxyvaleramido, 7-methoxy, O-acetyl	269	
$C_{18}H_{26}ClN_3$	Chloroquine	285-286	1696
$C_{18}H_{26}ClN_3.$ H ₃ PO ₄	Chloroquine phosphate		1697
$C_{18}H_{26}N_4O_3$	2,4-Diaminopyridine, 5-(3,5- diethoxy-4-(2'-hydroxy-2'- propyl)benzyl)-	216	
$C_{18}H_{26}N_6O_2$	2,4-Diaminopyridine, 5-(3,5-bis (methylamino)-4-methoxy-6- acetylbenzyl)-	216	
$C_{18}H_{28}N_2O$	Bupivacaine	234-236	
$C_{18}H_{28}N_2O_4$	Acebutolol	1167	1523–1526
$C_{18}H_{29}CIN_3O_4P$	Chloroquine phosphate		1697
$C_{18}H_{29}NO_2$	Penbutolol	1167	2066
$C_{18}H_{29}NO_3$	Betaxolol		1626
$C_{18}H_{30}N_2O_2$	Butacaine		1645

C ₁₈ H ₃₁ NO ₄	Bisoprolol	223	
$C_{18}H_{32}O_2$	Linoleic acid	749	
$C_{18}H_{33}CIN_2O_5S$	Clindamycin	322-325	
$C_{18}H_{34}N_2O_6S$	Lincomycin	747–748	
$C_{18}H_{34}O_2$	Oleic acid	926	
$C_{18}H_{35}ClN_2O_8SP$	Clindamycin-2- phosphate	327	
C ₁₈ H ₃₆ N ₄ O ₁₁	Kanamycin A	709	
$C_{18}H_{36}O_2$	Stearic acid	1280	
C ₁₈ H ₃₇ N ₅ O ₉	Tobramycin		2313
C ₁₉			
$C_{19}H_{10}Br_4O_5S$	Bromophenol blue	228	
$C_{19}H_{12}O_6$	Dicumarol		1789
	(Bishydroxycoumarin)		
$C_{19}H_{14}O_5S$	Phenolsulphonphthalein (Phenol red)	980	2086
C ₁₉ H ₁₅ NO ₆	Acenocoumarin;	637	1527
C1911151 VC6	Acenocoumarol	0.57	1527
C ₁₉ H ₁₆ ClNO ₄	Indomethacin	678–683	
$C_{19}H_{16}O_{19}O_{4}$	Barbituric acid, 5-ethyl-5-	185	
$C_{19}I_{16}N_2O_4$	phenyl-1-benzoyl	165	
$C_{19}H_{16}O_4$	Warfarin	637, 1504–	2365–2366
		1508	
C ₁₉ H ₁₇ ClFN ₂ O ₅ S	Flucloxacillin	962	1868
$C_{19}H_{17}CIN_2O$	Prazepam		2124-2125
$C_{19}H_{17}CIN_2O_4$	Glafenine	589	
$C_{19}H_{17}Cl_2N_3O_5S$	Dicloxacillin	414, 962	1788
$C_{19}H_{17}N_3O_4S_2$	Cephaloridine	266–267	
$C_{19}H_{18}ClFN_2O_3$	5-Phenyl-1,3-dihydro-1,4-	1070	
17 10 2 3	benzodiazepin-2-one,		
	1-[butane-2,4-diol]-2'-fluoro-7-		
	chloro		
C ₁₉ H ₁₈ ClN ₃ O ₅ S	Cloxacillin	342, 962	
$C_{19}H_{18}ClN_5$	Adinazolam	24	
$C_{19}H_{18}FIN_2O_3$	5-Phenyl-1,3-dihydro-1,4-	1066	
C1911181 11 4203	benzodiazepin-2-one,	1000	
	1-[butane-2,4-diol]-2'-fluoro-7-		
	iodo		
$C_{19}H_{19}N$	Phenindamine	975	2080
$C_{19}H_{19}N_{3}O_{5}$	5-Phenyl-1,3-dihydro-1,4-	1076	2000
$C_{1911_{191}}$	benzodiazepin-2-one,	1070	
	1-[butane-2,4-diol]-7-		
CHNOC	nitro Oxacillin	0(2	2040 2050
$C_{19}H_{19}N_3O_5S$		962 576	2049-2050
$C_{19}H_{19}N_7O_6$	Folic acid	576	1881

CHENO	Orbifloxacin	1246	
C ₁₉ H ₂₀ F ₃ N ₃ O ₃ C ₁₉ H ₂₀ FNO ₃	Paroxetine	1240	2063
$C_{19}H_{20}N_2$	Mebhydroline	766	2003
	Phenylbutazone	1009–1018	2093
$C_{19}H_{20}N_2O_2$	5	935–938	2093
$C_{19}H_{20}N_2O_3$	Oxyphenbutazone	935-936	1569
$C_{19}H_{20}N_8O_5$	Aminopterin	010	1568
$C_{19}H_{21}N$	Nortriptyline	919	2040
$C_{19}H_{21}NO$	Doxepin Nalarrahina	467-468	1820
$C_{19}H_{21}NO_3$	Nalorphine	867	2018
$C_{19}H_{21}NO_3$	Thebaine	1423	2292
$C_{19}H_{21}NO_4$	6-Acetylmorphine	15	
$C_{19}H_{21}NO_4$	Naloxone	868	
$C_{19}H_{21}NS$	Dosulepine	466	
$C_{19}H_{21}NS$	Dothiepin (dosulepine)	466	2120
$C_{19}H_{21}NS$	Pizotyline		2120
$C_{19}H_{21}N_5O_4$	Prazosin	10.6	2126–2127
$C_{19}H_{21}N_7O_6$	Dihydrofolic acid	436	
$C_{19}H_{22}CIN_5O$	Trazodone	1457–1459	2323
$C_{19}H_{22}N_2$	Triprolidine	1473	2343-2344
$C_{19}H_{22}N_2O$	Cinchonidine	310	
$C_{19}H_{22}N_2O$	Cinchonine	311	1722–1723
$C_{19}H_{22}N_2OS$	Acepromazine	16	
$C_{19}H_{22}N_2OS$	Acetylpromazine	16	
	(Acepromazine)		
$C_{19}H_{22}N_2S$	Phenothiazine, 10-(N-methyl)	776, 952–	
	piperidinyl]methyl-	953, 1002	
	(Mepazine; Pecazine)		
$C_{19}H_{22}N_4O_7$	Ebifuramin	472	
$C_{19}H_{23}ClN_2$	Clomipramine	280	1729
	(Chlorimipramine)		
$C_{19}H_{23}NO$	Diphenylpyraline	459	1809
$C_{19}H_{23}NO_3$	Ethylmorphine	536	1850–1851
$C_{19}H_{23}N_3O_2$	Ergometrine		1830
$C_{19}H_{23}N_3O_2$	Ergonovine	506-507	1831
$C_{19}H_{23}N_5O_2$	2,4-Diaminopyridine, 5-(3,5-	216	
	diethoxy-4-		
	pyrrolidinylbenzyl)-		
$C_{19}H_{24}N_2$	Bamipine	116	
$C_{19}H_{24}N_2$	Histapyrrodine	618	
$C_{19}H_{24}N_2$	Imipramine	671-674	
$C_{19}H_{24}N_2O_2$	Benzoic acid, 4-(N-ethylamino),	212	
	diethylaminoethyl ester		
$C_{19}H_{24}N_2O_3$	Dilevolol		1798
$C_{19}H_{24}N_2O_3$	Labetalol	718–720	
- 1724- •2 ~ 3			

$C_{19}H_{24}N_2OS$	Methotrimeprazine (Levomepromazine)	799–800, 992	
$C_{19}H_{24}N_2OS$	Phenothiazine, 10-(2- dimethylaminomethyl) propyl-2-methoxy-	992	
$C_{19}H_{24}N_2S$ $C_{19}H_{24}N_4O_2$	Ethopropazine Pentamidine	530	1841 2067
$C_{19}H_{25}NO$	Levallorphan	727–728	2007
$C_{19}H_{25}NO.$ $C_{4}H_{6}O_{6}$	Levallorphan tartrate	726	
$C_{19}H_{25}N_3O_2$	Dihydroergonovine	433	
$C_{19}H_{25}N_5O_4$	Terazosin	1405	
$\begin{array}{c} C_{19}H_{26}N_2S.\\ CH_3SO_3H \end{array}$	Pergolide mesylate		2071
$C_{19}H_{27}NO$	Pentazocine	963	2068
$C_{19}H_{27}N_3O_2$	Dibucaine O-propyl homologue	407	
$C_{19}H_{28}N_2$	Iprindole		1936
$C_{19}H_{28}N_2O_4$	Carpindolol		1663
$C_{19}H_{29}NO_5$	Dipivefrine		1813
$C_{19}H_{29}N_3O$	Pamaquine (plasmoquin)		2057-2059
$C_{19}H_{31}NO$	Bencyclane	195	
$C_{19}H_{31}NO$	Deramciclane	383	
$C_{19}H_{35}ClN_2O_5S$	Clindamycin, 1'-demethyl-4'- pentyl	325	
$C_{19}H_{35}N$	Perhexilene	965	
$C_{19}H_{35}NO_2$	Dicyclomine	415	
$C_{19}H_{39}N_5O_7$	Gentamicin C1a		1888
C ₂₀			
$C_{20}H_{12}O_5$	Fluorescein	561	
$C_{20}H_{12}O_8$	Biscoumacetic acid		1628
$C_{20}H_{14}I_6N_2O_6$	Iodipamide	688	1934
$C_{20}H_{14}O_4$	Phenolphthalein	978–979	
$C_{20}H_{16}N_2O_4$	Camptothecin	244	1654
$C_{20}H_{17}FO_3S$	Sulindac	1396	
$C_{20}H_{20}N_4O_3$	2,4-Diaminopyridine, 5-(3,4- dimethoxy-5-benzoylbenzyl)-	216	
$C_{20}H_{20}N_6O_9S$	Moxalactam		2012
$C_{20}H_{21}FN_2O$	Citalopram		1725
$C_{20}H_{21}N$	Cyclobenzaprine		1752
$C_{20}H_{21}NO_4$	Papaverine	9, 946–951	
$C_{20}H_{21}N_3O_3$	Trp-Phe	453	
$C_{20}H_{22}ClN$	Pyrrobutamine		2160
$C_{20}H_{22}N_2$	Azatadine		1597
$C_{20}H_{22}N_2O_3$	Norcodeine, N-(2-cyano)ethyl	905	
$C_{20}H_{22}N_8O_5$	Methotrexate	795–798	1986–1987

715

C ₂₀ H ₂₃ N	Amitriptyline	56–59	
$C_{20}H_{23}N$ $C_{20}H_{23}N$	Maprotiline	50-59	1952
$C_{20}H_{23}NO_4$	Naltrexone	869	1752
$C_{20}H_{23}N_5O_6S$	Azlocillin	007	1599
$C_{20}H_{23}N_7O_7$	Folinic acid (Leucovorin)	578–579	1077
$C_{20}H_{23}C_{10}V_{2$	Phenothiazine, 2-chloro-10-[N-	987–988,	2134
C201124CH (30	methyl]piperazinylpropyl-	1144–	2101
	(Prochlorperazine)	1147	
$C_{20}H_{24}N_2OS$	Propiomazine	111/	2138
$C_{20}H_{24}N_2O_2$	Epiquinidine	1221	2100
$C_{20}H_{24}N_2O_2$	Epiquinine	1221	
$C_{20}H_{24}N_2O_2$	Quinidine	1211–1213,	2165-2166
	Quintante	1221	2100 2100
$C_{20}H_{24}N_2O_2$	Quinine	9, 1214–	
	Quality	1223	
$C_{20}H_{24}N_2O_2S$	Hycanthone	1220	1914
$C_{20}H_{24}O_2$	Ethinylestradiol	527-528	1839
$C_{20}H_{25}CIN_2O_5$	Amlodipine		1572
$C_{20}H_{25}NO$	Normethadone		2037-2038
$C_{20}H_{25}N_{3}O$	Lysergide		1948
$C_{20}H_{25}N_3O_2$	Methylergonovine	816	
$C_{20}H_{26}N_2$	Trimipramine		2338-2339
$C_{20}H_{26}N_2O_2$	Ajmaline		1540
$C_{20}H_{26}N_2O_4$	Tolamolol		2315-2316
$C_{20}H_{26}N_4O$	Lisuride	752	
$C_{20}H_{27}NO_5$	Chromonar		1719
$C_{20}H_{28}N_2O_5$	Enalapril	481-482	
$C_{20}H_{29}N_3O_2$	Dibucaine (Cinchocaine)	406-407,	1784–1785
	``````````````````````````````````````	741	
$C_{20}H_{29}N_3O_2$	Dibucaine O-butyl homologue	407	
$C_{20}H_{32}O_5$	Dinoprostone (Prostaglandin $E_2$ )	1173	1804
$C_{20}H_{33}N_3O_4$	Celiprolol		1678
$C_{20}H_{34}O_5$	Dinoprost (Prostaglandin $F_{2\alpha}$ )	451, 1174	
$C_{20}H_{34}O_5$	Prostaglandin E ₁	1172	2149
$C_{20}H_{41}N_5O_7$	Gentamicin C2	1888	
C ₂₁			
$C_{21}H_{14}Br_4O_5S$	Bromocresol green	227	
$C_{21}H_{14}D_{4}O_{5}O_{5}O_{21}H_{16}O_{7}$	Coumetarol	637	
$C_{21}H_{16}O_7$ $C_{21}H_{18}F_3N_3O_3$	Temafloxacin	1249	
$C_{21}H_{18}G_{18}G_{3}G_{3}$ $C_{21}H_{18}G_{5}S$	Cresol red	358	
$C_{21}H_{19}C_{55}$ $C_{21}H_{19}F_2N_3O_3$	Difloxacin	1230	
$C_{21}H_{19}F_{21}N_{3}O_{3}$ $C_{21}H_{21}CIN_{2}O_{8}$	Dinoxacii Demeclocycline (6-demethyl-7-	380–381	1766
C211 121CH N2O8	chlorotetracycline)	500-501	1700
$C_{21}H_{21}N$	Cyproheptadine		1756
~2121- 4	C) proneptualite		1700

C ₂₁ H ₂₂ ClN ₃ OS	Phenothiazine, 2-chloro-10-[N- (2-hydroxy)ethyl]piperazinyl-	986	
CUNO	propyl-	1004	2202
$C_{21}H_{22}N_2O_2$	Strychnine	1284	2202
$C_{21}H_{22}N_2O_5S$	Nafcillin	864	
$C_{21}H_{22}N_2S_2$	Phenothiazine, 10-[2-(N-methyl) piperidinyl]ethyl-2- methylthio-	1000–1001	
C ₂₁ H ₂₃ ClFNO ₂	Haloperidol	603-604	1904–1906
$C_{21}H_{23}ClFN_3O$	Flurazepam		1877-1878
$C_{21}H_{23}NO_5$	Diamorphine (heroin)	397–398	1778–1779
$C_{20}H_{32}CIN_3OS$	Phenothiazine, 10-[N-(4-carbamoyl)	983	
	piperidinyl]propyl-2-chloro-	000 1110	
$C_{20}H_{32}CIN_3OS$	Pipamazine	983, 1119	000/ 0007
$C_{21}H_{24}F_3N_3S$ )	Phenothiazine, 10-(N-methyl)	998–999,	2326–2327
	piperazinylpropyl-2-	1462-	
	trifluoromethyl-	1467	
C II NO	(Trifluoperazine)		1(00
$C_{21}H_{25}NO$	Benztropine		1622
$C_{21}H_{25}NO_3$	Nalmefene	0.05	2017
$C_{21}H_{25}N_5O_8S_2$	Mezlocillin	835	0.70
$C_{21}H_{26}CIN_3OS$	Perphenazine	966–967	2072
$C_{21}H_{26}N_2O_3$	Yohimbine	398, 479	2201
$C_{21}H_{26}N_2S_2$	Thioridazine	1439–1442	2301
$C_{21}H_{27}CIN_2O_2$	Hydroxyzine	650–651	1923–1924
$C_{21}H_{27}NO$	DL-Isomethadone	697–698	10/0 1073
$C_{21}H_{27}NO$	Methadone		1969–1972
$C_{21}H_{27}NO_3$	Propafenone		2136
$C_{21}H_{27}NO_4$	Nalbuphine		2016
$C_{21}H_{27}N_3O_2$	Methysergide	825-826	1(00
$C_{21}H_{27}N_3O_7S$	Bacampicillin		1600
$C_{21}H_{27}N_5O_4S$	Glipizide	200	1890
$C_{21}H_{28}N_2O_2$	Ethylhydrocupreine	398	
$C_{21}H_{28}N_2O_5$	Trimethobenzamide		2333
$C_{21}H_{28}N_2O_5S$	Tienoxolol	1445	1 ( 10 1 ( 10
$C_{21}H_{29}NO_2$	Butorphanol	160 160	1648–1649
$C_{21}H_{29}N_{3}O$	Disopyramide	460-462	4
$C_{21}H_{30}O_2$	Cannabidiol		1655
$C_{21}H_{30}O_2$	Tetrahydrocannabinol	407	2291
$C_{21}H_{31}N_3O_2$	Dibucaine <i>O</i> -pentyl homologue	407	
$C_{21}H_{31}N_3O_5$	Lisinopril	750–751	
$C_{21}H_{31}N_5O_2$	Buspirone	239	
$C_{21}H_{32}N_6O_3$	Alfentanil		1544–1545
$C_{21}H_{39}N_7O_{12}$	Streptomycin A	1281	

$C_{21}H_{41}N_7O_{12}$	Dihydrostreptomycin		1796–1797
$C_{21}H_{43}N_5O_7$	Gentamicin C1		1888
$C_{21}H_{45}N_3$	Hexetidine	610–611	
C ₂₂			
$C_{22}H_{17}ClN_2$	Clotrimazole	341	
$C_{22}H_{21}CIN_2O_7$	Anhydrochlortetracycline	80	
$C_{22}H_{22}ClF_4NO_2$	Clofluperol	1273	
$C_{22}H_{22}ClF_4NO_2$	Seperidol (Clofluperol)	1273	
$C_{22}H_{22}FN_3O_2$	Droperidol		1825
$C_{22}H_{22}N_2O_2$	Cinnopentazone	314	
$C_{22}H_{22}N_2O_7$	Anhydro-4-epitetracycline	491-492	
$C_{22}H_{22}N_2O_7$	Epianhydrotetracycline (Anhydro-4-epitetracycline)	491–492	
$C_{22}H_{22}N_2O_8$	Methacycline		1968
$C_{22}H_{22}N_6O_7S_2$	Ceftazidime		1673
$C_{22}H_{23}CIN_2O_8$	Chlortetracycline	301-306	1715
$C_{22}H_{23}ClN_2O_8$	Epichlortetracycline (7-Chloro- 4-epitetracycline)	493–494	
$C_{22}H_{23}CIN_2O_8$	Isochlorotetracycline	694–695	
$C_{22}H_{23}NO_7$	Noscapine (Narcotine)	920–922	2041-2042
$C_{22}H_{24}CIN_3O$	Azelastine	111–112	
$C_{22}H_{24}CIN_5O_2$	Domperidone		1816
$C_{22}H_{24}FN_{3}O_{2}$	Beneperidol		1616
$C_{22}H_{24}FN_{3}O_{2}$	Benperidol		1616
$C_{22}H_{24}N_2O_8$	4-Epitetracycline	503	
$C_{22}H_{24}N_2O_8$	Doxycycline	471	1823
$C_{22}H_{24}N_2O_8$	Tetracycline	1413–1418	2290
$C_{22}H_{24}N_2O_9$	Oxytetracycline	939–945	
$C_{22}H_{24}N_3O_4S$	Morizicine	847	
$C_{22}H_{25}CIN_2OS$	Clopenthixol	339	1735
$C_{22}H_{25}F_2NO_4$	Nebivolol	875	
$C_{22}H_{25}NO_6$	Colchicine	354	1745–1746
$C_{22}H_{25}N_{3}O$	Indoramin		1932
$C_{22}H_{26}F_3N_3OS$	Fluphenazine	572–573	
$C_{22}H_{26}N_2O_4S$	Diltiazem	442	1799–1800
$C_{22}H_{27}NO$	Phenazocine	970	
$C_{22}H_{27}N_3O_4$	Diperodon		1805
$C_{22}H_{27}N_3O_5$	Physostigmine salicylate	1108	2105
$C_{22}H_{28}N_2O$	Fentanyl	547	1865
$C_{22}H_{28}N_2O_2$	Anileridine		1578
$C_{22}H_{28}N_4O_6$	Mitoxantrone		2009
$C_{22}H_{29}NO_2$	Propoxyphene		2140–2141
$C_{22}H_{29}N_3O_6S$	Pivampicillin		2110 2111
$C_{22}H_{30}Cl_2N_{10}$	Chlorhexidine	282	1692
$C_{22}H_{30}FO_8P$	Dexamethasone-21-phosphate	392	10/2
- 2250- 0 0-			

$\begin{array}{c} C_{22}H_{30}N_2\\ C_{22}H_{30}N_2O_2S\\ C_{22}H_{30}N_6O_4S\\ C_{22}H_{31}NO\\ C_{22}H_{31}NO_3\\ C_{22}H_{31}O_8P \end{array}$	Aprindine Sufentanil Sildenafil Tolterodine Oxybutynin Methylprednisolone-21-	85	2204–2205 2193 2319 2052
$\begin{array}{c} C_{22}H_{32}N_2O_5\\ C_{22}H_{32}N_2O_5S\\ C_{22}H_{33}N_3O_2\\ C_{22}H_{43}N_5O_{13} \end{array}$	phosphate Benzquinamide Piperazine estrone sulfate Dibucaine O-hexyl homologue Amikacin	215 1122 407	1621 1557
	Amikacin		1557
$\begin{array}{c} C_{23} \\ C_{23}H_{15}F_2NO_2 \\ C_{23}H_{16}O_{11} \end{array}$	Brequinar Cromolyn	225	1747
$C_{23}H_{20}N_2O_3S$	Sulfinpyrazone	1388	2268
$C_{23}H_{25}F_3N_2OS$	Flupenthixol	571	1874
$C_{23}H_{25}I_2NO_3$	Desethylamiodarone	53	
$C_{23}H_{25}N$	Fendiline	545	
$C_{23}H_{25}N_3O_4S$	Benzylpenicilloic acid α- benzylamide	220–221	
$C_{23}H_{26}FN_3O_2$	Spiperone		2200
$C_{23}H_{26}N_2O_4$	Brucine	231	1637
$C_{23}H_{27}FN_4O_2$	Risperidone		2184
$C_{23}H_{27}IN_2O_8$	Tetracycline methiodide	1419	
C ₂₃ H ₂₇ NO ₉	Morphine-3-glucuronide	858-859	
$C_{23}H_{27}NO_9$	Morphine-6-glucuronide	860-861	
$C_{23}H_{27}N_3O_7$	Minocycline		2008
$C_{23}H_{28}CIN_3O_2S$	Thiopropazate	1437–1438	
$C_{23}H_{28}ClN_3O_5S$	Glibenclamide (glyburide)	590–592	1889, 1895
$C_{23}H_{28}CIN_3O_5S$	Glyburide	590-592	1889, 1895
$C_{23}H_{29}NO_2$	Phenadoxone		2074-2076
$C_{23}H_{29}N_{3}O$	Opipramol	928	
$C_{23}H_{29}N_3O_2S$	Thiothixene		2302
C23H30ClN3O	Quinacrine	1210	2161-2163
$C_{23}H_{30}N_2O_2$	Piminodine		2106
$C_{23}H_{30}N_2O_3$	Testosterone, imidazole-1- carboxylic acid prodrug	1410	
$C_{23}H_{30}N_2O_4$	Pholcodine		2103
$C_{23}H_{31}NO_2$	α-Acetylmethadol (Levomethadyl acetate)	14	1537
C ₂₃ H ₃₁ NO ₇	Levallorphan tartrate	726	
$C_{23}H_{32}N_2O_5$	Ramipril	1250	
	-		

C ₂₄			
$C_{24}H_{16}Cl_{2}N_{4} \\$	Clofazimine analogue, des-iso- propyl	334	
$C_{24}H_{22}FNO_2$	2-(4-( <i>p</i> -Fluorobenzoyl)piperidin- 1-yl)-2'-acetonaphthone hydrochloride (E2001)	1873	
$C_{24}H_{22}FNO_2$	E2001		1873
$C_{24}H_{25}NO_4$	Flavoxate	548	
$C_{24}H_{26}ClN_{3}O_{2}S$	Phenothiazine, 2-chloro-10-[N- (2-propionyloxy)ethyl]- piperazinylpropyl-	989–990	
$C_{24}H_{27}N$	Prenylamine	1136	
$C_{24}H_{28}N_2O_9$	Dimethyloxytetracycline	450	
$C_{24}H_{29}NO$	Phenomorphan		2087
$C_{24}H_{31}NO$	6-Piperidino-4,4-		1810–1812,
	diphenylheptan-3-one		2116
	(Dipipanone)		
$C_{24}H_{31}NO$	5-Methyl-4,4-diphenyl-6-	1126	
	piperidino-3-hexanone (DL- Pipidone)		
$C_{24}H_{32}FO_9P$	Triamcinolone-16,17-acetonide- 21-phosphate	392	
$C_{24}H_{34}O_5$	Dehydrocholic acid		1764-1765
$C_{24}H_{36}O_{3}$	Nabilone		2013
$C_{24}H_{40}N_8O_4$	Dipyridamole		1814
$C_{24}H_{40}O_4$	Chenodeoxycholic acid	275	
$C_{24}H_{40}O_4$	Chenodiol		1686
$C_{24}H_{40}O_4$	Deoxycholic acid		1768
$C_{24}H_{40}O_4$	Ursodeoxycholic acid (ursodiol)	1486	
$C_{24}H_{40}O_5$	Cholic acid		1718
C ₂₅			
	C:1-1-1-	1075	
$C_{25}H_{22}O_{10}$	Silybin	1275	
$C_{25}H_{27}ClN_2$	Meclizine	768–769	1 ( 71
$C_{25}H_{27}N_9O_8S_2$	Cefoperazone		1671
$C_{25}H_{29}I_2NO_3$	Amiodarone	51–55	
$C_{25}H_{29}NO_2$	KHL 8430	717	1(1(
$C_{25}H_{31}NO$	Butaclamol		1646
$C_{25}H_{32}CIN_5O_2$	Nefazodone		2020
$C_{25}H_{32}N_2O_2$	Dextromoramide		1776
$C_{25}H_{32}N_2O_2$	Levomoramide	(20)	1943, 1944
$C_{25}H_{32}N_2O_6$	Hydrocortisone, imidazole-1-	628	
	carboxylic acid prodrug		
$C_{25}H_{34}O_8$	Hydrocortisone hydrogen	627	
C II NO	succinate		
$C_{25}H_{35}NO_5$	Mebeverine	765	

$\begin{array}{c} C_{25}H_{43}N_{13}O_{10}\\ C_{25}H_{44}N_{14}O_{7}\\ C_{25}H_{44}N_{14}O_{8}\\ C_{25}H_{48}N_{6}O_{8} \end{array}$	Viomycin Capreomycin IB Capreomycin IA Desferrioxamine (deferoxamine	e) 384	2363–2364 1656 1656
$\begin{array}{c} C_{26} \\ C_{26}H_{25}N_2O_4 \\ C_{26}H_{26}I_6N_2O_{10} \\ C_{26}H_{27}NO_9 \\ C_{26}H_{28}Cl_2N_4O_4 \\ C_{26}H_{28}N_2 \\ C_{26}H_{29}NO \\ C_{26}H_{34}FNO_5 \\ C_{26}H_{37}NO_8S_2 \\ C_{26}H_{43}NO_5 \\ C_{26}H_{43}NO_6 \\ C_{26}H_{45}NO_7S \end{array}$	HNB-5 Iodoxamic acid Idarubicin Ketoconazole Cinnarizine Tamoxifen Cerivastatin Tiapamil Glycodeoxycholic acid Glycocholic acid Taurocholic acid	$\begin{array}{c} 620 \\ 689 \\ 376, 665 \\ 714 \\ 313 \\ 1400 \\ 274 \\ 1444 \\ 601 \\ 600 \\ 1402 \end{array}$	2281–2282 1897 1896
$\begin{array}{c} C_{27} \\ C_{27}H_{22}Cl_2N_4 \\ C_{27}H_{26}NO_4 \\ C_{27}H_{29}NO_{10} \\ C_{27}H_{29}NO_{11} \\ C_{27}H_{29}NO_{11} \\ C_{27}H_{29}NO_{11} \\ C_{27}H_{33}N_3O_8 \\ C_{27}H_{38}N_2O_4 \\ C_{27}H_{43}NO_2 \end{array}$	Clofazimine HNB-1 Daunorubicin Doxorubicin (adriamycin) Pharmorubicin Rolitetracycline Verapamil (dexverapamil) Solasodine	333–335 619 376–377 469–470 376, 969 1495–1498	1821–1822 2187 2358–2359 2194
$\begin{array}{c} C_{28} \\ C_{28}H_{29}F_2N_3O \\ C_{28}H_{30}Cl_2FN_5O_2 \\ C_{28}H_{31}FN_4O \\ C_{28}H_{31}N_3O_6 \\ C_{28}H_{37}N_5O_7 \\ C_{27}H_{35}N_5O_7S \end{array}$	Pimozide Soluflazine Astemizole Benidipine Enkephalin (met-enkephalin) Met-enkephalin	1276 98 198 483 483	2107–2108
$\begin{array}{c} C_{29} \\ C_{29}H_{32}O_{13} \\ C_{29}H_{33}ClN_2O_2 \\ C_{29}H_{38}F_3N_3O_2S \\ C_{29}H_{40}N_2O_4 \\ C_{29}H_{41}NO_4 \end{array}$	Etoposide Loperamide Fluphenazine enanthate Emetine Buprenorphine	540 754 478–480 237–238	1875
$\begin{array}{c} C_{30} \\ C_{30}H_{29}Cl_2N_5 \\ \\ C_{30}H_{32}N_2O_2 \\ C_{30}H_{44}N_2O_{10} \end{array}$	Clofazimine analogue, N- diethylamino-2-ethyl Diphenoxylate Hexobendine	334 458 612–613	1807–1808

C ₃₁			
$C_{31}H_{31}Cl_2N_5$	Clofazimine analogue, N- diethylamino-3-propyl	334	
C ₃₁ H ₃₆ NO ₁₁	Novobiocin		2043
$C_{31}H_{40}N_4O_6$	DMP-777 (elastase inhibitor)	463, 477	
$C_{31}H_{41}N_5O_5$	Dihydroergocornine	430	
$C_{31}H_{44}N_2O_{10}$	Dilazep	440-441	
$C_{31}H_{48}O_6$	Fusidic acid	1050	1886
$C_{31}H_{51}NO_9$	Rosaramicin (juvenimicin)	1258 863	
$C_{31}H_{51}NO_{10}$	5-O-Mycaminosyltylonolide (OMT)	003	
C ₃₂			
$C_{32}H_{32}O_{13}S$	Teniposide	1404	
$C_{32}H_{38}N_2O_8$	Deserpidine		1770–1771
$C_{32}H_{40}BrN_5O_5$	Bromocriptine		1631–1632
$C_{32}H_{41}NO_2$	Terfenadine	1409	2287
$C_{32}H_{43}N_5O_5$	Dihydroergocriptine	431	1070
$C_{32}H_{44}F_3N_3O_2S$	Fluphenazine decanoate		1876
C ₃₃			
$C_{33}H_{33}Cl_2N_5$	Clofazimine analogue, 4-piperidinylmethyl	334	
$C_{33}H_{34}N_6O_6$	Candesartan cilexetil	245	
$C_{33}H_{35}FN_2O_5$	Atorvastatin	103	
$C_{33}H_{35}N_5O_5$	Ergotamine	510–511	1832–1833
$C_{33}H_{35}N_5O_5$	Ergotaminine	512–513	
$C_{33}H_{37}N_5O_5$	Dihydroergotamine	434	1793
$C_{33}H_{40}N_2O_9$	Reserpine		2181–2182
C ₃₃ H ₄₇ NO ₁₃	Natamycin		2019
C ₃₄			
$C_{34}H_{35}Cl_2N_5$	Clofazimine analogue, N-pyrrolidinyl-3-propyl	334	
C ₃₄ H ₄₇ NO ₁₁	Aconitine	17	
$C_{34}H_{50}O_7$	Carbenoxolone	247-248	1659
$C_{34}H_{63}ClN_2O_6S$	Clindamycin-2-palmitate	326	
C ₃₅			
$C_{35}H_{37}Cl_2N_5$	Clofazimine analogue, N- piperidinyl-3-propyl	334	
$C_{35}H_{39}N_5O_5$	Ergostine	508-509	
$C_{35}H_{41}Cl_2N_5$	Clofazimine analogue, N- diethylamino-4-(1- methylbutyl)	334	
$C_{35}H_{41}N_5O_5$	Dihydroergocristine	432	

$C_{35}H_{42}N_2O_9$	Rescinnamine	024 025	2180, 2182
$\begin{array}{c} C_{35}H_{61}NO_{12} \\ C_{35}H_{62}Br_2N_4O_4 \end{array}$	Oleandomycin Pipecuronium bromide (Pipecurium bromide)	924–925	2114
C ₃₆			
$\begin{array}{c} C_{36}H_{47}N_5O_4\\ C_{36}H_{60}O_{30}\end{array}$	Indinavir Cyclohexaamylose (α-Cyclodextrin)	677 367	
C ₃₇			
$\begin{array}{c} C_{37}H_{67}NO_{13}\\ C_{37}H_{67}NO_{13}.\\ C_{12}H_{22}O_{12} \end{array}$	Erythromycin Erythromycin lactobionate (salt with lactobiono-δ-lactone)	514–519	1834 1836
$C_{12}H_{22}O_{12}$ $C_{37}H_{70}N_2O_{12}$	Erythromycyclamine	520	
C ₃₈			
$C_{38}H_{68}N_2O_{13}$	Erythromycyclamine-11,12- carbonate	521	
C ₃₈ H ₆₉ NO ₁₃	Clarithromycin	320–321	
$C_{38}H_{72}N_2O_{12}$	Azithromycin	113	
$C_{38}H_{72}N_2O_{12}$	Desmycarosylcarbomycin A	391	
$C_{38}H_{72}N_2O_{12}$	Repromicin	1252	
C ₃₉			
C ₃₉ H ₆₅ NO ₁₄	Desmycosin	390	
C ₄₀₋₄₉			
C ₄₁ H ₆₇ NO ₁₅	Troleandomycin		2345
$C_{41}H_{76}N_2O_{15}$	Roxithromycin	1259	
$C_{41}H_{78}NO_8P$	1,2-Dioleoylphosphati- dylethanolamine (DOPE)	452	
C ₄₂ H ₆₇ NO ₁₅	Carbomycin B	250	
$C_{42}H_{67}NO_{16}$	Carbomycin A (Magnamycin A)		
$C_{43}H_{55}N_5O_7$	Vindesine	1502-1503	
$C_{43}H_{58}N_4O_{12}$	Rifampin	1256-1257	
$C_{43}H_{66}N_{12}O_{12}S_2$	Oxytocin		2056
$C_{43}H_{78}N_6O_{13}$	Muroctasin (Romurtide)	862	
$C_{44}H_{56}N_8O_7$	Seglitide	1271	
$C_{45}H_{54}N_8O_{10}$	Pristinamycin $I_A$ (vernamycin B $\alpha$ )	1138	
$C_{46}H_{56}N_4O_{10}$	Vincristine	1500-1501	2362
$C_{46}H_{58}N_4O_9$	Vinblastine (VLB; vincaleukoblastine)	1499	2362
C46H77NO17	Tylosin	1483	
$C_{46}H_{80}N_2O_{13}$	Tilmicosin	1446	
$C_{47}H_{73}NO_{17}$	Amphotericin B		1576–1577

C ₄₇ H ₇₅ NO ₁₇ C ₄₉ H ₈₉ NO ₂₅	Nystatin Erythromycin lactobionate with lactobiono-δ-lacton	•	2044 1836
C ₅₀₋₅₉			
C ₅₂ H ₉₇ NO ₁₈ S	Erythromycin estolate		1835
$C_{55}H_{59}N_5O_{20}$	Coumermycin A ₁	355	
$C_{55}H_{96}N_{16}O_{13}$	Polymyxin B ₂		2121
$C_{56}H_{98}N_{16}O_{13}$	Polymyxin B ₁		2121
C ₆₀₋₆₉			
C ₆₂ H ₁₁₁ N ₁₁ O ₁₂	iso-Cyclosporin A	372	
$C_{63}H_{88}Co-$ N ₁₄ O ₁₄ P	Cyanocobalamin	359	
$C_{66}H_{75}Cl_2N_9O_{24}$	Vancomycin	1488–1490	
H ₁₋₇			
H ₂ O	Water	1509-1510	
$H_2O_2$	Hydrogen peroxide	632	
$H_3BO_3$	Boric acid	224	
$H_3N$	Ammonia	60	
H ₇ ClN ₂ OPt	Cisplatin degradation proc	duct 317	

# SUBJECT INDEX

# A

Accuracy and precision of  $pK_a$  values, physicochemical factors and, 8 atmospheric CO2 exclusion, 22-23 chemical stability, 22 experimental method, 9-15 ionic strength, 21-22 pH meters calibration with pH standards, 15 - 16solvent composition and polarity, 18-21 temperature effects, 16-18  $ACD/pK_a$  package versus measured  $pK_a$ values, 25 Acetic acid, pK_a values, 19 Acetonitrile,  $pK_a$  values, 19 4-aminobenzoic acid, 24 Artificial neural network (ANN) estimation methods, pK_a values, 14, 24, 26 Atmospheric CO2, exclusion of, 22-23

## В

Barbital. *See* 5,5-diethylbarbituric acid Beckman Research models, 11 Benzoic acid, 5, 23, 28 Brønsted catalytic law, 24

# С

Capillary electrophoresis (CE) studies, 5 Carbenoxolone,  $pK_a$  values, 28 Carboxylic acid group,  $pK_a$  values and, 19 CE methodology,  $pK_a$  screening and, 14–15 Chlorthalidone, 6, 28 Clofazimine, 6 Computer programs,  $pK_a$  values from, 24–26 Cyclopentane-1',5-spiro derivative, 24

# D

Data compilation,  $pK_a$  values and, 26–28 Davies modification, 21–22 Debye-Hückel equation, 8, 11 Davies modification of, 21–22 Guggenheim modification of, 10, 21 Dielectric constant ( $\varepsilon$ ), 20 5,5-diethylbarbituric acid, 3, 5, 24, 26 pK_a value, 23, 28
1,4-dioxane, pK_a values and, 19
DMSO solutions, 15

#### Ε

Electrochemical HPLC detectors, 15 Electromotive force (EMF) method, pK_a values and, 9, 12 Ephedrine, 5 Ethanol, pK_a values and, 19 5-ethyl-5-phenylbarbituric acid, 5

## F

Famotidine, 6 Free energy change ( $\Delta G^{\circ}$ ), 26

#### G

Glibenclamide, 4, 6, 28 Guggenheim modification, 10, 21

# Η

Hammett and Taft relationships, 24 Henderson-Hasselbalch equation, 14, 22 HPLC assays, 27 HPLC-MS system, 16 Hydrolysis, of susceptible molecules, 22 Hydronium ion activity, 8, 12

# I

Ibuprofen, 6, 28
International Union of Pure and Applied Chemistry (IUPAC), 2, 7, 15, 27
Ionic activity coefficient, 8
Ionic strength, 10–11, 14, 21–22 pKa values and, 6
Isonicotinic acid, 5, 12
5,5-di-isopropylbarbituric acid, 17
IUPAC pKa compilations, 2–4

#### K

Kinetic methods, for  $pK_a$  determination, 13

#### L

Lidocaine, 6 Lignocaine, 28 Linear-free energy relationships (LFERs). *See* Hammett and Taft relationships

# M

Mass spectrometry (MS), 14 Methanol,  $pK_a$  values and, 19 Methylcellosolve,  $pK_a$  values and, 19 Milli-Q water, 23 Molecular absorbance with ionization (dA/dpH method), 12 Morphine, 3

## Ν

National Institute of Science and Technology (NIST), 7, 28 Nicotinic acid, 5 Nimesulide, 6, 28 *N*,*N*-dimethylacetamide, 19 *N*,*N*-dimethylformamide, 19 Noyes-Whitney equation, 19

## Р

pН definitions of, 8 measurement methods, 9, 11-12, 15, 27 meters calibration, pH standards and, 15-16 and  $pK_a$  values, relationship between, 2, 7 Phenobarbital. See 5-ethyl-5-phenylbarbituric acid Phenylbutazone, 6, 28  $pK_a$  determination, evaluation methods accuracy and precision, 8 atmospheric CO2, exclusion of, 22-23 chemical stability, 22 experimental method, 9-15 ionic strength, 21-22 pH meters calibration with pH standards, 15 - 16solvent composition and polarity, 18-21 temperature effects, 16-18 data quality validation, 23 inherent precision, 7-8  $pK_a$  values, for pharmaceutical substances, 1 from computer programs, 24-26

data compilation, 26-28 determination, evaluation methods for accuracy and precision, physicochemical factors and, 8-23 data quality validation, 23 inherent precision, 7-8 IUPAC pKa compilations, 2-4 limitations of, 4-7  $pK_b$  values, 5 Polarity and solvent composition, pKa values and, 18 Potentiometric titration (weak acids and weak bases), 9-10 Propranolol, 6, 28 1,3-bis[(2-pyridyl)methyleneamino] guanidine, 12

# R

Reversed phase-high performance liquid chromatography (RP-HPLC) column, 14

# S

Sirius[®], autotitration equipment, 11, 18 Sodium tetraborate (borax) solutions, 16 Solubility–pH dependence method, 10–15, 18–19, 22 Spectrophotometric method, 11, 18, 22–23 pH measurements and, 12 Sulfamic acid group, pK_a values and, 19

# Т

Temperature, pK_a and pK_w values and, 16–18

# U

US National Bureau of Standards (NBS), 7-9, 28

# v

Valentiner-Lannung equation, 16–17 van't Hoff equation, 17

# W

Water autoprotolysis constant ( $pK_w$ ), 9

# Y

Yasuda-Shedlovsky procedure, 3, 14, 20